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 SLAM: Simultaneous L ocalization and
Mapping
* | nputs. odometry and sensor readings, over time
* Outputs: a map, and the set of locations traversed
on It
* Uncertainty modeling...

* ontheinputsisessential, since sensors and
odometry are noisy

* In the output Is great If you can do It (this paper
does).
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Overview

e SIFT Stereo
* Ego-motion estimation: improving on odometry

e | andmark Tracking: remembering what we've
Seen

e Frst Results

* Heuristic improvements: tricks to improve
SUCCESS

* Error Modeling
* More Results
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SIFT Stereo

* Sensors: typical sensors include...

o | aser
* Sonar
* Vision, with an instrumented environment
* |nstead, this paper usesthe Dlglclops a
trinocular camerarig *
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SIFT Stereo

* Godl: find features in Images, and compute
their 3D relative position

* Three Steps:

— Detect unique features in each of 3 cameras
- Match across cameras
— Recover feature positionsin 3D, relative to camera
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SIFT Stereo

e Step 1 of 3: Detect unique features in each of 3

cameras
e SIFT allows detection and characterization of
image features il
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SIFT Stereo

* Step 2 of 3: Match features across cameras

* Glven our three input Images, we could just
match all features on each against all others

e But we can constrain matches further:

— Epipolar constraint

— Disparity constraint: for arightmost camera, objects
should appear more to the | eft

— Orientation, scale should be about the same In the two
Images
— Should be only one good match
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SIFT Stereo

Left Camera Right Camera
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SIFT Stereo

e Step 3 of 3: Recover feature positionsin 3D,
relative to camera

e Approach #1. what they did

- The size of the disparity gives the distance
- We have two digparities, so we could take the average

* Approach #2.

— We could project rays through the pixels, and find the
closest intersection
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SIFT Stereo

Left Camera Right Camera
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Ego-motion estimation

e Odometry gives us changein
position/orientation

* | et'srefine these moment-to-moment
estimations of change in position/orientation

* Note: We will still have the problem of slowly-
degrading sums of differences! It will just be
less extreme
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Ego-motion estimation

 Fnd matches across two frames

e Just as we had constraints between two
cameras, we can have constraints between two
frames

— position, scale, orientation, disparity

e Glven >= 3 matches, we can solve for change
IN camera position/orientation

* Glven odometry as initializer, minimize
reprojection error (could use, for example,
M atl ab'S lsqnonlin)
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L andmark Tracking

e | at'sturn SIFT features into landmarks

* For each 3D SIFT feature found, let's associate
some datawith it....

- X,Y,Z: 3D position in the real world
- s scale of landmark in real world
- 0: orientation of landmark in real world (from top down)

— |: count of number of times this landmark has been
unseen, when it should have been seen. Thisislike a
measure of error for this landmark.
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L andmark Tracking

* Rulesfor landmarks:
- If alandmark is expected to be seen...
e ...but isnot seen, that landmark's “ missed”
count goes up by one

e .andisseen, reset its miss count to zero

- If anew landmark 1s found, add it to the database and set
1ts missed count to zero

- If “missed” count goes above 20, remove landmark
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First results

1600

* Generated map |

e Starting pointat ..
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e Path on dotted line =
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Heuristic Improvements

* Only insert new landmarks if they've been seen
afew frames

e Build “permanent” landmarks when the
environment Is clear

e Assocliate view vector with each landmark

- If we're “behind’ the landmark, or more than 20 degrees
to the side of it, don't expect to see it

* Allow multiple features per landmark (ie
multiple scales, orientations, and view vectors)
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Error Modeling: Robot Position

e UsesaKaman filter

* During each frame, we should maintain...

- X: State
- P: Uncertainty over that state

e State: position and angle, ie...
— position: X,y
- angle: yaw, pitch, roll

* Uncertainty over that state;

— acovariance matrix P (ie dlipsoidal Gaussian)
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Error Modeling: Robot Position

e X .Ispose predicted by SIFT stereo

o P _Iscovariance over this prediction, computed as
inverse of J'J

e The state update is

X(k+ 1lk+1) =x(k+ 1]k) + Wk + 1)[xp5 — x(k + 1]k)].
The covariance update 1s

Plk+ 1lk+1) = P+ 1]k) — Pk + 1]k)
[P(k + 1|k) + P, TP(k + 1]k)T.
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Error Modeling: Landmarks

* Each landmark has a covariance matrix
* (Gets updated on aframe-by-frame-basis
 Math isin the paper
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More results

147

127

Matthew Loper



)
=
g
O
o~
©
=

ath around the room

inginap

e GO

Matthew Loper




M ore results

e Uncertainty over robot position
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