
Simulations and Reductions 

      
     
     

Companion slides for 
Distributed Computing 

Through Combinatorial Topology 
Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum 

1 



Reduction in Complexity 
Theory 
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SAT is NP-Complete 
Hard to prove 

CLIQUE reduces to SAT 
Much easier to prove 

Therefore CLIQUE is NP-Complete 
Reduction is powerful 



Reduction in Distributed 
Computing 
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Task T impossible for n+1 asynchronous 
processes if any t can fail 

Easy to prove only if n = t 
t+1 processes can “simulate” n+1 

processes where any t can fail 
[Borowsky Gafni] 

Therefore task T impossible for n+1 
asynchronous processes if any t can fail 

Reduction still powerful? 



Observations 
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Reduction often easier than proof from 
first principles 

Existence of reduction is important … 

How reduction works? Not so much. 



Limitations 
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Actual reductions often complex, ad-hoc 
model-specific arguments 

Clever but complex 

What does it mean for one model to 
“simulate” another? 

Specific examples only 



Goal 

22-Feb-15 6 

Define when one model of computation 
“simulates” another 

Covers many cases, not all. 

Technique to prove when a simulation 
exists 

No need for explicit construction 

Strong enough to support reduction 



Task Specification 
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Input complex Output complex 

Task Specification 



How a Protocol Solves a Task 
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Protocol operator Decision map 

Protocol complex 



A Simulation 
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One protocol Another protocol 
Simulation map 



A Reduction 

22-Feb-15 10 

The Diagram commutes 



Summary 
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Strategy 
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Show that simulation maps exist 

Construct simulation map explicitly 



N&S Conditions 
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f: |skelt I| → |O| 
carried by ¢. 

(I,O,¢) has a protocol iff … 

In each model … 

for model-specific t 



Models that Solve the Same 
Colorless Tasks 
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processes fault-tolerance model 
t+1 wait-free layered IS 
n+1 t-resilient layered IS 
n+1 wait-free (t+1)-set layered IS 
n+1 t-resilient, 2t<n+1 message-passing 
n+1 A-resilient, min core t+1 layered IS adversary 
n+1 t-resilient n+1 > (dim I +2)t Byzantine 



Some Implications 

Distributed Computing through 
Combinatorial Topology 

15 

(t+1)-process wait-free can simulate an 
(n+1)-process wait-free, and vice-versa 

If 2t > n+1, (n+1)-process t-resilient message-
passing can simulate IS, and vice-versa. 

Any adversary can simulate any other 
adversary whose minimum core size is 
the same or larger.  

An adversary with minimum core size k can 
simulate a wait-free k-set layered IS. 

t-resilient Byzantine can simulate t-resilient 
layered IS if n + 1 > (dim(I) + 2)t. 



BG Simulation 
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Explicit construction 

n+1 processes, adversary A 

m+1 processes, adversary A’ 

simulate 

where A, A’ have same min core size 



Safe Agreement 
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Validity 
all processes that decide, 
decide some process's input. 

Agreement 
all processes that decide, 
decide the same value 

we do not require termination! 



Propose-Resolve 
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propose(v) 
called once when joining protocol 

resolve() 
may be called multiple times 

returns v if protocol resolved 

returns ? if protocol still unresolved 



Propose 
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0 ? 
level announce 

0 ? 
0 ? 
0 ? 
0 ? 

n+1 



Propose: Unsafe Zone 
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0 ? 
level announce 

1 v 
0 ? 
0 ? 
0 ? 

announce 
value with 

level 1 



Propose: Unsafe Zone 
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0 ? 
level announce 

1 v 
0 ? 
0 ? 
0 ? 

take 
snapshot 



Propose: Safe Zone 
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0 ? 
level announce 

0 v 
0 ? 
2 w 
0 ? 

if someone 
has 2, 

back off 
to level 0 



Propose: Safe Zone 
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0 ? 
level announce 

2 v 
0 ? 
1 w 
0 ? 

if no one 
has 2, 

move to 
level 2 



Resolve 
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0 ? 
level announce 

2 v 
0 ? 
1 w 
0 ? 

if anyone has 1, return ? 



Resolve 
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0 ? 
level announce 

2 v 
0 ? 
2 w 
0 ? 

return value at least index with 2 



Propose 
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 method propose(input: value)  
  announce[i] := input                 
  level[i] := 1                        
  snap = snapshot(level) 
  if (9 j | level[j] = 2) 
    then 
      level[i] := 0                      
    else 
      level[i] := 2  



Resolve 
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method resolve(): value 
  snap = snapshot(level) 
  if (9 j | level[j] = 1) 
    then 
      return ? 
    else 
      return announce[j] 
        for min {j : level[j] = 2} 



What it does 
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if no one halts in unsafe region (level 1) … 

then all resolve same input 

if someone halts in unsafe region … 

never resolves 



BG Simulation 
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There are t+1 processes … 

a t-resilient (n+1)-process protocol 

transforms between t-resilient and wait-free  

who do a wait-free simulation of 



BG Simulation 
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Use safe agreement … 

to agree on simulated snapshots 



BG Simulation 
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Each simulating process participates in… 

multiple simultaneous safe agreements 
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If one process fails in unsafe region … 

it blocks one simulated snapshot … 

one simulated crash 



BG Simulation 
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If t out of t+1 halt in unsafe region … 

simulates t out of n+1 failures … 

remaining process simulates n+1-t survivors 



BG Simulation Code 
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shared mem: array[0..R][0..m] of value 
shared agree: array[0..R][0..m] of SafeAgree 
 
local pc: array[0..m] of int := {0,...,0} 



BG Simulation Code 
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shared mem: array[0..R][0..m] of value 
shared agree: array[0..R][0..m] of SafeAgree 
 
local pc: array[0..m] of int := {0,...,0} 

shared simulated R £ m memory 



BG Simulation Code 
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shared mem: array[0..R][0..m] of value 
shared agree: array[0..R][0..m] of SafeAgree 
 
local pc: array[0..m] of int := {0,...,0} 

shared safe agreement object 
one per memory location 



BG Simulation Code 
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shared mem: array[0..R][0..m] of value 
shared agree: array[0..R][0..m] of SafeAgree 
 
local pc: array[0..m] of int := {0,...,0} 

program counters, 
one per simulated process 



BG Simulation Code 
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method run(input: value): state  
  for j := 0 to m do 
      agree[0][j].propose(input) 

input value ! final state 

set as many inputs as possible to mine 

(OK because colorless tasks) 



BG Simulation Code 
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 do forever 
   for j := 0 to m do 
     r := pc[j] 
     v := agree[r][j].resolve() 
     … 

simulate Qj 

program counter 

agree on prior round’s snapshot 



BG Simulation Code 
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 do forever 
  … 
  if v ≠ ? then         
    mem[r][j] := v           
    if pc[j] = R then 
      return v                 

if snapshot resolved … 

write snapshot to memory 

if simulated state is final, return it 



BG Simulation Code 
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 do forever 
  … 
  if survivor set present then 
    view := values in snapshot(mem[r]) 
    agree[r+1][j].propose(view) 
    pc[j] := pc[j] + 1 

if survivor set reached this round… 

take a snapshot 

propose snapshot to 
write for next round advance program 

counter 



Two Styles of Colorless 
Simulation 
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Combinatorial: simulation map exists 

Operational: construct simulation explicitly 



The Simulation 
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This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.  

• You are free: 
– to Share — to copy, distribute and transmit the work  
– to Remix — to adapt the work  

• Under the following conditions: 
– Attribution. You must attribute the work to “Distributed Computing through 

Combinatorial Topology” (but not in any way that suggests that the authors 
endorse you or your use of the work).  

– Share Alike. If you alter, transform, or build upon this work, you may 
distribute the resulting work only under the same, similar or a compatible 
license.  

• For any reuse or distribution, you must make clear to others the license 
terms of this work. The best way to do this is with a link to 

– http://creativecommons.org/licenses/by-sa/3.0/.  
• Any of the above conditions can be waived if you get permission from 

the copyright holder.  
• Nothing in this license impairs or restricts the author's moral rights.  
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