
Simulations and Reductions

Companion slides for
Distributed Computing

Through Combinatorial Topology
Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum

1

Reduction in Complexity
Theory

22-Feb-15 2

SAT is NP-Complete
Hard to prove

CLIQUE reduces to SAT
Much easier to prove

Therefore CLIQUE is NP-Complete
Reduction is powerful

Reduction in Distributed
Computing

22-Feb-15 3

Task T impossible for n+1 asynchronous
processes if any t can fail

Easy to prove only if n = t
t+1 processes can “simulate” n+1

processes where any t can fail
[Borowsky Gafni]

Therefore task T impossible for n+1
asynchronous processes if any t can fail

Reduction still powerful?

Observations

22-Feb-15 4

Reduction often easier than proof from
first principles

Existence of reduction is important …

How reduction works? Not so much.

Limitations

22-Feb-15 5

Actual reductions often complex, ad-hoc
model-specific arguments

Clever but complex

What does it mean for one model to
“simulate” another?

Specific examples only

Goal

22-Feb-15 6

Define when one model of computation
“simulates” another

Covers many cases, not all.

Technique to prove when a simulation
exists

No need for explicit construction

Strong enough to support reduction

Task Specification

22-Feb-15 7

Input complex Output complex

Task Specification

How a Protocol Solves a Task

22-Feb-15 8

Protocol operator Decision map

Protocol complex

A Simulation

22-Feb-15 9

One protocol Another protocol
Simulation map

A Reduction

22-Feb-15 10

The Diagram commutes

Summary

22-Feb-15 11

Strategy

Distributed Computing through
Combinatorial Topology

12

Show that simulation maps exist

Construct simulation map explicitly

N&S Conditions

Distributed Computing through
Combinatorial Topology

13

f: |skelt I| → |O|
carried by ¢.

(I,O,¢) has a protocol iff …

In each model …

for model-specific t

Models that Solve the Same
Colorless Tasks

Distributed Computing through
Combinatorial Topology

14

processes fault-tolerance model
t+1 wait-free layered IS
n+1 t-resilient layered IS
n+1 wait-free (t+1)-set layered IS
n+1 t-resilient, 2t<n+1 message-passing
n+1 A-resilient, min core t+1 layered IS adversary
n+1 t-resilient n+1 > (dim I +2)t Byzantine

Some Implications

Distributed Computing through
Combinatorial Topology

15

(t+1)-process wait-free can simulate an
(n+1)-process wait-free, and vice-versa

If 2t > n+1, (n+1)-process t-resilient message-
passing can simulate IS, and vice-versa.

Any adversary can simulate any other
adversary whose minimum core size is
the same or larger.

An adversary with minimum core size k can
simulate a wait-free k-set layered IS.

t-resilient Byzantine can simulate t-resilient
layered IS if n + 1 > (dim(I) + 2)t.

BG Simulation

Distributed Computing through
Combinatorial Topology

16

Explicit construction

n+1 processes, adversary A

m+1 processes, adversary A’

simulate

where A, A’ have same min core size

Safe Agreement

Distributed Computing through
Combinatorial Topology

17

Validity
all processes that decide,
decide some process's input.

Agreement
all processes that decide,
decide the same value

we do not require termination!

Propose-Resolve

Distributed Computing through
Combinatorial Topology

18

propose(v)
called once when joining protocol

resolve()
may be called multiple times

returns v if protocol resolved

returns ? if protocol still unresolved

Propose

Distributed Computing through
Combinatorial Topology

19

0 ?
level announce

0 ?
0 ?
0 ?
0 ?

n+1

Propose: Unsafe Zone

Distributed Computing through
Combinatorial Topology

20

0 ?
level announce

1 v
0 ?
0 ?
0 ?

announce
value with

level 1

Propose: Unsafe Zone

Distributed Computing through
Combinatorial Topology

21

0 ?
level announce

1 v
0 ?
0 ?
0 ?

take
snapshot

Propose: Safe Zone

Distributed Computing through
Combinatorial Topology

22

0 ?
level announce

0 v
0 ?
2 w
0 ?

if someone
has 2,

back off
to level 0

Propose: Safe Zone

Distributed Computing through
Combinatorial Topology

23

0 ?
level announce

2 v
0 ?
1 w
0 ?

if no one
has 2,

move to
level 2

Resolve

Distributed Computing through
Combinatorial Topology

24

0 ?
level announce

2 v
0 ?
1 w
0 ?

if anyone has 1, return ?

Resolve

Distributed Computing through
Combinatorial Topology

25

0 ?
level announce

2 v
0 ?
2 w
0 ?

return value at least index with 2

Propose

23-Feb-15 26

 method propose(input: value)
 announce[i] := input
 level[i] := 1
 snap = snapshot(level)
 if (9 j | level[j] = 2)
 then
 level[i] := 0
 else
 level[i] := 2

Resolve

23-Feb-15 27

method resolve(): value
 snap = snapshot(level)
 if (9 j | level[j] = 1)
 then
 return ?
 else
 return announce[j]
 for min {j : level[j] = 2}

What it does

Distributed Computing through
Combinatorial Topology

28

if no one halts in unsafe region (level 1) …

then all resolve same input

if someone halts in unsafe region …

never resolves

BG Simulation

Distributed Computing through
Combinatorial Topology

29

There are t+1 processes …

a t-resilient (n+1)-process protocol

transforms between t-resilient and wait-free

who do a wait-free simulation of

BG Simulation

Distributed Computing through
Combinatorial Topology

30

Use safe agreement …

to agree on simulated snapshots

BG Simulation

Distributed Computing through
Combinatorial Topology

31

Each simulating process participates in…

multiple simultaneous safe agreements

BG Simulation

Distributed Computing through
Combinatorial Topology

32

If one process fails in unsafe region …

it blocks one simulated snapshot …

one simulated crash

BG Simulation

Distributed Computing through
Combinatorial Topology

33

If t out of t+1 halt in unsafe region …

simulates t out of n+1 failures …

remaining process simulates n+1-t survivors

BG Simulation Code

23-Feb-15 34

shared mem: array[0..R][0..m] of value
shared agree: array[0..R][0..m] of SafeAgree

local pc: array[0..m] of int := {0,...,0}

BG Simulation Code

23-Feb-15 35

shared mem: array[0..R][0..m] of value
shared agree: array[0..R][0..m] of SafeAgree

local pc: array[0..m] of int := {0,...,0}

shared simulated R £ m memory

BG Simulation Code

23-Feb-15 36

shared mem: array[0..R][0..m] of value
shared agree: array[0..R][0..m] of SafeAgree

local pc: array[0..m] of int := {0,...,0}

shared safe agreement object
one per memory location

BG Simulation Code

23-Feb-15 37

shared mem: array[0..R][0..m] of value
shared agree: array[0..R][0..m] of SafeAgree

local pc: array[0..m] of int := {0,...,0}

program counters,
one per simulated process

BG Simulation Code

23-Feb-15 38

method run(input: value): state
 for j := 0 to m do
 agree[0][j].propose(input)

input value ! final state

set as many inputs as possible to mine

(OK because colorless tasks)

BG Simulation Code

23-Feb-15 39

 do forever
 for j := 0 to m do
 r := pc[j]
 v := agree[r][j].resolve()
 …

simulate Qj

program counter

agree on prior round’s snapshot

BG Simulation Code

23-Feb-15 40

 do forever
 …
 if v ≠ ? then
 mem[r][j] := v
 if pc[j] = R then
 return v

if snapshot resolved …

write snapshot to memory

if simulated state is final, return it

BG Simulation Code

23-Feb-15 41

 do forever
 …
 if survivor set present then
 view := values in snapshot(mem[r])
 agree[r+1][j].propose(view)
 pc[j] := pc[j] + 1

if survivor set reached this round…

take a snapshot

propose snapshot to
write for next round advance program

counter

Two Styles of Colorless
Simulation

Distributed Computing through
Combinatorial Topology

42

Combinatorial: simulation map exists

Operational: construct simulation explicitly

The Simulation

Distributed Computing through
Combinatorial Topology

43

44

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “Distributed Computing through

Combinatorial Topology” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

Distributed Computing through
Combinatorial Topology

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Distributed Computing through
Combinatorial Topology

45

	Simulations and Reductions
	Reduction in Complexity Theory
	Reduction in Distributed Computing
	Observations
	Limitations
	Goal
	Task Specification
	How a Protocol Solves a Task
	A Simulation
	A Reduction
	Summary
	Strategy
	N&S Conditions
	Models that Solve the Same Colorless Tasks
	Some Implications
	BG Simulation
	Safe Agreement
	Propose-Resolve
	Propose
	Propose: Unsafe Zone
	Propose: Unsafe Zone
	Propose: Safe Zone
	Propose: Safe Zone
	Resolve
	Resolve
	Propose
	Resolve
	What it does
	BG Simulation
	BG Simulation
	BG Simulation
	BG Simulation
	BG Simulation
	BG Simulation Code
	BG Simulation Code
	BG Simulation Code
	BG Simulation Code
	BG Simulation Code
	BG Simulation Code
	BG Simulation Code
	BG Simulation Code
	Two Styles of Colorless Simulation
	The Simulation
	Slide Number 44
	Slide Number 45

