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A Non-linear Dataset

We have a group of N data points in d-dimensional space,
X, and associated values t.
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Linear Least-Squares Regression

We wish to find a function y(x) for which the mean squared
error is small:

ŷ(x) = argminy
1

N

∑

i

(y(xi) − ti)
2

We hypothesize that y is a linear function of the training
data parameterized by the weight vector w,
y(x; w) = w0 + wT x.
Our optimal w is now:

w∗ = (XT X)−1XT t
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Which looks like this:
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A Statistical Model

Linear least-squares regression is a procedure for finding a
w; let’s turn it into a model for our data.
We suppose that there exists a function y(x; w∗), and our
data t is generated from this function, then corrupted by
Gaussian white noise (mean 0, variance σ2

ν).

ti = y(xi; w
∗) + νi

νi ∼ N(·|0, σ2
ν)

In this case, our data t consists of samples from a
Gaussian:

t(x) ∼ N(·|y(x; w), σ2
ν)
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Bayesian inference

Now the probability of our parameter w is:

p(w, σ2
ν |t,X) =

p(t|y(x; w, σ2
ν), X)p(w, σ2

ν)

p(t|X)

The solution (in case of an appropriate form for y and a
prior over w and σ2

ν) will be the same least-squares solution
as before.
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Only now we have error bars
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Non-parametric Bayesian inference

We could dispense with the parameter w and compute over
the space of functions directly:

p(y|t,X) =
p(t|y(x), X)p(y(x))

p(t|X)

This is a generalization of the previous equation; to work
with it we need to be able to define priors over the infinite
space of functions y.
However, we’d like to retain some useful properties:

Simple descriptions of our favorite parametric models.

Tractable (finite-space) representation of the posterior.

Distribution of the data given the model is Gaussian.
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Gaussian Processes

A prior which is a Gaussian process has all the properties
we desire.
A Gaussian process is a distribution over the space of
functions, with mean function µ(x) (a function because it
need not be stationary– as above it may be something like
f(x; w)) and an operator A analogous to the covariance:

P (y(x)|µ(x), A) =
1

Z
exp(−

1

2
(y(x) − µ(x))T A(y(x) − µ(x)))

The inner product (y(x)−µ(x))T A(y(x)−µ(x)) is defined as:
∫

(y(x) − µ(x))T A(y(x) − µ(x))dx
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Linear Regression Revisited

Back in our simple linear regression model, let’s impose a
prior on w; unsurprisingly, let’s make it Gaussian, with mean
0 and spherical covariance σ2

wI.

w ∼ N(·|0, σ2
wI)

Let Y be the value of y(x) at each point x.
What are our prior beliefs about Y like? Y must still be
Gaussian, and has expected mean 0.
The covariance Q = Y Y T is:

= (Xw)(Xw)T

= X(wwT )XT

= Xσ2
wXT
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Covariance Terms

t is Y , plus the additive Gaussian noise terms ν. It’s still
Gaussian with mean 0.
The covariance C is Q, plus the noise covariance, σ2

νI.
Any particular element of Q is the data covariance at that
point, times the variance in w:

Qi,j = (σ2
wXXT )i,j

A particular element of C is:

Ci,j = Qi,j + Ii=jσ
2
ν

Nonparametric Regression With Gaussian Processes – p. 11



The Kernel Trick

So far, we’ve been working explicitly in the input space (the
dimensions of X– plus an extra feature always equal to 1,
to allow a bias term).
We can project the data into feature space using a set of
basis functions φ. One way to do this would be to form

R =
[

φ1(x)...φH(x)
]

.

But our set of basis functions could be huge, even infinite.
However, our covariance Q only depends on the dot
products between vectors.
So all we really need is a function C(x, x′) that produces the
entries of the covariance matrix Q.
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Doing Inference

So suppose we have fixed C as some covariance function.
Actually using our regression model (predicting t for some
new x) requires inference over the posterior
p(tn+1(xn+1|t,X) = p(tn+1(xn+1),t(X))

p(t) .

This distribution is a Gaussian (because our prior
distribution over t is Gaussian). So the posterior is:

p(tn+1(xn+1|t(X)) ∝ exp(−
1

2
[tN tn+1]C

−1
N+1[tN tn+1]

T )

This is just an ordinary Gaussian distribution. The tough
part is the covariance matrix C−1

N+1, which is the inverse of
the covariance C for the data X augmented by the new point
tn+1.
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Inverting the Covariance Matrix

Inverting matrices is hard. Ideally we only want to invert the
data once, especially if we have many training points.
The inverse covariance of the augmented data matrix can
be computed only in terms of the inverse covariance of the
original data, C−1, and the covariance of the new point
against the original data, k.
The prediction of the new point is:

t̂n+1 = kT C−1t

The (Gaussian) posterior distribution for the point is:

p(tn+1(xn+1)|t(X)) ∝ exp

(

−
(tn+1 − t̂n+1)

2

2σ2
n+1

)
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Incremental learning

Suppose we get a new point xn+1 and its label tn+1. We
could recompute Cn+1 and invert it all over again. But that
would be expensive.
Notice that:

Cn+1 =

[

[

Cn

] [

k
]

[

kT
] [

κ
]

]

Here again k is the covariance of xn+1 with the training set:

ki = C(xi, xn+1)

κ is C(x, x) + σν and C(x, x) is usually 1.
We can compute the inverse C−1

n+1 without inverting the
matrix from scratch.
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Incremental inversion

Cn+1 =

[

[

M
] [

m
]

[

mT
] [

sm
]

]

(Partitioned inverse equations; Barnett 1979).

sm = (κ − kT C−1
n k)−1

m = −smC−1
n k

M = C−1
n +

1

sm
mmT
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A few useful priors

The radial basis kernel assumes that points near one another
have similar values; the similarity between points is
expressed as a Gaussian:

d(x, y) = exp−
|x − y|2

2r2

If we assume our basis contains an infinite number of these
functions and set our covariance function to:

C(x, y) = θ1exp−
|x − y|2

4r2

We get the same thing.
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Result looks like:
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Exploiting periodicity

We can use a prior that assumes points nearby in the
period of the function have similar values:

C(x, y) = θ1exp−
sin(.5 ∗ (x − y))

r

2

So C(0, 2π) is 0.
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Result looks like:

With only 25 training points
we get some sparsity issues:
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A sinusoidal prior helps us
reconstruct the data:
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Why Bayesian analysis?

Why not just use kernel methods?

Error bars: how unlikely is a given prediction?

Generative model: given an x, efficiently sample a t.

Hierarchical inference: sample hyperparameters (the θ

parameters that specify C, and the parameters for the
noise model).

Posterior inference: can compute data likelihood given
the posterior distribution over the parameters, not a
single set of parameters.
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Review: How do you do it?

Get some data.

Decide on a covariance function C (with some
hyperparameters θ).

Guess the noise variance σν .

Construct the covariance matrix C, where
Ci,j = C(xi, xj) and Ci,i has an additional term σν .

Invert the covariance matrix. (This is the hard part!)

Predict for new points xn+1: take the distances
ki = C(i, n + 1) and compute kT C−1t.

Remember, if you can’t directly invert your training
covariance matrix (∼ 1000 points) you have to be cleverer!
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