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A Vertex 
Combinatorial: an element of a set. 

Geometric: a point in high-
dimensional Euclidean Space 
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Presenter
Presentation Notes
We will build our constructions out of vertices (sing. vertex). From a geometric view, we can think of a vertex as being a point in a sufficiently high-dimensional Euclidean space. From an abstract combinatorial view, a vertex is just an element taken from some domain of elements.
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Simplexes 

0-simplex 1-simplex 

2-simplex 3-simplex 

Combinatorial: a set of vertexes. 
Geometric: convex hull of points in 

general position 

dimension 
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Presenter
Presentation Notes
A simplex is a set of vertices. Geometrically, we draw simplexes as the convex hull of affinely-independent points. The dimension of a simplex is one less than its number of edges.
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Simplicial Complex 
Combinatorial: a set of simplexes 

close under inclusion. Geometric: simplexes “glued 
together” along faces … 
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Presenter
Presentation Notes
A simplicial complex is a set of simplexes closed under inclusion. Geometrically, any two simplices intersect in a common face, which can be empty.
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Graphs vs Complexes 
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dimension 0 or 1 

arbitrary dimension 

complexes are a natural generalization of graphs 

Presenter
Presentation Notes
A simplicial complex is a set of simplexes closed under inclusion. Geometrically, any two simplices intersect in a common face, which can be empty.
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Abstract Simplicial Complex 

finite set V with a collection K of 
subsets of V, such that … 
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Presenter
Presentation Notes
The singleton set containing each vertex is in the graph. Usually we will be casual about the distinction between a vertex and its singleton set.
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Abstract Simplicial Complex 

1. for all s 2 S, {s} 2 K 
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finite set V with a collection K of 
subsets of V, such that … 

Presenter
Presentation Notes
The singleton set containing each vertex is in the complex. Usually we will be casual about the distinction between a vertex and its singleton set.
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Abstract Simplicial Complex 

1. for all s 2 S, {s} 2 K 
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finite set S with a collection K of 
subsets of S, such that … 

2. for all X 2 K, and Y ½ X, Y 2 K 

Presenter
Presentation Notes
Graphs are closed under inclusion. If X is a simplex in \cK, and Y is a subset of X, then X is also in \cG. For graphs, this just says that if an edge is in the graph, so are its two vertices.
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Geometric Simplicial Complex 
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A collection of geometric simplices in Rd such that 

Presenter
Presentation Notes
With geometric simplicial complexes, we are talking about subspaces of Euclidean space.
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Geometric Simplicial Complex 
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1. any face of a ¾2K is also in K 

A collection of geometric simplices in Rd such that 

Presenter
Presentation Notes
First, geometric complexes are also closed under inclusion.
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Geometric Simplicial Complex 
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1. any face of a ¾2K is also in K 

A collection of geometric simplices in Rd such that 

2. for all ¾,¿ 2 K, their intersection ¾ 
Å ¿ is a face of each of them. 

Presenter
Presentation Notes
Second, we require that geometric simplices in  complex fit together nicely. For any two simplices, there intersection must be a face of both (possibly empty).



Abstract vs Geometric 
Complexes  
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Abstract: A 

Geometric: |A| 



Simplicial Maps 
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Vertex-to-vertex map … 
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A 
B Á 



Simplicial Map 
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Vertex-to-vertex map … 
that sends simplexes to 

simplexes  

Á: A ! B 
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A 
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Skeleton 
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C 
skel1 C 

skel0 C 



Facet 
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A facet of K is a simplex of maximal dimension 



Star 
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Star(¾,K) is the complex of facets of K containing ¾ 
Complex 



Open Star 

Distributed Computing through 
Combinatorial Topology 

21 

Staro(¾,K) union of interiors of simplexes containing ¾ 
Point Set 



Link 

Distributed Computing through 
Combinatorial Topology 

22 

Link(¾,K) is the complex of simplices of 
Star(¾,K) not containing ¾ 

Complex 



Link(v,C) 

v 

C 

v 

More Links 

Presenter
Presentation Notes
Examples f the link of a vertex



Link(e,C) C 

More Links 

e e 

Presenter
Presentation Notes
Examples f the link of a vertex
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Let A and B be complexes with 
disjoint sets of vertices 

their join A*B is the complex 

and simplices ® [ ¯, where ® 2 A, and ¯ 2 B. 

with vertices V(A) [ V(B) 



Join 
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B A A*B 

Presenter
Presentation Notes
The join of two edges is a tetrahedron
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Carrier Map 
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Maps simplex of A to subcomplex of B 

© 
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©: A ! 2B 

A B 



Carrier Maps are Monotonic 
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© 
A B 

If ¿ µ ¾ then ©(¿) µ ©(¾) 
or 

for ¾,¿ 2 A, ©(¾Å¿) µ ©(¾)Å©(¿) 



Example 

© 

Presenter
Presentation Notes
simplicialVScarrierMap.eps



Example 

© on vertices 

Presenter
Presentation Notes
simplicialVScarrierMap.eps



Example 

© on edges 

There is no simplicial 
map carried by © 

Presenter
Presentation Notes
simplicialVScarrierMap.eps



Strict Carrier Maps 
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© 
A B 

for all ¾,¿ 2 A, ©(¾Å¿) = ©(¾)Å©(¿) 

replace µ with = 



Rigid Carrier Maps 
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© 
A B 

for ¾ 2 A, ©(¾) is pure of dimension dim ¾ 



given strict ©: A ! 2B 

Carrier of a Simplex 
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© 
A B 

for each ¿ 2 B,  
9 unique smallest ¾ 2 A such that ¿ 2 ©(¾). 

sometimes 
omitted 

¾ = Car(¿, ©(¾)) 



Given carrier maps 

Carrier Map Carried By 
Carrier Map 
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©: A ! 2B 

ª: A ! 2B 

© is carried by ª if 
for all ¾ 2 A, ©(¾) µ ª(¾) 

written: © µ ª 



Given carrier and simplicial maps 

Simplicial Map Carried By 
Carrier Map 
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©: A ! 2B 

ϕ: A ! B 
ϕ is carried by © if 

for all ¾ 2 A, ϕ(¾) µ ©(¾) 

written: ϕ µ © 



Given carrier and continuous maps 

Continuous Map Carried By 
Carrier Map 
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©: A ! 2B 

f: |A| ! |B| 
f is carried by © if 

for all ¾ 2 A, f(¾) µ |©(¾)| 



Given carrier maps 

Compositions 
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©: A ! 2B 

ª: B ! 2C 

(ª ° ©)(¾) := [¿ 2 ©(¾) ª(¿) 

their composition is 



If ©, ª are both 

Theorem 
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strict 
so is © ° ª 

rigid 

so is © ° ª 



Given carrier and simplicial maps 

Compositions 
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©: A ! 2B ϕ: C ! A 
their composition is the carrier map 

(© ° ϕ): C ! 2B 

defined by 
(© ° ϕ)(¾) := © (ϕ(¾)) 



Given carrier and simplicial maps 

Compositions 

Distributed Computing through 
Combinatorial Topology 

42 

©: A ! 2B ϕ: B ! C 
their composition is the carrier map 

(ϕ ° ©): A ! 2C 

defined by 
(© ° ϕ)(¾) := [¿ 2 ©(¾) ϕ(¿) 



Colorings 
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¢n := 



Chromatic Complex 
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Â 

A ¢n 

rigid simplicial map 



Color-Preserving Simplicial 
Map 
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ϕ 

A ¢n 

color of v = color of ϕ(v) 
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A Path 

3-Feb-14 47 

vertex 

vertex 
vertex vertex 

vertex 

edge 
edge 

edge edge 

simplicial 
complex 



Path Connected 
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Any two vertexes can be linked by a path 



0-sphere 

1-disc 

Rethinking Path Connectivity 

Let’s call this complex 0-connected 



1-Connectivity 

1-sphere 

2-disc 



? 

This Complex is not 1-
Connected 



2-Connectivity 

3-disk 

2-sphere 



n-connectivity 
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        C is n-connected, if, for m · n, every 
continuous map of the m-sphere 

can be extended to a continuous 
map of the (m+1)-disk 

f : Sm ! C

f : Dm+1 ! C
(-1)-connected is non-empty 
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Subdivisions 

3-Feb-14 55 

Presenter
Presentation Notes

A geometric complex is subdivided by partitioning each of its simplexes into smaller simplexes without changing the complex's polyhedron.



B is a subdivision of A if … 
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For each simplex ¯ of B 
there is a simplex ® of A 

such that |¯| µ |®|. 

¯ 

® 

For each simplex ® of A, |®| is the union of a 
finite set of geometric simplexes of B. 

Presenter
Presentation Notes

A geometric complex is subdivided by partitioning each of its simplexes into smaller simplexes without changing the complex's polyhedron.



Stellar Subdivision 
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¾ 
Stel ¾ 

Any subdivision is the composition of 
stellar subdivisions 

Presenter
Presentation Notes
For our purposes, the most useful subdivision is the \emph{standard chromatic subdivision} defined as follows. Let $\cC$ be a chromatic complex.



Barycentric Subdivision 
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¾ 
Bary ¾ 

Presenter
Presentation Notes
For our purposes, the most useful subdivision is the \emph{standard chromatic subdivision} defined as follows. Let $\cC$ be a chromatic complex.



Barycentric Subdivision 
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¾ 

Each vertex of Bary ¾ 
is a face of ¾ 

Simplex = faces 
ordered by inclusion 

Presenter
Presentation Notes
For our purposes, the most useful subdivision is the \emph{standard chromatic subdivision} defined as follows. Let $\cC$ be a chromatic complex.



Barycentric Coordinates 

3-Feb-14 60 

Every point of |C| has a unique representation 
using barycentric coordinates 

v0 

v1 v2 

x = t0 v0 + t1 v1 + t2 v2 

0 · t0,t1,t2 · 1 

∑ ti = 1 x 



Ch ¾ 

Standard Chromatic 
Subdivision 

Chromatic form of 
Barycentric 

Presenter
Presentation Notes
subdivisions
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From Simplicial to Continuous 
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Á :A ! B

f :jAj ! jBj

simplicial 

continuous 

f(x) =
X

i

ti ¢ jÁ(si)j

extend over barycentric 
coordinates 

(piece-wise linear map) 

Presenter
Presentation Notes

One direction is easy. Any simplicial map $\phi:\cA~\to~\cB$ can be turned into a piece-wise linear map $|\phi|:|\cA|~\to~|\cB|$ by extending over barycentric coordinates.



Maps 
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simplicial 

continuous 
Simplicial Approximation 

Theorem 

Á :A ! B

f :jAj ! jBj



Simplicial Approximation 
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Á : A ! B

f : jAj ! jBj

A B

simplicial 

continuous 
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A B

Á

Simplicial Approximation 

~v

Á(~v)



Simplicial Approximation 
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A B

f

Á

f(~v)

Á(~v)~v



Simplicial Approximation 
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A B

f; Á
f(~v)

Á(~v)

~v

St(Á(~v))



Simplicial Approximation 
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A B

f; Á~v
f(~v)

St(Á(~v))



Simplicial Approximation 
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A B

f; Á

St(~v)

~v
f(~v)

St(Á(~v))



Simplicial Approximation 
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A B

f; Á

St(~v)

f(~v)

St(Á(~v))



Simplicial Approximation 
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A B

f

St(~v)

St(Á(~v))

f(St(~v))



Simplicial Approximation 
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B

Á is a simplicial 
approximation of f if … 

for every v in A …  

f(St(~v)) µ St(Á(~v))

f(St(~v))



Simplicial Approximation 
Theorem 

• Given a continuous map 
 

• there is an N such that f has a simplicial 
approximation 
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f : jAj ! jBj

Á : BaryN A ! B

Actually Holds for most other subdivisions…. 

Presenter
Presentation Notes

Not every continuous map $f:|\cA|~\to~|\cB|$ has a simplicial
approximation mapping $\cA$ to $\cB$.
The following theorem, however,
states we can always find a simplicial approximation defined over a
sufficiently refined subdivision of $\cA$.

We won’t prove this theorem here, since the proof can be found in any elementary Topology textbook.
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