
A Flexible Distributed Runtime System

Hammurabi Mendes, Dimitar Todorov

December 15, 2010

1 Introduction

There is evidence that high-performance computing power in the forthcoming years is going to be provided
by (1) an increasing number of computing units in computer processors; and (2) large clusters of commodity
machines arranged in single-managed administrative domains.

Although the computer industry is still subject to Moore’s law, which states that transistor availability
doubles every about 18 months, they are now being provided in the form of an increasing number of com-
puting units, presented either in a single computer processor or across different processors in a non-uniform
memory access setting. This is due to physical limitations in constructing machines with faster clocks (heat
issues, communication delays, etc), and also to the complexity related to providing increased instruction-
level parallelism. Besides CPU processors, this trend is highly visible in modern graphical processing units
(GPUs).

Moreover, with increasing adoption of the “software-as-service” paradigm, allied to the gradual price
drops and capacity increase of commodity machines, cluster computing has been put into the spotlight.
It is known that computer clusters provide high computational capacity. In fact, most high performance
computing machines are actually clusters of commodity machines employing special runtime frameworks to
leverage computing power.

An important consequence of this shift of paradigm is that the single-threaded computational illusion
that has been provided to programmers for years is now broken. Programmers must be aware of which parts
of their programs are or should be executed in parallel if they want to leverage maximum performance from
the underlying computer system. Most importantly, they must be aware of the structure/architecture of the
underlying system, be it a single shared-memory machine or a cluster of autonomous machines.

At present, only by being aware of the underlying system, applications might perform either an effective
shared memory synchronization or the appropriate task scheduling across different machines. In such hybrid
computational environments, a crucial decision is how tasks should be placed, and also how they should
communicate. Ignoring such issues might severely hurt performance by unnecessarily abusing resources such
as persistent storage or network bandwidth. The application developer, or the runtime system scheduler
responsible for ultimately running tasks in the distributed system, needs to carefully setup how tasks should
be placed and take advantage of more efficient communication mechanisms (such as shared memory).

This report presents a system called Hammr, which allows the specification of distributed applications
in a simple manner, still providing the flexibility of specifying general directed acyclic graph application
workflows for a distributed application. The motivation for this work is to build a foundation where research
ideas and prototypes could be implemented over easily and cleanly. Among these ideas, are the support
for heterogeneous cluster environments and GPU processor awareness, which, as discussed above, seem
promising future trends for high performance computing. Besides describing the system architecture and
properties, we also highlight its design structure and its client interface in this text.

1

2 Related Work

One of the earliest systems for distributed execution of applications is Condor [4]. Like our system, Condor
aims high-throughput computing obtained from clusters of workstations, but it is also designed to leverage
computing power from idle client workstations. Condor has an expressive matchmaking system, that couples
system offers with resource requests from clients.

Paradigms such as Google’s MapReduce [2] have gained attention by providing high computational power
by means of a relatively uncomplicated infrastructure for running parallel applications. The programmer
specifies the tasks that comprise an application and the system takes care of issues related to fault tolerance,
scheduling, and other problems that arise when applications are run in a distributed setting. However,
the MapReduce paradigm implies in a fixed communication structure, which might be inadequate for some
applications.

Improvements to the MapReduce paradigm, like MapReduce Online [1], allow greater flexibility related
to the means by which distributed applications can communicate, but the communication structure is still
fixed.

Dryad [3] proposes a more general framework for executing such applications. Instead of predefining the
communication graph, it is user-defined (or automatically generated by a compiler), and therefore a greater
number of tasks could be expressed on top of such platform. However, as Dryad is not freely available,
we opted to implement a distributed runtime system, establishing a foundation where improvements and
research prototypes can be built upon.

3 Architecture

In this section we describe the overall system design, touching implementation details whenever relevant.
The system was developed in Java, using the Java RMI technology, in about 5000 lines of code. We also
provide a module that allows the execution of C/C++ applications in a distributed setting, implemented
itself in C in about 800 lines of code.

The system is composed by a single manager and many launchers. The manager maintains a list of active
launchers, and it is responsible for interpreting application specifications given by clients and for scheduling
the corresponding applications across the launchers. The launchers receive tasks from the manager and run
these tasks locally. In other words, they ultimately execute pieces of the application specified by the clients.
The general architecture is shown in Fig. 1.

The clients locate the manager through a well-known distributed name server, here called registry. The
launchers also locate the manager, and inform their presence to it, through the registry. All the communi-
cation between the clients, the manager, and the launchers, is made through Java RMI.

Figure 1: Multiple clients submit application spec-
ifications to the manager, that maintains a list of
active launchers, which execute pieces of the sub-
mitted applications. Through a well-known reg-
istry, clients and launchers locate the manager.

2

3.1 Application Specification

The application specification is a graph object in which vertexes, called nodes here, and edges, called connec-
tions or channels here, are specified and serialized by the client and submitted to the manager. The graph
needs to be a directed acyclic graph (DAG), otherwise it is rejected by the manager.

In Fig. 2, we provide an example of how clients specify an application and submit them to the manager.
In the following subsections, this code will be used to explain the client-visible system features.

Manager manager = RMIHelper . locateRemoteObject (r e g i s t r yLoca t i on , "Manager") ;

App l i c a t i o nSp e c i f i c a t i o n a pp l i c a t i o n Sp e c i f i c a t i o n =
new App l i c a t i o nSp e c i f i c a t i o n ("appname" , "/path/superdir") ;

Node [] nodes = new Node [7] ;

for (int i = 0 ; i <= 1 ; i++) nodes [i] = new F i l t e r () ;
for (int i = 2 ; i <= 3 ; i++) nodes [i] = new Copier () ;
for (int i = 4 ; i <= 5 ; i++) nodes [i] = new Mixer () ;
nodes [6] = new Relayer () ;

a p p l i c a t i o n Sp e c i f i c a t i o n . inse r tNodes (nodes) ;

for (int i = 0 ; i <= 1 ; i++)
a pp l i c a t i o n Sp e c i f i c a t i o n . a d d I n i t i a l (nodes [i] , "input -" + i + ".dat") ;

a p p l i c a t i o n Sp e c i f i c a t i o n . addFinal (nodes [6] , "output.dat") ;

a p p l i c a t i o n Sp e c i f i c a t i o n . in s e r tEdges (nodes [0 . . . 1] , nodes [2 . . . 3] , FILE , 1) ;
a p p l i c a t i o n Sp e c i f i c a t i o n . in s e r tEdges (nodes [2 . . . 3] , nodes [4 . . . 5] , SHM) ;
a p p l i c a t i o n Sp e c i f i c a t i o n . in s e r tEdges (nodes [4 . . . 5] , nodes [6] , TCP) ;

manager . r e g i s t e rApp l i c a t i o n (a p p l i c a t i o n Sp e c i f i c a t i o n) ;

Figure 2: How clients submit application specifications to the manager.

3.2 The Nodes

The client-specified nodes are objects that inherit from the system-provided Node class, which provides useful
routines to the client applications, specially in regard to communication. The system-provided Node class,
and therefore the client-specified nodes, are actual programs that implement the Java Runnable interface.

When the client inserts a node in the application specification, such node gains a default name. The
client could also specify other meaningful names to special nodes if desired.

In Tab. 1, we discuss the most important Node functions that inherited nodes benefit from. In Fig. 3,
we show how client nodes are designed. These are created and inserted into the application specification
by the client – see Fig. 2. We invite the reader to notice the clean design and simplicity of the application
specification process, and of the client-specified node code.

3.3 The Connections

The connections are specified through the following routine:

insertEdges(group1, group2, type, [multiplicity]).

3

Method name Method description

getInputChannelNames() Return the names of all incoming neighbors.
getOutpuChannelNames() Return the names of all outgoing neighbors.
read(name) Read a record from input incoming neighbor called “name”,

blocking if necessary.
readSomeone() Read a record from any incoming neighbor with records available,

blocking if necessary.
write(record, name) Write a record to outgoing neighbor called “name”.
writeSomeone(record) Write a record to some random outgoing neighbor.
writeEveryone(record) Write a record to all the outgoing neighbors.

Table 1: Important methods provided by class Node.

public class Relayer extends Node {
public void run () {

ChannelElement channelElement ;

while (true) {
channelElement = readSomeone () ;

i f (channelElement == null) {
break ;

}

writeSomeone (channelElement) ;
}

c loseOutputs () ;
}

}

Figure 3: Simple information relayer implemented on top of the system.

The first two arguments are two groups of nodes. The third argument, which can be one of {SHM,
TCP, FILE}, specifies whether the communication established between members of group1 and group2 is,
respectively, a shared-memory pipe, a TCP connection or a runtime-produced file:

Shared memory. This indicates that associated nodes should run in parallel on the same machine, and
that they should communicate through a shared-memory pipe;

TCP connections. This indicates that associated nodes can run in different machines, but they should be
scheduled concurrently time in order to establish a stream connection;

Filesystem locations. This indicates that associated nodes can run in different machines, and that they
could execute in different times.

The optional multiplicity parameter, if omitted, means pairwise association: each member of group1 has
a communication channel to each member of group2. If present, say with value x, it specifies that each
member of group1 has x communication channels to members of group2, assigned through members of
group1 in a round-robin fashion.

4

3.4 Channel Elements

All the records transmitted through communication channels are encapsulated in serializable objects called
ChannelElements. By default, they have only a description field and a information field, but it can be
extended by clients to support other operations. Moreover, client applications can decide whether they
prefer coarse-grained encapsulation (big records), fine-grained encapsulation (small records), or a mix of
both. In any case, it is usually convenient that application developers extend the ChannelElement class
to support application-specific operations on the packed data block (like insert/removal/search operations,
metadata information handling, among others).

3.5 The Manager

The manager receives application specifications and creates one application handler for initiated application.
Particularly, the handler contains one scheduler for application, executing in multiple threads. See Fig. 4a.

(a) Manager and schedulers. Each application
has one scheduler, which identifies NodeGroups and
NodeBundles.

(b) The inner dashed selection is a NodeGroup; the
outer dashed selection is a NodeBundle.

Figure 4: The manager and one scheduler instance for each running application.

The scheduling process consists first on identifying groups nodes that communicate via shared memory in
the application graph. Whenever two nodes are connected by a shared-memory communication channel, they
are in the same NodeGroup, and this relation is transitive. In Fig. 4b, the inner dashed segment represents
an example of these groups, which will be assigned simultaneously to a single launcher. These groups are
called NodeGroups.

The scheduler then identifies parts that, although possibly assigned to different launchers, should be
scheduled simultaneously across many launchers. The logic to identify NodeBundles is analogous to the
previous scenario, but now the scheduler looks for nodes linked by TCP communication channels, also in

5

a transitive fashion. In Fig. 4b, the outer dashed segment represents an example of these parts, called
NodeBundles.

Each application scheduler keeps track of scheduled NodeGroups for the corresponding application. When
they are finished, their execution summary, including timing information for the whole NodeGroup and for
each node that is part of it, is returned to the manager. When all the dependencies (all the input files) for
a NodeBundle are already created, the NodeBundle is released and its NodeGroups are scheduled to different
launchers.

3.6 The Launchers

The launchers receive NodeGroups from the manager and execute them. For each NodeGroup received, an
ExecutionHandler is created. The execution handler is responsible for starting the client-specified nodes
on the local machine. Among the tasks carried by the ExecutionHandler are:

1. Setting up the shared-memory pipes, starting TCP servers or creating output files, according to the
communication channels involved;

2. Connecting nodes that communicate via shared-memory pipes, and mapping communication channel
names and actual pipes at the output of the origin node and at the input of the target node – this
allows the read*() and write*() functions to choose specific destinations and sources, respectively;

3. Notifying the manager about the address and port number of each started TCP server. A mapping
between target nodes of a TCP communication channel and the associated server addresses is now
maintained at the manager. This allows nodes with outgoing TCP channels to query the manager for
the associated address of the target node, which resides in a different machine. Creating this mapping
at the moment of launching nodes is needed because TCP addresses from TCP servers are assigned
dynamically by the operating system.

4. Obtaining from the manager the addresses associated with outgoing TCP channels. This is the reverse
step of the previous item, and is carried by ExecutionHandlers that execute nodes that have outgoing
TCP connections.

Figure 5: The launcher and one execution han-
dler for each running NodeGroup. Each execu-
tion handler initiates one node handler for each
contained Node.

For each node which is part of some NodeGroup, a special helper thread is created to run it. This
helper thread, called NodeHandler, runs the node and records statistics for its execution, including the
CPU/sys/user time spent (the CPU and sys can be obtained up to nanosecond granularity). When the

6

execution is finished, a result summary is prepared, containing all the collected statistics, and sent to the
manager.

4 Running C/C++ Applications

As previously discussed, our system currently supports three types of communication. The choice of com-
munication type greatly affects system behavior, and it is up to the users to decide which type is the best
for their problem.

4.1 Implementation

The nodes will be started by the local launcher. The launcher will pass the parameters to our wrapper for
all input and output connections through the command line. The node will be initialized and then it will
wait to receive records. Each input connection is handled by a different thread. When a record is received
by an input connection it is written to a pipe from where the application process reads. If the pipe is full
the thread will block until there is enough space in the pipe. Output connections work similarly like input
connections with the exception that records are not buffered through a pipe but sent immediately through
the output streams

Figure 1 (Input Implementation)

!

!

!

"#$%&'!(!!"#$%#$&'(%)*(*+$,$-.+/

'+%#$

'+%#$

'+%#$

0-%* 1*,2&

"#$%#$

"#$%#$

"#$%#$

31-$*&

(a) Input implementation.

Figure 1 (Input Implementation)

!

!

!

"#$%&'!(!!"#$%#$&'(%)*(*+$,$-.+/

'+%#$

'+%#$

'+%#$

0-%* 1*,2&

"#$%#$

"#$%#$

"#$%#$

31-$*&

(b) Output implementation.

Figure 6: Implementation of the wrapper routines for C/C++ applications.

4.2 API

Our initial design was to support parallelization for existing C programs that use command line as input and
output without any modification. The C wrapper we wrote for this was creating two named pipes in which
file descriptor were duped as stdin and stdout and then the wrapper created a child process which call
execve() to run the program. Unfortunately, we were forced to abandon this approach because we couldn’t
create a meaningful way to map the output. The output produced by the C program had to be send to all
reducers without any distribution of the records. Our current implementation requires small modifications
in order to run existing programs. In particular, instead of using command line as output and input the
programs will need to use our communication API.

Our main goal in constructing the API was to give great flexibility to the users. They could select how
the output of their program will be distributed. In order to achieve this goal and making it easy for user to
send and receive records we created the following functions.

7

Function Explanation

outputConnectionNames() gets all output connection names
readLine(buffer,size) reads a record (each records is treated as one line)
readMax(buffer,size) read up to the specified size of the buffer
writeAll(buffer) writes to all available connections
writeSpecific(buffer, connections, size) writes to the specified connections
writeRandom(buffer) Writes to a random connection

The API is created as a static library. In order to use it, a developer needs to include the library
header file in their application. Secondly, during compilation the static library and pthread library should
be linked. Lastly, the developer needs to specify DAG graph with our manager, so the program can be
effectively parallelized.

5 Evaluation

In this section, we present tests to evaluate the system. Our tests consist on two micro-benchmarks and two
complete MapReduce applications. The micro-benchmarks are described below.

Communication stress Two nodes, connected by a TCP communication channel, read and relay 118MB
and 1.2GB-sized files containing very fine-grained ChannelElements, totaling 6 million and 60 million
objects. The average ChannelElement size is 19.89 bytes. Common applications will usually employ
much bigger records (in the order of MB), but we want to generate many records for this stress
benchmark (we want to test the Java garbage collector). We verify the memory consumption of the
executing launcher at different moments, as well as the CPU/user times devoted to the application.

Scheduling stress This micro-benchmark evaluates the performance of the graph parsing and scheduling
routines at the manager. A client submits application specifications with 100 and 1000 nodes, with,
respectively, about 500 and 50000 edges. The procedure to generate edges is the following: (1) we index
the nodes, from n1 to nx, where x is the number of nodes considered; (2) each node ni is connected to
every other node nj>i with probability 0.1. The number of edges is therefore quadratic in the number
of nodes. The tasks are almost trivial (they just establish communication channels and then exit). All
the communication channels are TCP-based. This choice for TCP channels is based by the fact that
TCP-based communication requires more interaction between the launchers and the manager, because
the mapping between target node names and server addresses is handled by the manager. We analyze
the total time to schedule the NodeGroups.

The micro-benchmarks are performed on an Core i5 with two cores (with hyper-threading technology
enabled, which simulates four cores). The system has 4GB of DDR3 RAM, and runs MacOS X 10.6.5
(10H574). The hard disk is a 320GB Hitachi model HTS545032B9SA02.

For the first micro-benchmark, we generate the input files as described above. The results are presented in
Tab. 2. We see that the memory consumption kept steady as the number of manipulated ChannelElements
increased, showing that the Java runtime system reclaimed unused memory in an expected manner, without
big impacts in the application footprint. If this were not true, nodes processing huge files might exhaust
memory. Moreover, Tab. 2 shows a linear increase on the CPU and user times for the communication stress
benchmark.

Input size # of ChannelElements Avg. CPU time Avg. user time Memory consumption (MB)

118MB 6,220,100 2.18 min 0.76 min 130.6
1.2GB 62,201,000 21.30 min 7.10 min 136.6

Table 2: Communication stress benchmark results.

8

Communication stress benchmarks were important because they allowed us to identify an interesting bug
in the java ObjectOutputStream class: as we kept writing objects to it, it kept consuming more and more
memory, as the class stores a copy of sent objects. Left untreated, this eventually consumes all the available
memory. Fortunately, there is a method that resets the output device, cleaning the unused memory. We call
it once every 64K transmitted objects.

For the second micro-benchmark, we generate the graphs, according to the previous description, and
submit the application. We are interested on the time to parse the graph (identifying NodeGroups and
NodeBundles). The results are presented on Tab. 3.

of nodes # of edges Time to parse graph

100 502 19 msec
1,000 50,127 604 msec

Table 3: Scheduling stress benchmark results.

Finally, we ran two MapReduce applications consisting on counting the words of 3.7GB and 37GB
of data, split in 31 input files, and sorting the words by the number of occurrences. As in the case of the
communication benchmark, to stress communication, we used very fine-grained records: in total we processed
192,823,100 and 1,928,231,000 ChannelElements. The setting is as Fig. 7. We employed 31 mappers and 31
reducers, executed across the department new cluster1. The launchers were submitted via Sun GridEngine
to the cluster, and they registered with the manager running on machine barney. Each machine executed
two launchers, as they were dual-core machines (except for one case, which executed one launcher). The
machines were dedicated to running our launchers.

Figure 7: Our evaluation scenario. In both tests, the number
of mappers and reducers is 31. In the first test, the input
files have 3.7GB, and contain 192,823,100 ChannelElements in
total. In the second test, the input files have 37GB, and contain
1,928,231,000 ChannelElements in total.

Our MapReduce applications employed a combiner function at the mappers to avoid transmitting too
much data to the reducers. Therefore, the communication between mappers and reducers is not our main
concern. Tab. 4 shows the results.

1Thanks to John Bazik for the support.

9

Data size Number of records Total time Avg. node CPU time Avg. node user time

3.7 GB 192,823,100 14min 25 sec 57 sec 30 sec
37 GB 1,928,231,000 136min 14 sec 9min 49sec 5 min 36 sec

Table 4: MapReduce experimental results.

Both tests show big differences in the total real time vs average CPU/user time. These discrepancies
occur in the mappers, and we believe that, for most of the time, the mappers were waiting for I/O operations
to complete in the department filesystem2. In Fig. 8 and Fig. 9 we present graphically the CPU and user
times for all the mappers in both tests.

CPU User CPU User

Mapper 0
Mapper 1
Mapper 2
Mapper 3
Mapper 4
Mapper 5
Mapper 6
Mapper 7
Mapper 8
Mapper 9
Mapper 10
Mapper 11
Mapper 12
Mapper 13
Mapper 14
Mapper 15
Mapper 16
Mapper 17
Mapper 18
Mapper 19
Mapper 20
Mapper 21
Mapper 22
Mapper 23
Mapper 24
Mapper 25
Mapper 26
Mapper 27
Mapper 28
Mapper 29
Mapper 30
Reducer 0
Reducer 1
Reducer 2
Reducer 3
Reducer 4
Reducer 5
Reducer 6
Reducer 7
Reducer 8
Reducer 9
Reducer 10
Reducer 11
Reducer 12
Reducer 13
Reducer 14
Reducer 15
Reducer 16
Reducer 17
Reducer 18
Reducer 19
Reducer 20
Reducer 21
Reducer 22
Reducer 23
Reducer 24
Reducer 25
Reducer 26
Reducer 27
Reducer 28
Reducer 29
Reducer 30

2.1166666667 1.2166666667 20.45 11.683333333

1.45 0.1833333333 20.616666667 11.683333333

2.0166666667 1.1833333333 21.016666667 11.583333333

2.2833333333 1.2833333333 21.816666667 12.25

1.95 1.1166666667 21.383333333 12.733333333

2.0333333333 1.2 20.133333333 11.566666667

1.55 0.1833333333 19.45 10.95

2.1666666667 1.2833333333 10.583333333 1.5833333333

2.3 1.45 21.466666667 12.35

2.2833333333 1.3 23.483333333 14.483333333

1.6 0.2 21 11.683333333

2.15 1.1833333333 16.516666667 9.6

2.2166666667 1.3166666667 21.633333333 12.766666667

2.0833333333 1.2166666667 1.4166666667 0.3

2.0666666667 1.1666666667 24.083333333 15.4

1.6833333333 0.2 20.266666667 11.566666667

1.8833333333 1.0833333333 21.616666667 12.216666667

1.95 1.0666666667 20.6 11.883333333

2.1 1.1666666667 20.283333333 11.9

2.05 1.1166666667 21.483333333 12.333333333

1.1166666667 0.6833333333 12.683333333 7.6

2.0166666667 1.1666666667 19.583333333 11.233333333

1.4833333333 0.1833333333 20.55 11.366666667

0.9333333333 0.5833333333 21.55 11.966666667

1.85 1.05 20.683333333 11.483333333

2.1833333333 1.3 20.45 11.55

2.0833333333 1.15 24.333333333 14.933333333

2.0333333333 1.1 23.5 14.133333333

2.0166666667 1.2 21.683333333 12.45

2.1833333333 1.2333333333 20.933333333 11.916666667

2.05 1.2166666667 20.733333333 11.883333333

0.52 0.32 5.6 3.96

1.34 1.16 2.22 1.3

1.54 1.16 7 4.9

0.5 0.34 6.88 5.26

1.62 1.2 6 4.5

0.26 0.08 1.74 1.18

2.7 2.12 6.2 4.5

0.58 0.4 5.5 3.64

0.76 0.46 8.92 3.64

1.14 0.86 8.12 3.9

1.36 0.68 8.6 6.28

2.26 1.78 5.98 4.14

0.68 0.5 8.18 2.18

0.7 0.5 7.52 2.06

2.18 1.78 9 6.72

1.48 1.12 1.4 0.64

1.16 0.86 9.22 6.96

0.54 0.24 8.4 6.38

2.4 1.86 7.24 5.14

1 0.72 6.44 4.88

0.68 0.5 8.88 6.94

2.3 1.62 2.6 1.62

1.64 1.3 2.22 1.46

0.48 0.32 6.24 4.68

1.34 1 1.14 0.78

0.5 0.28 12.46 10.08

0.38 0.26 8.04 5.86

3.6 3.12 7.08 5.3

0.66 0.44 1.26 0.9

0.76 0.46 9.7 7.76

1.96 1.4 6.06 4.22

0

0.75

1.5

2.25

3

Mapper 0 Mapper 3 Mapper 6 Mapper 9 Mapper 12 Mapper 15 Mapper 18 Mapper 21 Mapper 24 Mapper 27 Mapper 30

Mapper running times (3.7GB)

T
im

e
 (
m

in
u
te

s)

CPU User

0

7.5

15

22.5

30

Mapper 0 Mapper 3 Mapper 6 Mapper 9 Mapper 12 Mapper 15 Mapper 18 Mapper 21 Mapper 24 Mapper 27 Mapper 30

Mapper running times (37GB)

T
im

e
 (
m

in
u
te

s)

CPU User

0

1

2

3

4

Reducer 0 Reducer 3 Reducer 6 Reducer 9 Reducer 12 Reducer 15 Reducer 18 Reducer 21 Reducer 24 Reducer 27 Reducer 30

Reducer running times (3.7GB)

T
im

e
 (
se

c
o

n
d

s)

CPU User

0

3.75

7.5

11.25

15

Reducer 0 Reducer 3 Reducer 6 Reducer 9 Reducer 12 Reducer 15 Reducer 18 Reducer 21 Reducer 24 Reducer 27 Reducer 30

Reducer running times (37GB)

T
im

e
 (
se

c
o

n
d

s)

CPU User

Figure 8: CPU and user times for mappers in the 3.7GB evaluation.

CPU User CPU User

Mapper 0
Mapper 1
Mapper 2
Mapper 3
Mapper 4
Mapper 5
Mapper 6
Mapper 7
Mapper 8
Mapper 9
Mapper 10
Mapper 11
Mapper 12
Mapper 13
Mapper 14
Mapper 15
Mapper 16
Mapper 17
Mapper 18
Mapper 19
Mapper 20
Mapper 21
Mapper 22
Mapper 23
Mapper 24
Mapper 25
Mapper 26
Mapper 27
Mapper 28
Mapper 29
Mapper 30
Reducer 0
Reducer 1
Reducer 2
Reducer 3
Reducer 4
Reducer 5
Reducer 6
Reducer 7
Reducer 8
Reducer 9
Reducer 10
Reducer 11
Reducer 12
Reducer 13
Reducer 14
Reducer 15
Reducer 16
Reducer 17
Reducer 18
Reducer 19
Reducer 20
Reducer 21
Reducer 22
Reducer 23
Reducer 24
Reducer 25
Reducer 26
Reducer 27
Reducer 28
Reducer 29
Reducer 30

2.1166666667 1.2166666667 20.45 11.683333333

1.45 0.1833333333 20.616666667 11.683333333

2.0166666667 1.1833333333 21.016666667 11.583333333

2.2833333333 1.2833333333 21.816666667 12.25

1.95 1.1166666667 21.383333333 12.733333333

2.0333333333 1.2 20.133333333 11.566666667

1.55 0.1833333333 19.45 10.95

2.1666666667 1.2833333333 10.583333333 1.5833333333

2.3 1.45 21.466666667 12.35

2.2833333333 1.3 23.483333333 14.483333333

1.6 0.2 21 11.683333333

2.15 1.1833333333 16.516666667 9.6

2.2166666667 1.3166666667 21.633333333 12.766666667

2.0833333333 1.2166666667 1.4166666667 0.3

2.0666666667 1.1666666667 24.083333333 15.4

1.6833333333 0.2 20.266666667 11.566666667

1.8833333333 1.0833333333 21.616666667 12.216666667

1.95 1.0666666667 20.6 11.883333333

2.1 1.1666666667 20.283333333 11.9

2.05 1.1166666667 21.483333333 12.333333333

1.1166666667 0.6833333333 12.683333333 7.6

2.0166666667 1.1666666667 19.583333333 11.233333333

1.4833333333 0.1833333333 20.55 11.366666667

0.9333333333 0.5833333333 21.55 11.966666667

1.85 1.05 20.683333333 11.483333333

2.1833333333 1.3 20.45 11.55

2.0833333333 1.15 24.333333333 14.933333333

2.0333333333 1.1 23.5 14.133333333

2.0166666667 1.2 21.683333333 12.45

2.1833333333 1.2333333333 20.933333333 11.916666667

2.05 1.2166666667 20.733333333 11.883333333

0.52 0.32 5.6 3.96

1.34 1.16 2.22 1.3

1.54 1.16 7 4.9

0.5 0.34 6.88 5.26

1.62 1.2 6 4.5

0.26 0.08 1.74 1.18

2.7 2.12 6.2 4.5

0.58 0.4 5.5 3.64

0.76 0.46 8.92 3.64

1.14 0.86 8.12 3.9

1.36 0.68 8.6 6.28

2.26 1.78 5.98 4.14

0.68 0.5 8.18 2.18

0.7 0.5 7.52 2.06

2.18 1.78 9 6.72

1.48 1.12 1.4 0.64

1.16 0.86 9.22 6.96

0.54 0.24 8.4 6.38

2.4 1.86 7.24 5.14

1 0.72 6.44 4.88

0.68 0.5 8.88 6.94

2.3 1.62 2.6 1.62

1.64 1.3 2.22 1.46

0.48 0.32 6.24 4.68

1.34 1 1.14 0.78

0.5 0.28 12.46 10.08

0.38 0.26 8.04 5.86

3.6 3.12 7.08 5.3

0.66 0.44 1.26 0.9

0.76 0.46 9.7 7.76

1.96 1.4 6.06 4.22

0

0.75

1.5

2.25

3

Mapper 0 Mapper 3 Mapper 6 Mapper 9 Mapper 12 Mapper 15 Mapper 18 Mapper 21 Mapper 24 Mapper 27 Mapper 30

Mapper running times (3.7GB)

T
im

e
 (
m

in
u
te

s)

CPU User

0

7.5

15

22.5

30

Mapper 0 Mapper 3 Mapper 6 Mapper 9 Mapper 12 Mapper 15 Mapper 18 Mapper 21 Mapper 24 Mapper 27 Mapper 30

Mapper running times (37GB)

T
im

e
 (
m

in
u
te

s)

CPU User

0

1

2

3

4

Reducer 0 Reducer 3 Reducer 6 Reducer 9 Reducer 12 Reducer 15 Reducer 18 Reducer 21 Reducer 24 Reducer 27 Reducer 30

Reducer running times (3.7GB)

T
im

e
 (
se

c
o

n
d

s)

CPU User

0

3.75

7.5

11.25

15

Reducer 0 Reducer 3 Reducer 6 Reducer 9 Reducer 12 Reducer 15 Reducer 18 Reducer 21 Reducer 24 Reducer 27 Reducer 30

Reducer running times (37GB)

T
im

e
 (
se

c
o

n
d

s)

CPU User

Figure 9: CPU and user times for mappers in the 37GB evaluation.

In Fig. 10 and Fig. 11 we present graphically the CPU and user times for all the reducers in both tests.
We see that reducers were much faster than mappers. This is due to the low amount of data they actually
manipulate, thanks to the combiner function employed by the mappers.

We also note that there is a higher variance in execution time for the reducers. This happens because
the amount of pairs <mapped-value,data-record> transmitted from the mappers vary across the reducers.
We used a simple hash function taken over the ChannelElement’s contents to decide to which reducer a pair
<mapped-value,data-record> should be sent to.

2The tests were run on Dec 14, 2010, between 3PM and 7PM.

10

CPU User CPU User

Mapper 0
Mapper 1
Mapper 2
Mapper 3
Mapper 4
Mapper 5
Mapper 6
Mapper 7
Mapper 8
Mapper 9
Mapper 10
Mapper 11
Mapper 12
Mapper 13
Mapper 14
Mapper 15
Mapper 16
Mapper 17
Mapper 18
Mapper 19
Mapper 20
Mapper 21
Mapper 22
Mapper 23
Mapper 24
Mapper 25
Mapper 26
Mapper 27
Mapper 28
Mapper 29
Mapper 30
Reducer 0
Reducer 1
Reducer 2
Reducer 3
Reducer 4
Reducer 5
Reducer 6
Reducer 7
Reducer 8
Reducer 9
Reducer 10
Reducer 11
Reducer 12
Reducer 13
Reducer 14
Reducer 15
Reducer 16
Reducer 17
Reducer 18
Reducer 19
Reducer 20
Reducer 21
Reducer 22
Reducer 23
Reducer 24
Reducer 25
Reducer 26
Reducer 27
Reducer 28
Reducer 29
Reducer 30

2.1166666667 1.2166666667 20.45 11.683333333

1.45 0.1833333333 20.616666667 11.683333333

2.0166666667 1.1833333333 21.016666667 11.583333333

2.2833333333 1.2833333333 21.816666667 12.25

1.95 1.1166666667 21.383333333 12.733333333

2.0333333333 1.2 20.133333333 11.566666667

1.55 0.1833333333 19.45 10.95

2.1666666667 1.2833333333 10.583333333 1.5833333333

2.3 1.45 21.466666667 12.35

2.2833333333 1.3 23.483333333 14.483333333

1.6 0.2 21 11.683333333

2.15 1.1833333333 16.516666667 9.6

2.2166666667 1.3166666667 21.633333333 12.766666667

2.0833333333 1.2166666667 1.4166666667 0.3

2.0666666667 1.1666666667 24.083333333 15.4

1.6833333333 0.2 20.266666667 11.566666667

1.8833333333 1.0833333333 21.616666667 12.216666667

1.95 1.0666666667 20.6 11.883333333

2.1 1.1666666667 20.283333333 11.9

2.05 1.1166666667 21.483333333 12.333333333

1.1166666667 0.6833333333 12.683333333 7.6

2.0166666667 1.1666666667 19.583333333 11.233333333

1.4833333333 0.1833333333 20.55 11.366666667

0.9333333333 0.5833333333 21.55 11.966666667

1.85 1.05 20.683333333 11.483333333

2.1833333333 1.3 20.45 11.55

2.0833333333 1.15 24.333333333 14.933333333

2.0333333333 1.1 23.5 14.133333333

2.0166666667 1.2 21.683333333 12.45

2.1833333333 1.2333333333 20.933333333 11.916666667

2.05 1.2166666667 20.733333333 11.883333333

0.52 0.32 5.6 3.96

1.34 1.16 2.22 1.3

1.54 1.16 7 4.9

0.5 0.34 6.88 5.26

1.62 1.2 6 4.5

0.26 0.08 1.74 1.18

2.7 2.12 6.2 4.5

0.58 0.4 5.5 3.64

0.76 0.46 8.92 3.64

1.14 0.86 8.12 3.9

1.36 0.68 8.6 6.28

2.26 1.78 5.98 4.14

0.68 0.5 8.18 2.18

0.7 0.5 7.52 2.06

2.18 1.78 9 6.72

1.48 1.12 1.4 0.64

1.16 0.86 9.22 6.96

0.54 0.24 8.4 6.38

2.4 1.86 7.24 5.14

1 0.72 6.44 4.88

0.68 0.5 8.88 6.94

2.3 1.62 2.6 1.62

1.64 1.3 2.22 1.46

0.48 0.32 6.24 4.68

1.34 1 1.14 0.78

0.5 0.28 12.46 10.08

0.38 0.26 8.04 5.86

3.6 3.12 7.08 5.3

0.66 0.44 1.26 0.9

0.76 0.46 9.7 7.76

1.96 1.4 6.06 4.22

0

0.75

1.5

2.25

3

Mapper 0 Mapper 3 Mapper 6 Mapper 9 Mapper 12 Mapper 15 Mapper 18 Mapper 21 Mapper 24 Mapper 27 Mapper 30

Mapper running times (3.7GB)

T
im

e
 (
m

in
u
te

s)

CPU User

0

7.5

15

22.5

30

Mapper 0 Mapper 3 Mapper 6 Mapper 9 Mapper 12 Mapper 15 Mapper 18 Mapper 21 Mapper 24 Mapper 27 Mapper 30

Mapper running times (37GB)

T
im

e
 (
m

in
u
te

s)

CPU User

0

1

2

3

4

Reducer 0 Reducer 3 Reducer 6 Reducer 9 Reducer 12 Reducer 15 Reducer 18 Reducer 21 Reducer 24 Reducer 27 Reducer 30

Reducer running times (3.7GB)
T

im
e
 (
se

c
o

n
d

s)

CPU User

0

3.75

7.5

11.25

15

Reducer 0 Reducer 3 Reducer 6 Reducer 9 Reducer 12 Reducer 15 Reducer 18 Reducer 21 Reducer 24 Reducer 27 Reducer 30

Reducer running times (37GB)

T
im

e
 (
se

c
o

n
d

s)

CPU User

Figure 10: CPU and user times for reducers in the 3.7GB evaluation.

CPU User CPU User

Mapper 0
Mapper 1
Mapper 2
Mapper 3
Mapper 4
Mapper 5
Mapper 6
Mapper 7
Mapper 8
Mapper 9
Mapper 10
Mapper 11
Mapper 12
Mapper 13
Mapper 14
Mapper 15
Mapper 16
Mapper 17
Mapper 18
Mapper 19
Mapper 20
Mapper 21
Mapper 22
Mapper 23
Mapper 24
Mapper 25
Mapper 26
Mapper 27
Mapper 28
Mapper 29
Mapper 30
Reducer 0
Reducer 1
Reducer 2
Reducer 3
Reducer 4
Reducer 5
Reducer 6
Reducer 7
Reducer 8
Reducer 9
Reducer 10
Reducer 11
Reducer 12
Reducer 13
Reducer 14
Reducer 15
Reducer 16
Reducer 17
Reducer 18
Reducer 19
Reducer 20
Reducer 21
Reducer 22
Reducer 23
Reducer 24
Reducer 25
Reducer 26
Reducer 27
Reducer 28
Reducer 29
Reducer 30

2.1166666667 1.2166666667 20.45 11.683333333

1.45 0.1833333333 20.616666667 11.683333333

2.0166666667 1.1833333333 21.016666667 11.583333333

2.2833333333 1.2833333333 21.816666667 12.25

1.95 1.1166666667 21.383333333 12.733333333

2.0333333333 1.2 20.133333333 11.566666667

1.55 0.1833333333 19.45 10.95

2.1666666667 1.2833333333 10.583333333 1.5833333333

2.3 1.45 21.466666667 12.35

2.2833333333 1.3 23.483333333 14.483333333

1.6 0.2 21 11.683333333

2.15 1.1833333333 16.516666667 9.6

2.2166666667 1.3166666667 21.633333333 12.766666667

2.0833333333 1.2166666667 1.4166666667 0.3

2.0666666667 1.1666666667 24.083333333 15.4

1.6833333333 0.2 20.266666667 11.566666667

1.8833333333 1.0833333333 21.616666667 12.216666667

1.95 1.0666666667 20.6 11.883333333

2.1 1.1666666667 20.283333333 11.9

2.05 1.1166666667 21.483333333 12.333333333

1.1166666667 0.6833333333 12.683333333 7.6

2.0166666667 1.1666666667 19.583333333 11.233333333

1.4833333333 0.1833333333 20.55 11.366666667

0.9333333333 0.5833333333 21.55 11.966666667

1.85 1.05 20.683333333 11.483333333

2.1833333333 1.3 20.45 11.55

2.0833333333 1.15 24.333333333 14.933333333

2.0333333333 1.1 23.5 14.133333333

2.0166666667 1.2 21.683333333 12.45

2.1833333333 1.2333333333 20.933333333 11.916666667

2.05 1.2166666667 20.733333333 11.883333333

0.52 0.32 5.6 3.96

1.34 1.16 2.22 1.3

1.54 1.16 7 4.9

0.5 0.34 6.88 5.26

1.62 1.2 6 4.5

0.26 0.08 1.74 1.18

2.7 2.12 6.2 4.5

0.58 0.4 5.5 3.64

0.76 0.46 8.92 3.64

1.14 0.86 8.12 3.9

1.36 0.68 8.6 6.28

2.26 1.78 5.98 4.14

0.68 0.5 8.18 2.18

0.7 0.5 7.52 2.06

2.18 1.78 9 6.72

1.48 1.12 1.4 0.64

1.16 0.86 9.22 6.96

0.54 0.24 8.4 6.38

2.4 1.86 7.24 5.14

1 0.72 6.44 4.88

0.68 0.5 8.88 6.94

2.3 1.62 2.6 1.62

1.64 1.3 2.22 1.46

0.48 0.32 6.24 4.68

1.34 1 1.14 0.78

0.5 0.28 12.46 10.08

0.38 0.26 8.04 5.86

3.6 3.12 7.08 5.3

0.66 0.44 1.26 0.9

0.76 0.46 9.7 7.76

1.96 1.4 6.06 4.22

0

0.75

1.5

2.25

3

Mapper 0 Mapper 3 Mapper 6 Mapper 9 Mapper 12 Mapper 15 Mapper 18 Mapper 21 Mapper 24 Mapper 27 Mapper 30

Mapper running times (3.7GB)

T
im

e
 (
m

in
u
te

s)

CPU User

0

7.5

15

22.5

30

Mapper 0 Mapper 3 Mapper 6 Mapper 9 Mapper 12 Mapper 15 Mapper 18 Mapper 21 Mapper 24 Mapper 27 Mapper 30

Mapper running times (37GB)

T
im

e
 (
m

in
u
te

s)

CPU User

0

1

2

3

4

Reducer 0 Reducer 3 Reducer 6 Reducer 9 Reducer 12 Reducer 15 Reducer 18 Reducer 21 Reducer 24 Reducer 27 Reducer 30

Reducer running times (3.7GB)

T
im

e
 (
se

c
o

n
d

s)

CPU User

0

3.75

7.5

11.25

15

Reducer 0 Reducer 3 Reducer 6 Reducer 9 Reducer 12 Reducer 15 Reducer 18 Reducer 21 Reducer 24 Reducer 27 Reducer 30

Reducer running times (37GB)

T
im

e
 (
se

c
o

n
d

s)

CPU User

Figure 11: CPU and user times for reducers in the 37GB evaluation.

6 Conclusion

We implemented a flexible distributed runtime system that provides a foundation for future research inves-
tigation and prototyping. All the implemented functionality was tested in synchrony with the development
process. This report presents a usage scenario that, through restricted, broadly encompasses system features:

• Restricted communication structure - we only evaluated MapReduce applications, although the sys-
tem is capable of handling different communication topologies. However, we believe that testing our
MapReduce abstraction is sufficient for now because:

1. It uses the main underlying system features (scheduling, staging, and communication routines)
as any general application;

2. It allows us testing how expressive and convenient the MapReduce abstraction really is (these
features are system goals, and should be evaluated too).

• Restricted scale – our system was tested in a relatively small scale compared to a real application
scenario. However, we believe that this test was big enough to permit us to identify (and to allow us
to correct) the most evident/serious scaling problems, the ones that would probably make bigger scale
setups impossible.

It is important to mention features for runtime systems that were only partially implemented or not
implemented at all with this work, but nevertheless are important in real deployments:

11

Fault Tolerance. If the manager detects a launcher stopped at the moment of using it, it removes such
launcher from its registered launchers list. The launcher should register again with the manager to be
considered again for remote execution. However, if a launcher fails while nodes are being executed, the
result summary never returns, which might block NodeBundles to be released.

Local File Support. We only support files present in a distributed filesystem, and accessible to all the
nodes. However, it is important to support local files whenever a distributed filesystem is not available.

Locality Features. If we supported local files, it would be convenient that the NodeGroup scheduling tried
to accommodate those entities on machines that most probably have the needed files. It would also be
interesting to support in-memory record storage on the launchers to avoid hitting the disk every time
an affine NodeGroup requests the information.

Accounting. This feature was implemented in regard to CPU timing, but it would be interesting to im-
plement network accounting. Counting the number of ChannelObjects transmitted requires a simple
changes to the system, but counting the number of bytes sent/received requires more work.

In the context of the course, we believe that this project enabled us to expand our perception regarding
the complexity involved in distributed applications, particularly runtime systems. Many details that are
usually overlooked in a paper description were evident in the design of the system.

In conclusion, we believe that the system provides the foundational features that we need in order to
proceed with further research on distributed runtime systems. Moreover, its design and implementation
amplified our understanding on the subject, an expected and useful outcome of this work.

References

[1] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy, and Russell Sears.
Mapreduce online. In NSDI’10: Proceedings of the 7th USENIX conference on Networked systems design
and implementation, pages 21–21, Berkeley, CA, USA, 2010. USENIX Association.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. In OSDI’04:
Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[3] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In EuroSys ’07: Proceedings of the 2nd ACM SIGOP-
S/EuroSys European Conference on Computer Systems 2007, pages 59–72, New York, NY, USA, 2007.
ACM.

[4] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in practice: the condor
experience. Concurrency and Computation : Practice and Experience, 17:323–356, February 2005.

12

