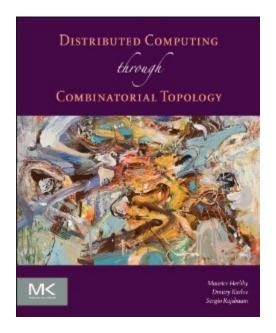
Solvability of Colorless Tasks in Different Models



Companion slides for
Distributed Computing
Through Combinatorial Topology
Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Road Map

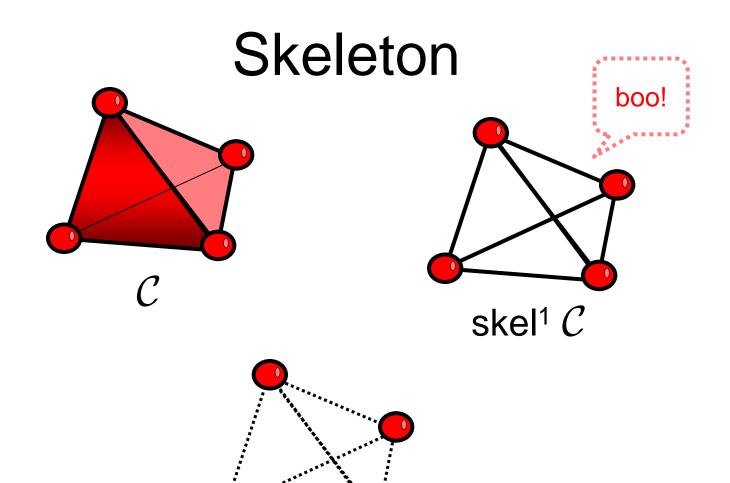
Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

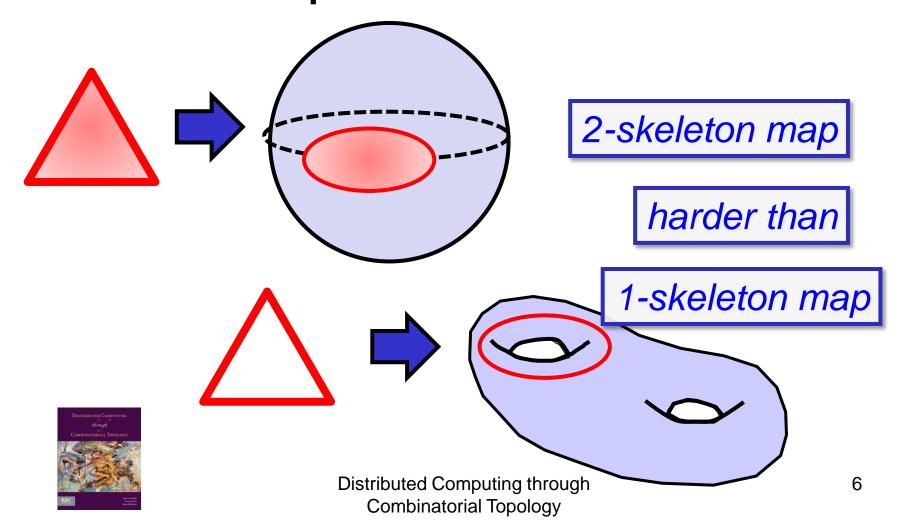


Parameter p

Model characterized by parameter p, $0 \le p \le n$

```
(\mathcal{I},\mathcal{O},\Delta) \text{ has a wait-free protocol iff} there is a continuous map f\colon |\mathsf{skel}^p\,\mathcal{I}| \to |\mathcal{O}| carried by \Delta.
```


Dimension of Skeleton map vs Computational Power



Wait-Free Layered Immediate Snapshots

```
Up to n out of n+1 can crash

Just can't wait (to be king)

(\mathcal{I},\mathcal{O},\Delta) \text{ has a wait-free protocol } \dots
if and only if \dots
there is a continuous map
f: |\operatorname{skel}^n \mathcal{I}| \to |\mathcal{O}|
carried by \Delta.
```



t-resilient Layered Immediate Snapshots

```
Up to t out of n+1 can crash

OK to wait for n-t+1
```

```
\begin{array}{c} (\mathcal{I},\mathcal{O},\Delta) \text{ has a wait-free protocol } \dots \\ \text{if and only if } \dots \\ \text{there is a continuous map} \\ \text{f: } |\mathsf{skel}^t \mathcal{I}| \to |\mathcal{O}| \\ \text{carried by } \Delta. \end{array}
```


Wait-Free Layered Immediate Snapshot with *k*-set Agreement

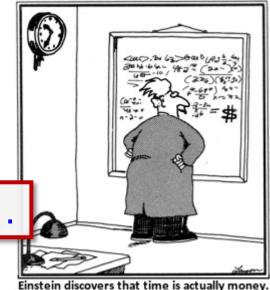
shared black boxes that solve k-set agreement

```
\begin{array}{c} (\mathcal{I},\mathcal{O},\Delta) \text{ has a wait-free protocol } \dots \\ \text{if and only if } \dots \\ \text{there is a continuous map} \\ \text{f: } |\mathsf{skel}^{k\text{-}1}\,\mathcal{I}| \to |\mathcal{O}| \\ \text{carried by } \Delta. \end{array}
```


Equivalent Models

t-resilient model ...

wait-free + t+1-set agreement ...



have identical computational power!

Decidability

Is it *decidable* whether a task has a protocol in a model characterized by:

f:
$$|\mathsf{skel}^p \mathcal{I}| \to |\mathcal{O}|$$
 ?

decidable if and only if $p \le 1$!

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems



```
shared mem array 0..N-1,0..n of Value
view := input
for \ell := 0 to N-1 do
    do
       immediate
         mem[\ell][i] := view;
         snap := snapshot(mem[\ell][*])
      until | names(snap) | >= n+1-t
    view := values(snap)
return \delta(view)
```



```
shared mem array 0..N-1,0..n of Value
view := input
              2-dimensional memory array
       immedi
              row is clean per-layer memory
              column is per-process word
    view := values(snap)
return δ(view)
```



```
shared mem array 0..N-1,0..n of Value
view := input
           to N-1 do
   initial view is input value
        mem[l][i] := view;
        snap := snapshot(mem[l][*])
      until | names(snap) | >= n+1-t
    view := values(snap)
return δ(view)
```



```
shared mem array 0..N-1,0..n of Value
view := input
for \ell := 0 to N-1 do
         run for N layers riew;
        snap := snapshot(mem[l][*])
      until | names(snap) | >= n+1-t
    view := values(snap)
return δ(view)
```



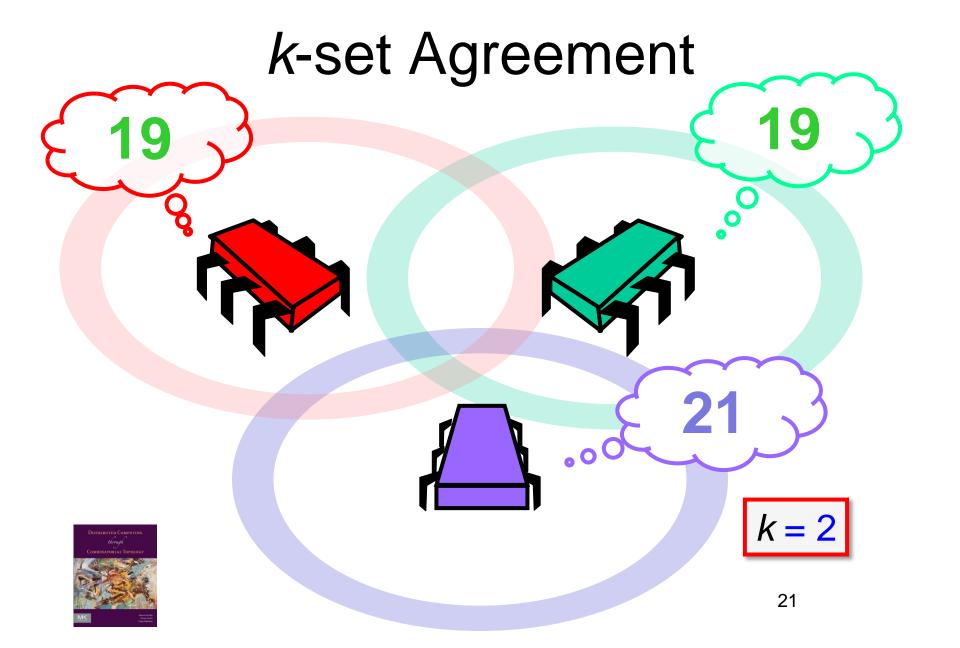
```
shared mem array 0..N-1,0..n of Value
 layer ℓ: immediate write & snapshot of row ℓ
       immediate
         mem[\ell][i] := view;
         snap := snapshot(mem[[left[left]]])
       until | names(snap) | >= n+1-t
    view := values(snap)
return \delta(view)
```



```
shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
    do
       immedi
              wait to hear from n+1-t processes
              := snapshot (m
      until | names(snap) |
                        why is this safe?
return δ(view)
                                         18
```

```
shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
    do
   new view is set of values seen
             := snapshot(mem[l][*])
              names(snap) >= n+1-t
    view := values(snap)
return δ(view)
                                       19
```

```
shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
     do
        immediate
  finally apply decision map to final view *1)
              names(snap) >= n+1-t
              values(snap)
return \delta(view)
                 Distributed Computing Inrougn
                                               20
                   Combinatorial Topology
```



```
view := input
snap: array of Value = ∅
do
  immediate
    mem[0][i] := view;
    snap := snapshot(mem[0][*])
  until | names(snap) | >= n+1-t
return min(values(view))
```



```
view := input
snap: arra write input and take snapshot
do
  immediate
    mem[0][i] := view;
    snap := snapshot(mem[0][*])
         names (snap
return min(values(view))
```



```
view := input
snap: array of Value = \emptyset
do
  wait to hear from n+1-t processes
         := snapshot mem
  until | names(snap) | >= n+1-t
return min(values(view))
```



```
view := input
snap: array of Value = 0
do
  immediate
    med return least value in view
         := snapshot(mem[0][*])
  until | names (snap) | >= n+1-t
return min(values(view))
       can miss at most t lesser values
                  most t+1 values returned
```

Informal Skeleton Lemma

lf

We have a protocol for a task ...

And

A protocol for *k*-set agreement ...

Then

WLOG, we can "pre-process" with k-set agreement.



Skeleton Lemma

If

protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ solves task $(\mathcal{I}, \mathcal{O}, \Delta)$

And

There is a k-set agreement protocol for $\mathcal I$

Then

The composition of k-set agreement with $(\mathcal{I}, \mathcal{P}, \mathcal{\Xi})$ also solves $(\mathcal{I}, \mathcal{O}, \Delta)$.

Informal Protocol Complex Lemma

WLOG

We can assume that any protocol complex is a barycentric subdivision of the input complex.

Informal Protocol Complex Lemma

WLOG

We can assume that any protocol complex is a barycentric subdivision of the input complex.

Protocol Complex Lemma

lf

There is a *t*-resilient layered protocol for $(\mathcal{I}, \mathcal{O}, \Delta)$...

```
Then
```

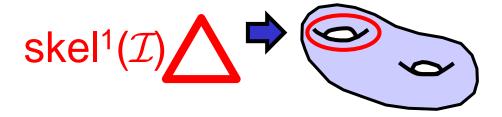
Then there is a protocol $(\mathcal{I}, \mathcal{P}, \mathcal{\Xi})$ such that ...

```
\mathcal{P} = \operatorname{Bary}^{N}(\operatorname{skel}^{t} \mathcal{I})
\Xi(\sigma) = \operatorname{Bary}^{N} \bullet \operatorname{skel}^{t}(\sigma).
```


Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a *t*-resilient layered snapshot protocol ...

```
if and only if ... there is a continuous map f\colon |\mathrm{skel}^t\mathcal{I}| \to |\mathcal{O}| \mathrm{carried\ by\ } \Delta.
```

Protocol Implies Map

May assume protocol complex is $\mathcal{P} = \text{Bary}^{N} \text{ skel}^{t} \mathcal{I}$.

decision map

δ: Bary^N skel^t $\mathcal{I} \to \mathcal{O}$

 $|\delta|$: $|\mathsf{Bary}^N \mathsf{skel}^t \mathcal{I}| \to |\mathcal{O}|$

 $|\delta|$: $|\mathsf{skel}^t \mathcal{I}| \to |\mathcal{O}|$

carried by Δ .

Simplicial Approximation Theorem

Given a continuous map

$$f: |\mathcal{A}| \rightarrow |\mathcal{B}|$$

 there is an N such that f has a simplicial approximation

$$\phi: \operatorname{Bary}^N \mathcal{A} \to \mathcal{B}$$

Map Implies Protocol

f: $|\mathsf{skel}^t \mathcal{I}| \to |\mathcal{O}|$

 ϕ : Bary^N skel^t $\mathcal{I} \to \mathcal{O}$

carried by Δ .

Solve using ...

barycentric agreement

t-set agreement

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Motivation

Today ...

Practically all modern multiprocessors provide synchronization more powerful than read-write ...

Like ...

test-and-set, compare-and-swap,

Here ...

we consider protocols constructed by *composing* layered snapshot protocols with *k*-set agreement protocols.


```
shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of SetAgree
view := input
for \ell := 0 to N-1 do
  view: View := SA[\ell].decide(view)
  immediate
    mem[\ell][i] := view;
    snap := snapshot(mem[\ell][*])
  view := values(snap)
return \delta(view)
```



```
shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1
view := input
               per-level shared memory
for l := 0 to N
  view: View := SA[l].decide(view)
  immediate
    mem[l][i] := view;
    snap := snapshot(mem[l][*])
  view := values(snap)
return \delta(view)
```



```
shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
             per-level k-set agreement object
  immediate
    mem[l][i] := view;
    snap := snapshot(mem[l][*])
  view := values(snap)
return \delta(view)
```



```
shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
         0 to N-1 do
                        decide(view)
   initial view is input value
    mem[l][i] := view;
    snap := snapshot(mem[l][*])
  view := values(snap)
return δ(view)
               Distributed Computing Inrough
                                          40
```



```
shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
  view: View := SA[ℓ].decide(view)
  immediate
    do k-set agreement with others at this level
  view := values(snap)
return \delta(view)
```



```
shared mem array 0..N-1,0..n of Value
shared SA arra
              then do immediate snapshot
view := input
for l := 0 to N-1 do
  view: View := SA[l].decide(view)
  immediate
    mem[\ell][i] := view;
    snap := snapshot(mem[\ell][*])
  view := values(snap)
return \delta(view)
```



```
shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
                          ide(view)
new view is set of values seen
    mem[l][i] := view;
          := snapshot(mem[l][*])
  view := values(snap)
return δ(view)
                                       43
```


Protocol Complex Lemma

If $(\mathcal{I}, \mathcal{P}, \Xi)$ is a k-set layered snapshot protocol ...

then \mathcal{P} is equal to Bary^N skel^{k-1} \mathcal{I} , ...

for some $N \ge 0$.



Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free k-set layered snapshot protocol ...

```
if and only if ... there is a continuous map f\colon |\mathsf{skel}^{k\text{-}1}\,\mathcal{I}| \to |\mathcal{O}| carried by \Delta.
```


Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free k-set layered snapshot protocol ...

```
if and only if . . . there is a continuous map f\colon |\mathrm{skel}^{k-1}\mathcal{I}| \to |\mathcal{O}| \operatorname{carned} \operatorname{by} \Delta. k\text{-1 skeleton, not } t\text{-skeleton!}
```


Road Map

Overview of Models

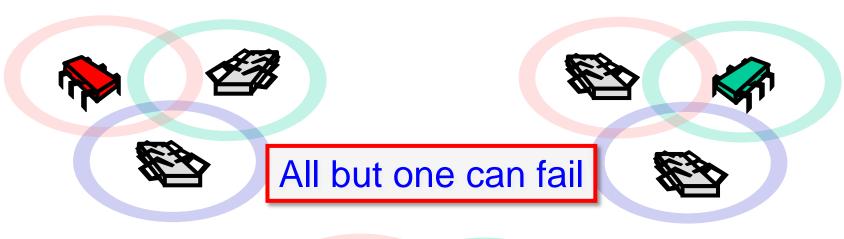
t-resilient layered snapshot models

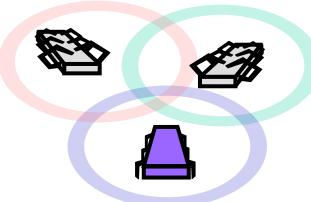
Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

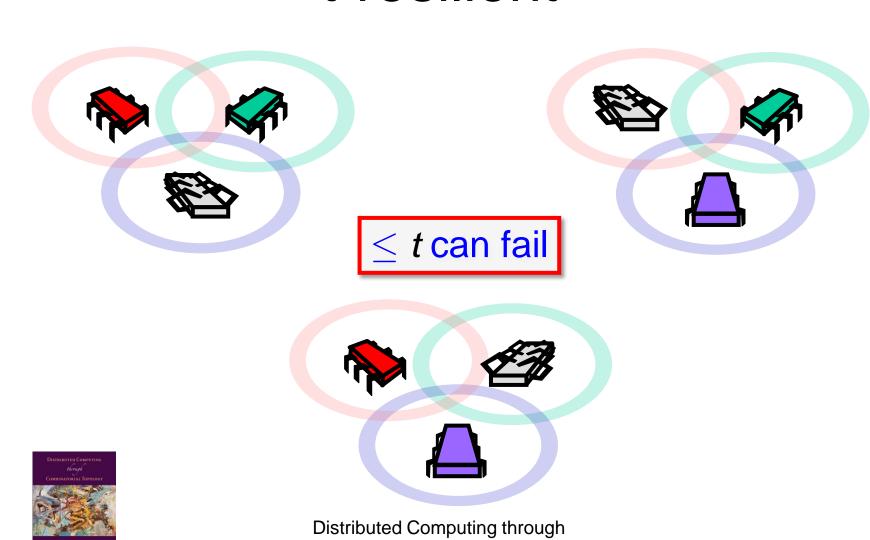
Wait-Free





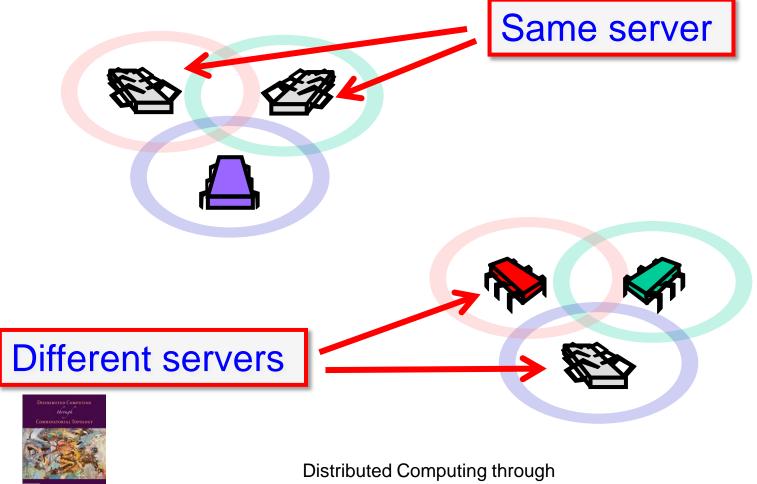
Distributed Computing through Combinatorial Topology

t-resilient



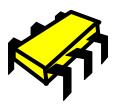
Combinatorial Topology

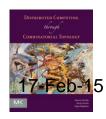
Irregular Failures



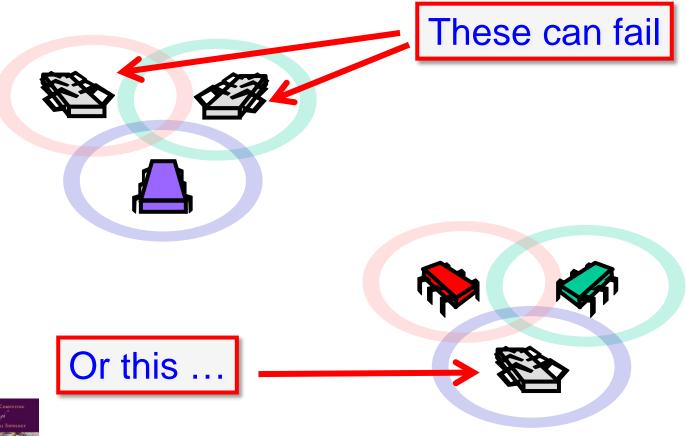
Combinatorial Topology

Adversaries



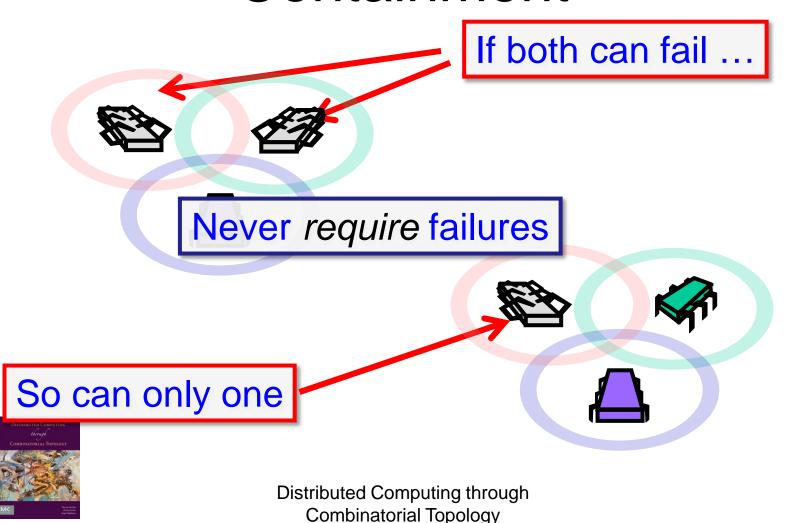


Faulty Sets

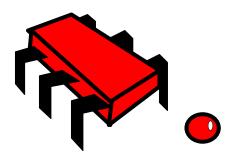


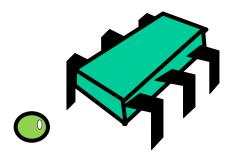
Distributed Computing through Combinatorial Topology

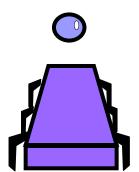
Faulty Sets Closed under Containment



Failure Complex

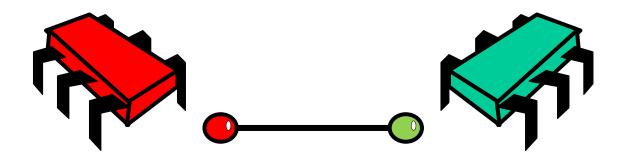




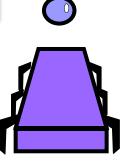


Vertex per process

Failure Complex

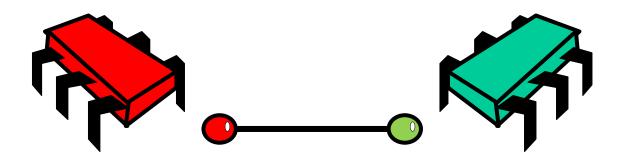


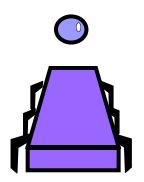
Simplex = faulty set

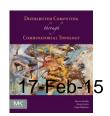


Vertex per process

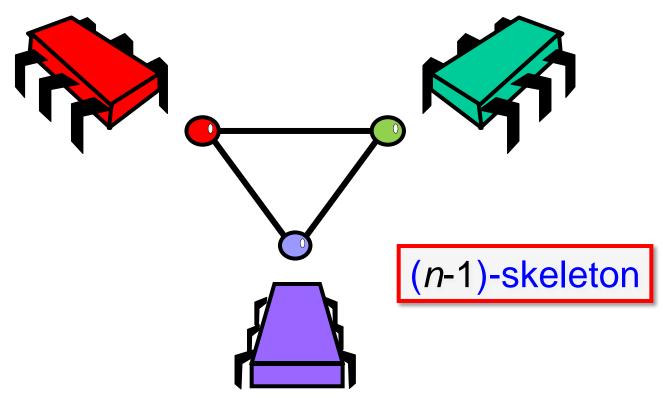
Irregular Failure Complex



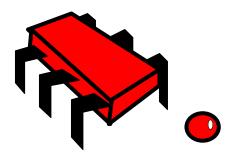


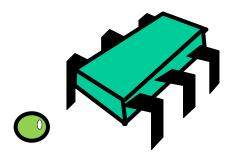


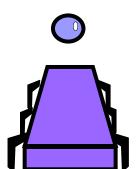
Wait-Free Failure Complex



t-resilient Failure Complex





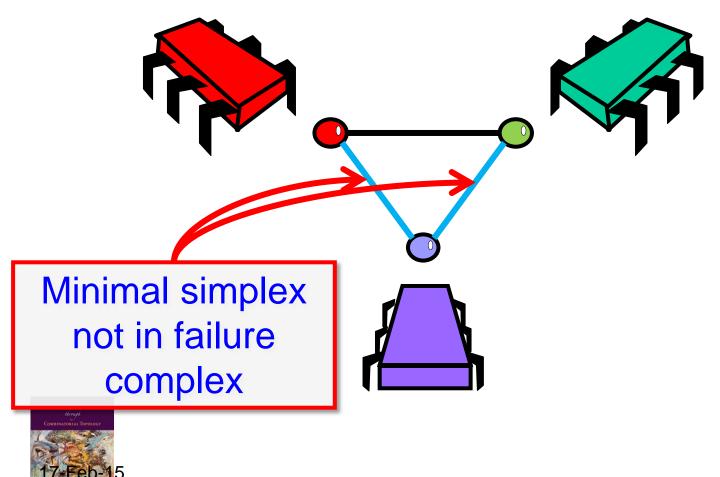


Cores

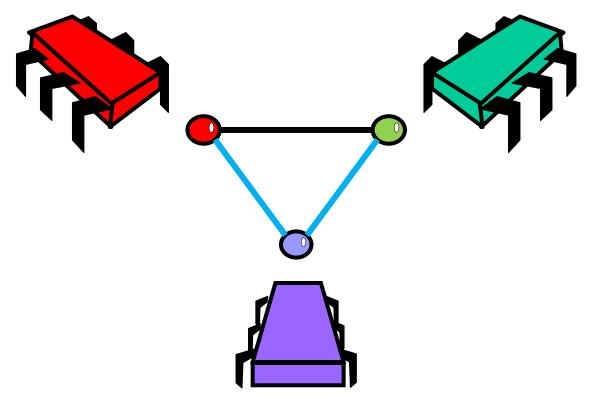
Minimal set of processes that cannot all fail

Safe to wait for at least one member of a particular core to show up

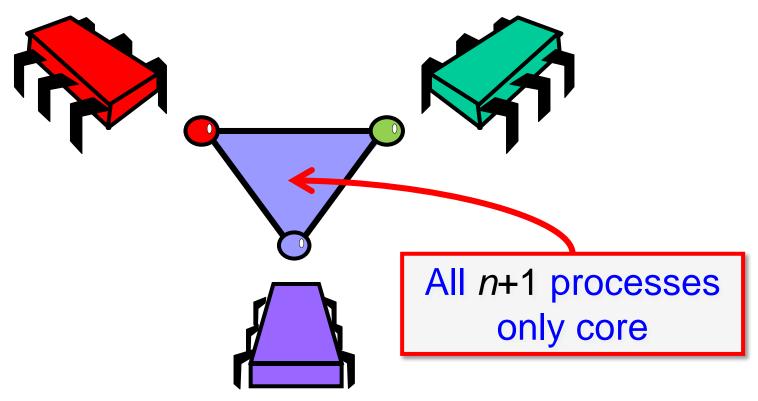
Cores & Failure Complex



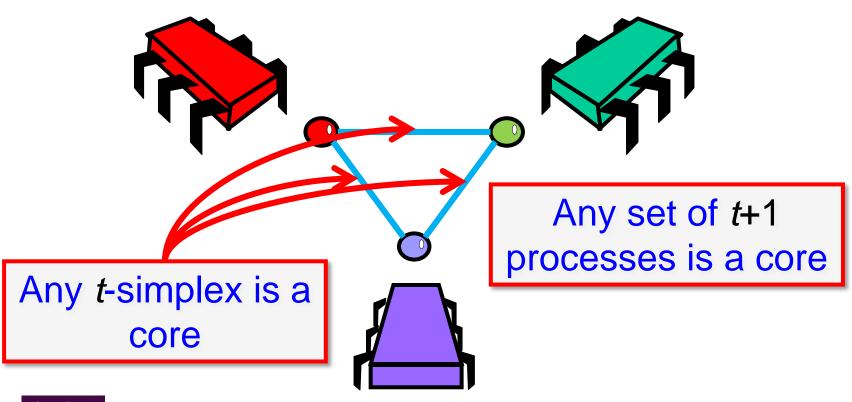
Irregular Failure Complex



Wait-Free Failure Complex



t-resilient Failure Complex



Cores

For many models,

minimum core size...

Completely determines adversary's power to solve *any* colorless task!

So adversaries with same min core size solve the same colorless tasks

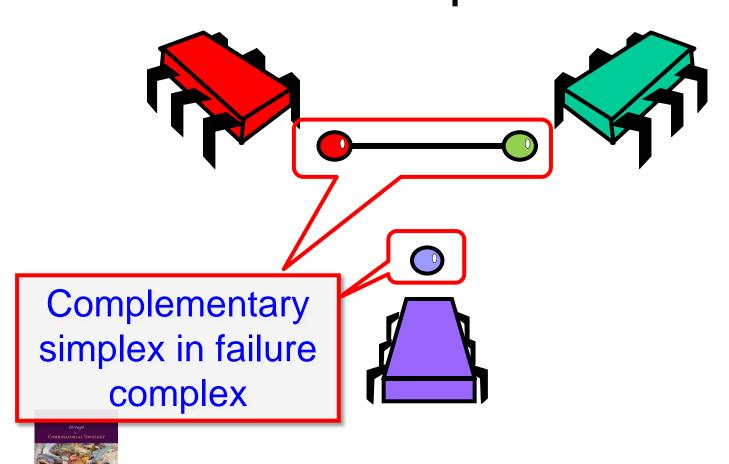
Survivor Sets

Minimal set of processes that might all survive

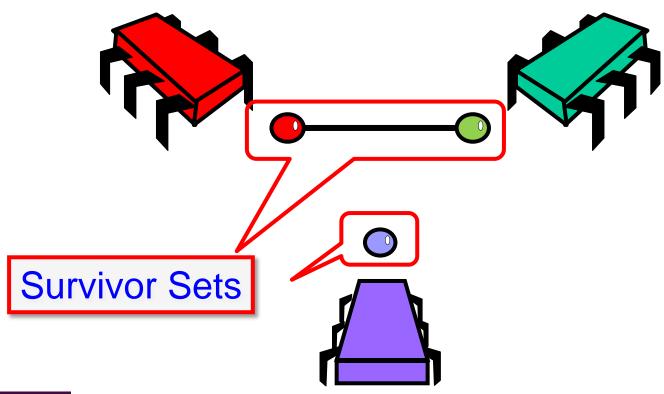
Safe to wait for all members of some survivor set to show up

Dual to cores: each one determines the other

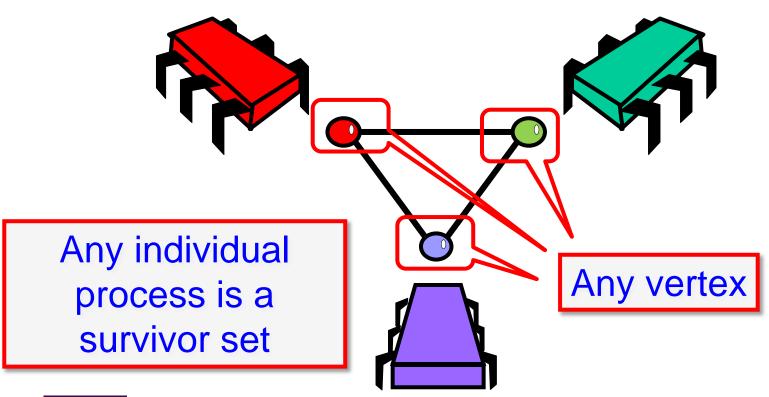
Survivor Sets in Failure Complex



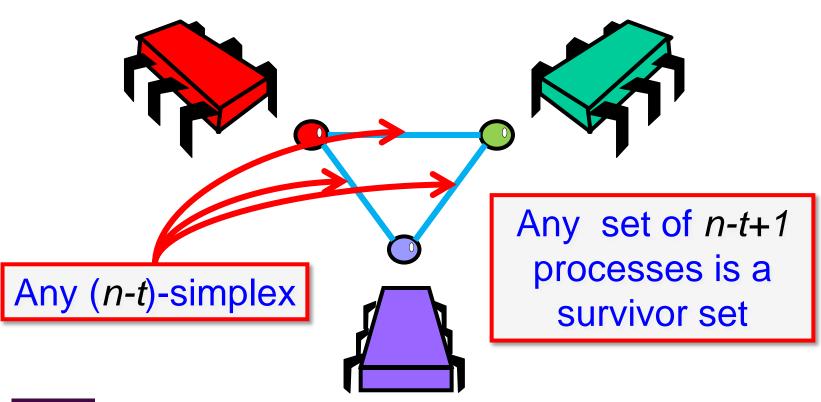
Irregular Failure Complex



Wait-Free Failure Complex



t-resilient Failure Complex



A-Resilient Layered Immediate Snapshot Protocol

```
shared mem array 0..N-1,0..n of Value
view := input
for \ell := 0 to N-1 do
  do
    immediate
      mem[\ell][i] := view;
      snap := snapshot(mem[\ell][*])
    until names(snap) 

survivor set
  view := values(snap)
return \delta(view)
```


A-Resilient Layered Immediate Snapshot Protocol

```
shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
  do
    immediate
               wait to hear from a survivor set
           := snapshot(mem[t]
    until names(snap) 

survivor set
                        why is this safe?
return \delta(view)
```


Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Message Passing

There are *n*+1 asynchronous processes ...

that send and receive messages ...

via a fully-connected communication network.

Message delivery is reliable and FIFO

Message-Passing Protocols

decide after finite # steps

but protocol forwards messages.

Distributed Computing through Combinatorial Topology

Communication Syntax

```
send(P, V_0, ..., V_\ell) to Q
```

```
send(P, V_0, ..., V_\ell) to all
```

```
upon receive(P, V_0, ..., V_\ell) do .... // handle message
```


Forwarding

```
background // forward messages forever
    upon receive(P<sub>j</sub>,v) do
    send(P<sub>i</sub>,v) to all
```



```
getQuorum(): Set of Value
  V: Set of Value := \emptyset
  q: int := 0
  do
    upon receive(Q,v) do
      V := V \cup \{v\}
      q := q + 1
  until q = n+1-t
  return V
```



```
getQuorum(): Set of Value
    Set of Value :=
     int := 0
    upon reculinitially, nothing.
      q := q + 1
  until q = n+1-t
  return V
```



```
getQuorum(): Set of Value
  remember values and count
  do
    upon receive(Q,v) do
      V := V \cup \{v\}
  until q = n+1-t
  return V
```



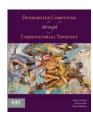
```
getQuorum(): Set of Value
  V: Set of Value := \emptyset
  q: int := 0
  safe to wait for n+1-t values
  until q = n+1-t
```



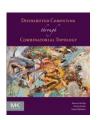
```
getQuorum(): Set of Value
  V: Set of Value := Ø
  q: int := 0
  do
```

return values when enough received

```
until q = n+1-t
return V
```



```
SetAgree(v<sub>i</sub>): value
  send(P, v<sub>i</sub>) to all
  v: Set of Value := getQuorum()
  return min(V)
```



```
SetAgree(v): value
send(P, v) to all
V: Set of Value := getQuorum()
return min(V)
broadcast my value
```



```
SetAgree(v): value
    send(P, v) to all

V: Set of Value := getQuorum()
    return min(V)

get values from all but t
```



```
SetAgree(v):

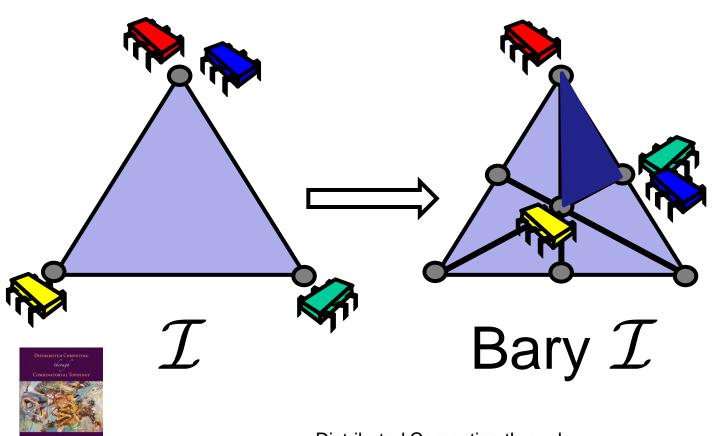
send(P, v)

v: Set of Value := getQuorum()

return min(V)
```

possible to "miss" only t lesser values

Barycentric Agreement



```
BaryAgree(v<sub>i</sub>: Vertex): set of Vertex
 V_i: set of Vertex := \{v_i\}
 count: int := 0
 while count < n+1-t do
   send(P<sub>i</sub>, V<sub>i</sub>) to all
   on receive(P_i, V_i) do
     if V_i = V_i then count := count + 1
                  else if V_i \setminus V_i \neq \emptyset then
                         V_i := V_i \cup V_i
                         count := 0
 return V<sub>i</sub>
```



```
V_i: set of Vertex := \{v_i\}
while count < n+1-t do
 Set of messages P<sub>i</sub> has received
   if V_i = V_i then count := count + 1
               else if V_i \setminus V_i \neq \emptyset then
                      V_i := V_i \cup V_i
                      count := 0
return V<sub>i</sub>
```



```
BaryAgree(v<sub>i</sub>: Vertex): set of Vertex
V<sub>i</sub>: set of Vertex := {v<sub>i</sub>}

count: int := 0
while count < n+1-t do
send(P<sub>i</sub>, V<sub>i</sub>) to all
```

keep track of confirmations received so far

```
else if V_j \setminus V_i \neq \emptyset then V_i := V_i \cup V_j count := 0
```


return V_i

```
BaryAgree(v_i: Vertex): set of Vertex V_i: set of Vertex := {v_i} count: int := 0 while count < n+1-t do send(P_i, V_i) to all
```

get confirmation from each non-faulty process

```
else if V_j \setminus V_i \neq \emptyset then V_i := V_i \cup V_j count := 0
```


return Vi

```
Agree(v.: Vertex): set of Vertex
 broadcast message set received
count: int := 0
 send(P<sub>i</sub>, V<sub>i</sub>) to all
   if V_i = V_i then count := count + 1
               else if V_i \setminus V_i \neq \emptyset then
                      V_i := V_i \cup V_i
                      count := 0
return V
```



```
BaryAgree(v<sub>i</sub>: Vertex): set of Vertex
 V_i: set of Vertex := \{v_i\}
 count: i collect responses
   on receive(P_i, V_i) do
                 else if V_i \setminus V_i \neq \emptyset then
                        V_i := V_i \cup V_i
                         count := 0
 return V<sub>i</sub>
```



```
BaryAgree(v_i: Vertex): set of Vertex V_i: set of Vertex := \{v_i\} count: int := 0
```

remember if message confirms my view

```
send(P_i, V_i) to all if V_i = V_j then count := count + 1 else if V_j \setminus V_i \neq \emptyset then V_i := V_i \cup V_j count := 0
```



```
BaryAgree(v_i: Vertex): set of Vertex V_i: set of Vertex := \{v_i\} count: int := 0
```

otherwise learned something new, start over

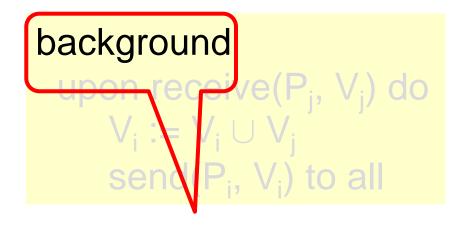
```
send(P_i, V_i) to all on receive(P_j, V_j) do if V_i = V_i then count := count : 1 else if V_j \setminus V_i \neq \emptyset then V_i := V_i \cup V_j count := 0 return V_i
```



```
BaryAgree(v<sub>i</sub>: Vertex): set of Vertex
 V_i: set of Vertex := \{v_i\}
 count: int := 0
 while count < n+1-t do
   send(P<sub>i</sub>, V<sub>i</sub>) to all
   on receive(P<sub>i</sub>, V<sub>i</sub>) do
     if V_i = V_i then count := count + 1
 return when enough agree
                         count := 0
 return V<sub>i</sub>
               Distributed Computing through
```

Combinatorial Topology

Wait, There's More!



the operating system runs forever ...

Wait, There's More!

keep forwarding new values

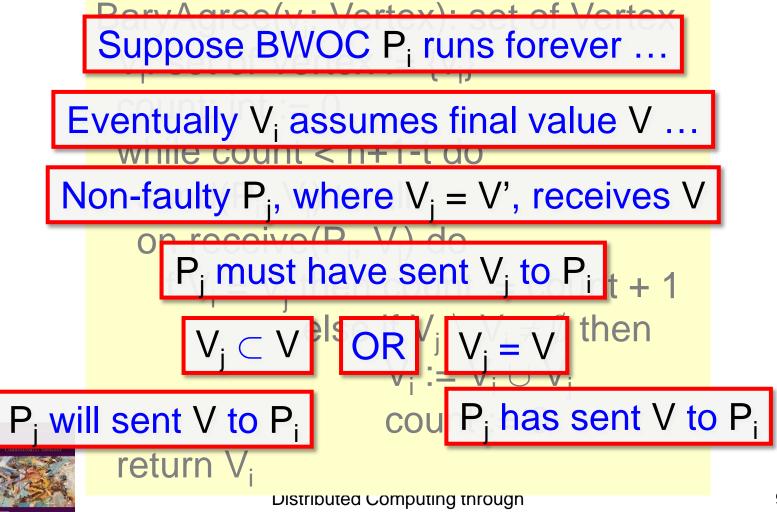
```
background

upon receive(P_j, V_j) do

V_i := V_i \cup V_j

send(P_i, V_i) to all
```


Lemma: Protocol Terminates



All V_i, V_i Totally Ordered

```
Rary Agrae (v. Vertey), set of Vertey
If P_i broadcasts V^{(0)}, ..., V^{(k)}, then V^{(i)} \subset V^{(i+1)}
          count int := 0
To decide ... ount < n+1-t do
        P<sub>i</sub> received V<sub>i</sub> from X, |X| \ge n+1-t
        P<sub>i</sub> received V<sub>i</sub> from Y, |Y| \ge n+1-t
                                                   then
some P_k \in X \cap Y sent both V_i, V
                                  count := 0
so V<sub>i</sub>, V<sub>i</sub> are ordered.
                        Distributed Computing through
```

Combinatorial Topology

Theorem

For 2t < n+1, colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a t-resilient message-passing protocol ...

```
if and only if ... there is a continuous map f\colon |\mathsf{skel}^t \mathcal{I}| \to |\mathcal{O}| \mathsf{carried} \ \mathsf{by} \ \Delta.
```


Theorem

For 2t < n+1, colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a t-resilient message-passing protocol ...

```
if and only if ... there is a continuous map f\colon |\mathsf{skel}^t \mathcal{I} \to |\mathcal{O}| \mathsf{carned} \ \mathsf{by} \ \Delta.
```

same as snapshot when 2t < n+1!

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Automatic Proofs?

What if we could program a Turing machine to tell whether a task has a protocol?

In wait-free read-write memory?

Or other models?

We could ...

automatically generate conference papers

No need for grad students

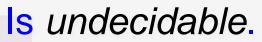
Alas no

Whether a protocol exists for a task in ...

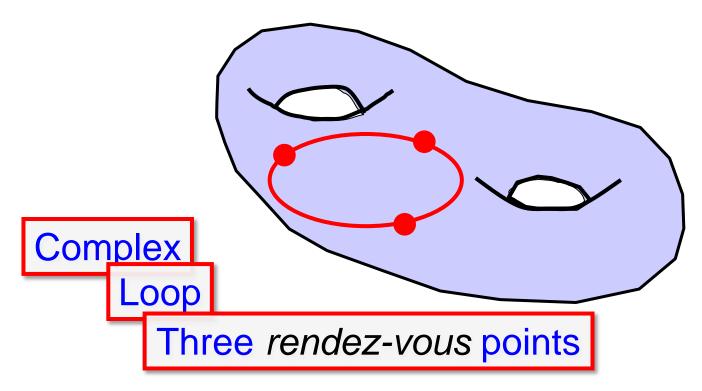
Read-write memory for 3+ processes ...

Read-write memory & k-set agreement ...

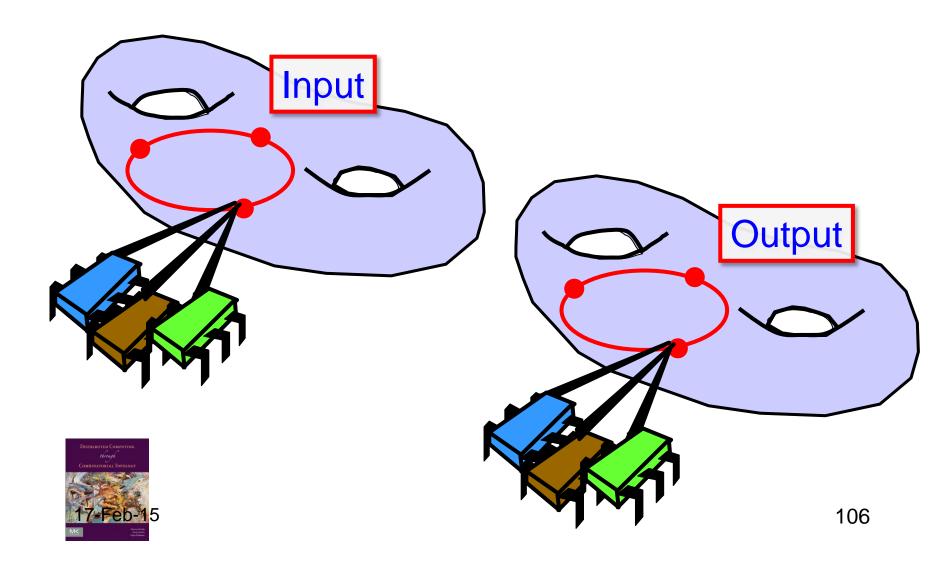
for k > 2



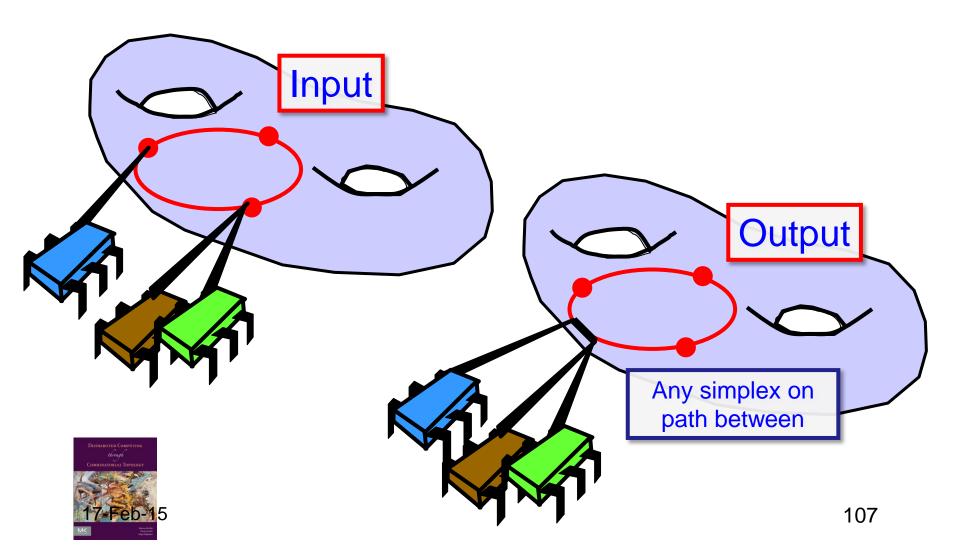
Loop Agreement



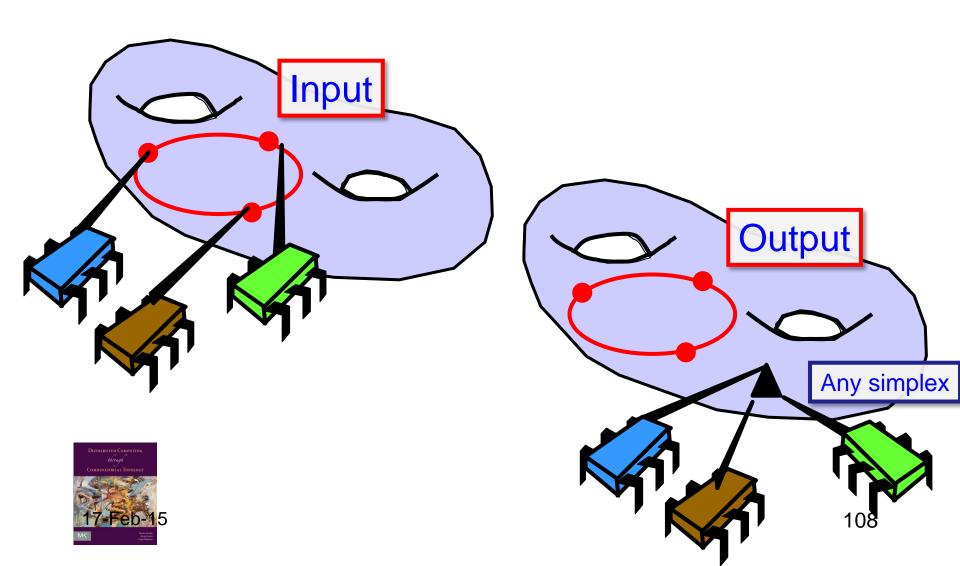
One Rendez-Vous Point



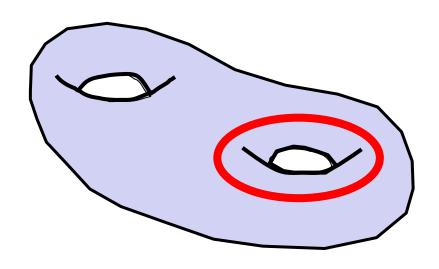
Two Rendez-Vous Points



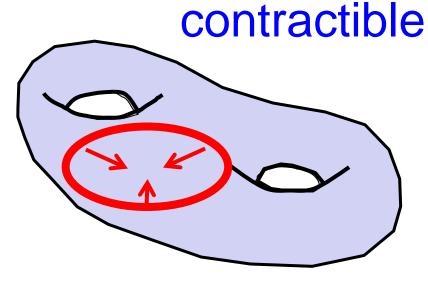
Three Rendez-Vous Points



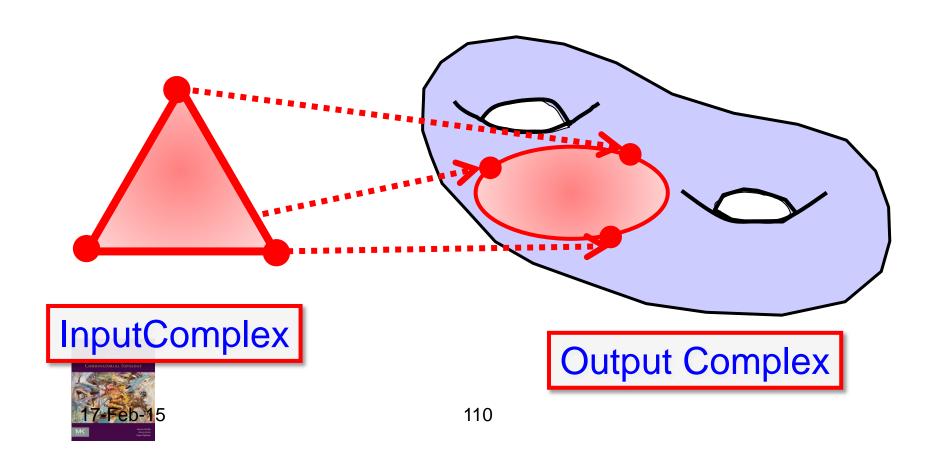
Contractibility



not contractible



Solvable Iff Loop Contractible



Undecidability

But Contractiblity is undecidable ...

even for finite complexes!

(reduces to the word problem for finitely-presented groups)

Undecidable whether a task has a protocol in wait-free read-write memory

Other Models

Wait-free read-write memory plus k-set agreement, for k > 2

Solvable iff f: skel^{k-1} $\mathcal{I}^* \to \mathcal{O}^*$ exists ...

Implies contractible, for k > 2

Undecidable whether a task has a protocol in wait-free read-write memory plus *k*-set agreement, for *k* > 2

This work is licensed under a <u>Creative Commons Attribution-</u> ShareAlike 2.5 License.

You are free:

- to Share to copy, distribute and transmit the work
- to Remix to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to "Distributed Computing through Combinatorial Topology" (but not in any way that suggests that the authors endorse you or your use of the work).
- Share Alike. If you alter, transform, or build upon this work, you may
 distribute the resulting work only under the same, similar or a compatible
 license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

