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ABSTRACT 

Long range gene-gene interactions are biologically compelling models for disease genetics and can 

provide insights on relevant mechanisms and pathways. Despite considerable effort, rigorous interaction 

mapping in humans has remained prohibitively difficult due to computational and statistical limitations. 

We introduce a novel algorithmic approach to find long-range interactions in common diseases using a 

standard two-locus test which contrasts the linkage disequilibrium between SNPs in cases and controls. 

Our ultrafast method overcomes the computational burden of a genome × genome scan by employing a 

novel randomization technique that requires 10X to 100X fewer tests than a brute-force approach. By 

sampling small groups of cases and highlighting combinations of alleles carried by all individuals in the 

group, this algorithm drastically trims the universe of combinations while simultaneously guaranteeing 

that all statistically significant pairs are reported. Our implementation can comprehensively scan large 

datasets (2K cases, 3K controls, 500K SNPs) to find all candidate pairwise interactions (LD-contrast 

� � 10���) in a few hours – a task that typically took days or weeks to complete by methods running on 

equivalent desktop computers. We applied our method to the Wellcome Trust bipolar disorder data and 

found a significant interaction between SNPs located within genes encoding two calcium channel 

subunits: RYR2 on chr1q43 and CACNA2D4 on chr12p13 (LD-contrast test � � 4.6 	 10���). We 

replicated this pattern of inter-chromosomal LD between the genes in a separate bipolar dataset from the 

GAIN project, demonstrating an example of gene-gene interaction that plays a role in the largely 

uncharted genetic landscape of bipolar disorder. 
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INTRODUCTION 

Genome-wide association studies (GWAS) have successfully identified hundreds of genetic markers 

associated with a wide range of diseases and quantitative traits (Manolio et al. 2009; Hindorff et al. 2009). 

Unfortunately, for most common diseases nearly all associated variants have small effect sizes and taken 

together explain very little of the genetically heritable variation of the phenotype (Craddock 2007) – a 

phenomenon often posed as the conundrum of “missing heritability” (Maher 2008). Furthermore, single 

locus association methods tend to implicate individual genes in a particular disease or trait, which in turn 

highlight a single biological entity involved (Hugot et al. 2001; Saunders et al. 1993; Neale et al. 2010). 

They do not, by definition, seek to implicate links between the functional elements of a system or 

elucidate pathway connections that may be broken.  Investigation of joint gene-gene effects can therefore 

improve the explanatory ability of genetics two-fold. Firstly, interaction – or statistical epistasis, as 

defined by Fisher (Fisher 1918) - is hypothesized to explain a part of disease heritability (Marchini et al. 

2005; Evans et al. 2006). Secondly, finding significant statistical links (epistatic or otherwise) between 

genes could provide strong indications of molecular-level interactions that differ between cases and 

controls.  

However, an all-pairs (or all-triples) scan of SNPs genome-wide still poses widely discussed 

computational challenges due the sheer size of the combinatorial space (Marchini et al. 2005), both for 

datasets typed on genotyping arrays (~10� SNPs) and sequencing technologies (~10� SNVs). Some 

methods address this problem by restricting the analysis to a small subset of candidate markers - those 

identified through single-locus analysis or those of biological interest (Emily et al. 2009), or by only 

checking for interactions between SNPs that are physically close to one another (Slavin et al. 2011). 

Others like EPIBLASTER (Kam-Thong et al. 2010) and SHIsisEPI (Hu et al. 2010) make use of 

specialized hardware like multiple Graphical Processing Units (GPUs) to finish computation on genome-

wide datasets in the order of days, rather than weeks or months. While it is known that reductionist, 

candidate SNP based approaches can miss many real interactions (Culverhouse et al. 2002; Evans et al. 
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2006) and fail to provide novel biological insights in an unbiased manner, brute-force approaches that rely 

on hardware for speedup may also scale poorly as datasets increase in size and interaction tests increase in 

complexity.  

For genome-wide interaction analysis to become pervasive, there is a pressing need for algorithmic 

insights that make interaction testing on large datasets a scalable proposition, without placing undue 

computing or hardware demands on the investigator. The contribution of our work is such a method.  

Recently, others had exploited the fact that contrasting the Linkage Disequilibrium (Zhao et al. 2006), 

Pearson correlation (Kam-Thong et al. 2010) and log-odds ratio (Plink “--fast-epistasis” option) between 

a pair of SNPs in cases and controls could be computed more efficiently than maximum likelihood 

estimates in a logistic regression. Usefully, these computationally efficient contrast tests showed high 

congruence with statistical epistasis under a variety of genetic models. In this work, we do not devise a 

new statistical test – rather, we use a simplified version of the LD-contrast test for interaction (Zhao et al., 

2006) to demonstrate our computational principles. Our version seeks pairs of physically unlinked (often 

inter-chromosomal) SNPs that are in strong LD in cases but either in weak-LD, no LD, or reverse-LD in 

controls*.  

Our computational approach is driven by the intuition that most genome-wide interaction methodologies 

only report SNP-pairs that are statistically significant (as per the test employed) after correcting for the 

number of tests. The question we ask is this : given a statistical test, is it possible to identify all the 

significant SNP-pairs with high probability (power), without actually applying the test to all possible 

combinations genome-wide? In other words, can we design a search algorithm that accepts an arbitrary 

significance cut-off (as input from the user), and then finds all SNP-pairs which will pass this cutoff 

without a brute-force search? We show here that for some contrast tests this is indeed possible. At this 

juncture, it is imperative that we point out the two distinct meanings of “power”: in this manuscript, 

                                                           
*Disequilibrium between physically unlinked loci is also often called Gametic Phase Disequilibrium (Wang et al. 
2010), but for purposes of this paper we consider both terms equivalent – in particular, we do not imply physical 
linkage/proximity on the genome with the term LD. 
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unless otherwise specified, we mean the power of an algorithm to identify SNP-pairs for which a test 

statistic is large (i.e. significant), whereas in the broader context of genome-wide interaction mapping 

literature, power is the ability of a statistical test to detect a real interaction in the dataset. Our work 

focuses on addressing the computational issues which plague an exhaustive search for interaction, leaving 

issues of statistical power for a separate discussion.  

The rest of this paper is structured as follows. First, we briefly review a simple LD-contrast test: which 

compares LD between binary allelic states (rather than 0/1/2 genotypes) in cases and controls. Next, we 

present a novel computational framework - Probably Approximately Complete (PAC) testing – which 

quantifies the power of a search done by an algorithm. PAC is an intuitive concept: for example, a brute-

force method that tests all-pairs of SNPs genome-wide is considered fully powered at finding all 

significant pairs in our framework (i.e. 100% probability of finding all pairs whose test statistic clears the 

significance cut-off) and have no element of approximation at all (i.e. 100% complete scan of the 

interaction space in the case-control dataset). In this paper, we design a two-stage PAC test for common 

complex diseases that is guaranteed to find all significant pairwise interactions with high power (e.g. 

probability >95% of finding all pairs with a significant statistic) by looking at almost the entire space of 

possibilities (e.g. approximately 99% complete scan of interaction space). In return for accepting a small 

loss of certainty and power, we show that algorithms that offer tremendous computational gains can be 

designed. We evaluate the performance of our implementation of this framework (SIXPAC) on genome-

scale data, and then present results of our analysis on Bipolar disorder (BD) in the Wellcome Trust Case 

Control Consortium (WTCCC) dataset (Craddock 2007).  
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METHODS 

1. Outline 

The goal of our method is to efficiently identify the set of SNP-pairs which have vastly different LD in 

cases and controls from the universe of pairs genome-wide - if any such pairs exist at all. First, we define 

the LD-contrast statistic and establish a minimum cutoff value that determines whether a pair of SNPs has 

a statistically significant contrast in a genome-wide study or not. Next, we devise a stage-1 filtering step 

that identifies potential case-control differences in LD by looking for LD in cases alone. We quantify the 

losses that stage-1 incurs (false negatives) by applying this “approximate” version of the full LD-contrast 

test.  

In stage 2, the candidates shortlisted based on their LD in cases are tested using the full cases-versus-

controls LD-contrast test, and either validated or discarded based on the difference. Stage 2 is needed to 

distinguish stage-1 shortlisted candidates that are true interactions from false positives. False positives 

may include SNP-pairs drawn by pure chance, and also pairs which show large LD in cases, but also 

show large LD in controls in the same direction. Such a systemic inflation of disequilibrium between 

alleles in cases and controls might be due to other factors like population stratification, technical artifacts 

or ascertainment bias and is, by definition, not associated with phenotype. 

The motivation for dividing the search into two stages is because the stage-1, case-only, “approximate” 

filtering step can be processed extremely rapidly by exploiting computer bit-wise operations, making it 

much faster than a brute-force approach. We present the novel randomization technique called group-

sampling with which we can efficiently find SNP-pairs that are in strong LD in cases. However, like 

every randomization algorithm, we need to stop sampling when we are reasonably certain that all 

significant (high LD) candidates have already been encountered and shortlisted. Consequently, at the end 

of stage-1, we are left with a “probably complete” list of pairs that demonstrate severe LD in cases.  

Taken in conjunction, this design outputs a “Probably Approximately Complete” (PAC) catalog of 
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interacting SNP-pairs at the end of the filtering stage, which are subsequently screened by the full test. 

We demonstrate that our software implementation of this PAC-testing framework can find approximately 

all significant SNP-pairs in current GWAS datasets with arbitrarily high power (e.g. >99% probability) at 

a fraction of the computational cost of an exhaustive search. 

2. Definitions and Notation 

For purposes of illustration, consider two binary matrices ���	 and �
�	, representing the cohorts of 
 

haploid cases and � haploid controls typed at � polymorphic sites respectively (we will extend this to the 

diploid human case later). ��,
 denotes the allele carried by case � at variant site � (0 for major, 1 for 

minor), while ��,
 similarly denotes the allele carried of control � at that site. Further, 

we respectively denote �.
��� � ���|��,
 � ��� and �.
��� � ���|��,
 � ��� as the number of cases and 

controls that carry allele � � �0,1� at �. Therefore,  �
��� �  �.
��� 
⁄    and  �
��� �  �.
��� �⁄   are the 

corresponding allele �-frequencies of � in cases and controls. Since we are only discussing binary carrier 

states �0/1�, for ease of notation we henceforth use �
 instead of �
�1�, and (1 � �
� instead of �
�0� 

(and analogously,  �
 and 1 � �
 for controls). 

We are interested in examining whether a haploid individual carries a certain combination of alleles at 

two (or more) sites. Consider   different binary sites �! � ���, … , ��� , at which an individual can carry 

any one of 2� unique allelic combinations. We say an individual carries allelic state �! � ���, … , ��� $
�0,1�� , at these sites if she carries allele ��  at each one of the respective sites �� . Analogous to individual 

sites, we can also denote the 2� different �!-frequencies of �!  by �
����!� �  �
����!� 
⁄  in cases and �
����!� �
 �
����!� �⁄  in controls, where �
����!� � |��|��,
�� � �!�| and �
����!� � |��|��,
�� � �!�| are the number of �! 

carriers at  �! in cases and controls respectively. For example, if an individual carries 1-alleles (i.e. minor 

alleles) at each of the sites �! � ��� , … , ���, then we say she is a 1%!-carrier of �!.  The 1%!-frequency of �!  in 

cases (controls) is the fraction of cases (controls) that are 1%!-carriers of �!. 
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3. Binary representation of diploid genomes 

For diploid genomes like humans, equivalent matrices of cohorts would be &��	 for cases and '
�	, for 

controls, where each entry �0,1,2� in these matrices represents the number of minor alleles at the site, 

rather than presence or absence of a minor allele. Depending on the model of interaction the investigator 

is interested in, these may be transformed into an appropriate binary representation in several ways. For 

our purpose, we represent each ternary genotype as two binary variables. The first variable asks whether 

the individual carries ( 1 copies of the minor allele (i.e. is dominant) at this SNP, while the second asks 

whether the individual carries exactly 2 copies of the minor allele (i.e. is recessive) at this SNP. In this 

format, cases and controls are represented by the binary matrices ����	  and �
��	  respectively, where 

each genotype &�,
 is recoded as two binary values ���,�
��, ��,�
� for cases, 

��,�
�� �  )0       �* &�,
 � 1
1       �* &�,
 ( 1+         and          ��,�
 �  )0       �* &�,
 � 2

1       �* &�,
 � 2+ 

and '�,
  is recoded equivalently as ���,�
��, ��,�
� for controls.  For example, case #6 is represented as a 

recessive carrier of SNP #12 (variable coordinates: row 6, column 2 	 12 � 24� by setting  ��,�� � 1. If 

case #6 is a dominant carrier of SNP #12 then we set both ��,�� � 1 and ��,�� � 1. The notations for 

number of carriers and frequency of variables (and combination of variables) all follow analogously.  

4. Statistical Test for Two-Locus Effect 

We adapt the LD-contrast test for interaction between a pair of unlinked genotypes (Zhao et al., 2006) 

into a similar two-tailed test between a pair of unlinked binary variables �! � ��, �/� , 

01
��
���� � 1
��

���� � 1
��
��
����

234
��
����5� 6  34
��

��
����5�
~ 7�0,1� 

eq.1 
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where 1
��
����  and 1
��

��
����  represent the estimated LD between these variables in cases and controls 

respectively, while 4
��
����  and 4
��

��
����  represent the standard error of these estimators (see Supplementary 

Section 1 for derivation and details) and 01
��
����  is their LD-contrast. This normalized statistic behaves as 

a Z-score, and for variable-pairs that pass the significance cutoff in a genome-wide pairwise analysis 

(typically � � 10��� or less on present day datasets), this statistic will assume large values (typically 6 or 

more).  

Variable-pairs with large differences in LD are of interest to several genetic models, and their signal can 

be dissected to either reveal statistical (epistatic) or biological interaction. Based on what is known about 

the genetic architecture of a specific disease,  the relevant community of geneticists can bring different 

model assumptions to bear on a test for interaction. Here, we do not attempt to dictate a specific model 

that might cause such a difference in LD between the cases and controls. Rather, we focus on presenting a 

general method that can report all SNP-pairs with a significant contrast and provide expert users with the 

flexibility to filter the results from such an analysis according to relevant assumptions. This can be done 

either apriori (e.g. removing SNPs with marginal signals before running a search for interaction), or 

aposteriori (e.g. discarding reported SNP-pairs that do not provide evidence for statistical epistasis).  

5. Two-stage testing design 

A widely used simplification (Cordell 2009; Piegorsch et al., 1994; Yang et al., 1999) in genome-wide 

interaction scans is to divide the search effort into two stages - first filter candidates, and then verify 

interaction. The crucial insight that permits this step is that we can expect physically unlinked markers to 

be in (or almost in) linkage equilibrium in large outbred populations. Even for common diseases, the 

general population is mostly comprised of healthy controls (disease prevalence < 50%). We show that in 

the absence of confounding factors like population stratification a pair of physically unlinked variables 

showing large LD-contrast will be a pair which has large LD in cases rather than large LD in controls. 

Without loss of generality, we focus our discussion on identifying pairs with strong positive LD in cases 
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301
��
����� 8 05. Pairs with strong negative LD between variables are easily modeled (with a trivial change 

in binary encoding) as strong positive LD between the major allele at one and a minor allele at the other. 

Alternative variable-pairings of this kind would only require a different binary encoding scheme, but 

introduce more confusing notation. A separate (but limiting) issue is that of the statistical testing burden 

incurred by encoding alternate models, which we address in the discussion.  

A sequential two-stage testing strategy is designed as follows.  

Stage 1 (Shortlisting): The stage 1 null-hypothesis states that any pair of distal variables �! � ��, ��� 

should be in linkage equilibrium in cases. 

 9� 
� : 01
��

���� � 1
��
����

4
��
���� � 0 

eq. 2 

From eq.S1.1 (see Supplementary Section 1) we know the distribution of 01
��
����  is  7�0,1�. We shortlist 

only those variable-pairs that reject the stage 1 null hypothesis at a significance level of ;/. In other 

words, for a pair to be shortlisted as a candidate for follow-up, we require that the LD in cases between its 

variables should exceed some threshold - i.e. 01
��
���� (  < 

� . We will determine this threshold to satisfy 

sensitivity/specificity constraints later.  

 

Stage 2 (Validating): Next, we apply the LD-contrast test on candidates shortlisted by stage 1. This helps 

us to determine, for each candidate, whether the observed LD is indeed case-specific (and therefore a 

putative indicator of interaction) or pervasive in the population (and hence unrelated to disease). The 

stage 2 null-hypothesis posits that there is no LD difference between cases and controls 

9� =  01
��
���� � 0 

eq. 3 
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Putative significant pairs will reject this null hypothesis at a significance level of ; ( i.e. 01
��
���� ( <  ). 

In order to appreciate how such a two-stage design can capture almost all significant pairs in the dataset, 

and what the appropriate significance cutoff < 
�  in the stage 1 analysis must be, we now introduce the 

concept of a Probably Approximately Complete Search. A numerical example depicting the concepts that 

follow is provided in the Supplementary Section 9. 

 

6. Probably Approximately Complete (PAC) Search 

A. Complete Search 

To find all significant variable-pairs in the dataset, current algorithms would sequentially visit each pair 

of SNPs, genome-wide, and check whether each LD-contrast exceeds the user-prescribed significance 

threshold 301
��
���� ( < 5  by comparing cases and controls.  

B. Approximately Complete Search 

Here we ask, what threshold 01
��
���� ( <!

�   can we apply in the filtering step, so as to capture almost all 

significant pairs by means of their disequilibrium in cases alone. In other words, can most significant 

pairs (pairs for which 01
��
���� ( < ) be captured without explicitly determining 1
��

��
����  at all? 

Furthermore, we wish to determine the proportion of significant pairs that such an approximation might 

miss.  We show that for most common diseases, an adequate cutoff for LD in cases is usually <!
� 8  <  

(see Supplementary Section 2) – i.e. SNP-pairs with a severe LD-contrast (difference in LD between 

cases and controls) are usually observable from their severe LD in cases alone.  

C. Probably Approximately Complete (PAC) Search 

So far, our two-stage design has reduced the cumbersome task of counting the number of carriers for all 

variable-pairs (genome-wide) in cases and then again in controls, to the simpler task of shortlisting the 

small set of pairs which demonstrate 01
��
���� ( <!

� ( <! . From a complexity standpoint however, such a 
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simplification (restricting the stage 1 analysis to cases only) does not change the order or magnitude of 

the number of tests: this is still quadratic in the number of SNPs genome-wide. To address this 

computational problem we now introduce the novel randomization technique called group sampling, 

which can rapidly perform the case-only shortlisting with arbitrarily high power, without explicitly 

checking all pairs of variables. 

 

Group Sampling.  

Rationale: From our observation that the LD statistic in cases, is usually more severe than LD-contrast 

(Supplementary Section 2), we deduce that significant interacting pairs �! will show a minimum number 

of excess 1%!-carriers in cases:  Δ
��
���� ( 
<!4
��

���� .  In a genome-wide analysis, as the universe of variable-

pairs tested grows, so does the burden of multiple test correction that is applied to characterize statistical 

significance. Consequently, the number of excess of 1%!-carriers required in order for �! to achieve 

statistical significance in cases -  Δ
��
����   - grows commensurately. Group sampling overcomes the 

computational burden of a genome-wide analysis by using this “side-effect” of multiple-test correction to 

its advantage: the larger the number of variants typed, the larger is the universe of pairs to be tested, and 

the larger the excess 1%!-carriers needed to make statistically significant pairs stand apart from the crowd - 

this observation allows us to quickly prune the universe of pairs into a much smaller candidate set that is 

“guaranteed” to contain all significant pairs with arbitrarily high probability.  

For illustration purposes, let us consider a simplified version of the problem at hand. In this version, we 

are only interested in searching through pairs of distal variables �! � ��, �/�, where both variables have 1-

frequencies (�
 and �
�) that lie within the narrow frequency window ? � @�A, �A 6 B�. Let the set of all 

variables that lie within this frequency window be labeled C�?�. We wish to determine whether there 
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exists a pair �! $ C�?� 	 C�?�, such that �! rejects 9� 
� . We can compute a lower bound on Δ
��

����  for all 

such �!  as: 

min
"�"

� Δ
��
����� (  
 min

"�"
� 4F
��

����� z  

�  √
. �A�1 � �A� z  

eq.4 

This is because the excess 1%!-carriers required for any �! $ C�?� 	 C�?� to reject 9� 
� is at least as many as 

the excess 1%!-carriers required by the least frequent �! in that set: when �
 � �
� � �A. Therefore the 1%!-
frequency of all pairs that reject 9� 

� is at least 

�
�� ( �A� 6 min
"�"

� Δ
��
�����


  

� �A� 6  I#�# 

eq.5 

where I#�# � $%&��$%'

√�
 z  is the minimum LD in cases for all significant pairs �! $ C�?� 	 C�?� . 

 

Sampling a single group: Consider a group of J cases drawn randomly (with replacement). If �! rejects 

9� 
� , then the probability that all J cases in the group will be 1%!-carriers of �! has a lower bound ��
���) (

3�A� 6 I#�#5)
. On the contrary, if �!  does not reject 9� 

� , then the probability that such a group will 

contain all 1%!-carriers of �! purely by chance has an upper bound ��
���) K  ��A 6 B��) – corresponding to 

the most frequent variable-pair in C�?� 	 C�?� . It is easy to see that if I#�# 8 B, we are much more 

likely to observe a random group of cases that are all 1%!-carriers of �! when it rejects 9� 
� .  

 

The reason for drawing cases in groups (as opposed to one by one) is that it allows us to rapidly find the 

subset of variables for which all J cases are 1%!-carriers. This is done with a native bitwise AND operation 

using computers, which is very fast in practice. In fact, the larger the group size, the exponentially smaller 
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the subset of variables carried by all cases in the group becomes. Furthermore, long stretches of binary 

genotype data can be processed per CPU clock cycle, making this step even more attractive. Subsequent 

to finding this small subset of variables, it is computationally efficient to enumerate all pairs (or indeed, 

triplets) among them, and pass them on to stage 2. 

 

Sampling multiple groups: If the group of cases we draw is sufficiently large (i.e. J is high), then it is 

extremely unlikely to contain only 1%!-carriers, not only when �! accepts 9� 
� , but also when this null is 

rejected : because both ��A 6 B��) ,  3�A� 6  I#�#5) L 1. We can counter this by drawing up to M 

independent groups (each containing J random cases), so that the probabilities of not witnessing even a 

single group containing only 1%!-carriers decreases at diverging rates for the two realities: 

 

31 �  ��A 6 B��)5� L  N1 �  3�A� 6 I#�#5)O�
 

 

In fact, if �! does reject 9� 
� , then by varying the two parameters J and M the probability of observing at 

least one group of all 1%!-carriers can be driven arbitrarily high (Type II error rate < P ) while keeping the 

probability of a chance observation relatively low (Type I error rate < Q). In other words, given fixed 

specificity and sensitivity constraints Q and P (provided as input by the user), when I#�# 8 B we can 

always find group-sampling parameter values J and M for which:  

RS� �M���MT =  1 � N1 � 3�A� 6  I#�#5)O� ( 1 � P 

R�SU�*�U�MT =  1 � 31 �   ��A 6 B��)5� K Q 

eq.6 

An illustration to visualize this technique is provided in Figure 1, while the simple algorithm implied by 

our toy problem logic is provided by Algorithm 1. The general formulation for PAC-testing across all 
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frequency windows (genome-wide) is described in Supplementary Section 4 and the logic provided by 

Algorithm 2. 

This concludes our discussion of a Probably Approximately Complete search. PAC-testing offers a 

powerful computational framework: as we shall demonstrate next, we can find approximately all 

significant SNP-pairs genome-wide with high power in a fraction of the time that an exhaustive search 

would require.  
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RESULTS 

The major methodological contribution of this work is a novel randomization algorithm (group sampling), 

which can focus the computational effort towards finding significant pairwise interaction candidates, 

without testing all pairs genome-wide. To determine whether a candidate SNP-pair is significant or not, 

and to minimize risk of false positives, in all our analyses we subject the results to the most conservative 

threshold for significance in a genome-wide analysis - the Bonferroni corrected p-value of 0.05 – unless 

otherwise stated. More sophisticated treatment of the multiple testing issues in interaction testing (e.g. 

(Emily et al. 2009)) are equally applicable and can be plugged into our method without violating any of 

the principles or assumptions. We also restrict our analysis to pairs of genetic markers (SNPs) only, and 

choose to ignore gene-environment interactions for the moment. These simplifications serve to highlight 

the fundamental concepts of our approach, without loss of interpretable results. Our software 

implementation of this algorithm (SIXPAC) is available for download at 

http://www.cs.columbia.edu/~snehitp/sixpac. 

Dataset: 

SIXPAC was used to analyze 1868 cases of the Bipolar disorder (BD) cohort in the WTCCC against 

2938 combined controls from the 1958 British birth cohort (58C) and UK national blood service (NBS), 

all typed on the Affymetrix 5.0 platform, after cleaning all data as per requirement (Craddock 2007). Each 

of the remaining 455,566 SNPs remaining in the dataset was encoded into two binary variables (dominant 

and recessive), giving 911,132 binary variables genome-wide and a universe of 3�***�� 
� 5 	 4 � 4.15 	

10�� potential variable-pairs to be tested. Although we only report pairwise interactions that are 

significant at the Bonferroni level in this dataset �p � 1.2 	 10����, investigators who employ less 

stringent multiple test correction can use SIXPAC to discover interactions at a different cutoff as well.  

To verify that the LD-contrast statistic follows a standard normal distribution, we drew random variable-

pairs genome-wide and constructed a QQ plot. Like others before (Liu et al. 2011), we observed that 
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WTCCC data cleaning was inadequate for interaction analysis and systematically applied more stringent 

filters to preemptively screen out false positives which can be a result of bad genotype-calls on a few 

individuals. Specifically, 81085 additional SNPs which had <95% confidence calls (CHIAMO) in >1% of 

the individuals (cases and controls combined) were removed. For the cleaned dataset of 374,481 SNPs 

that remain, we verified that the LD-contrast statistic 01
��
����  for randomly drawn pairs of unlinked 

variables >5cM apart was indeed a Z-score (QQ plots and additional cleaning details in Supplementary 

Section 5), in agreement with our null hypothesis.  

Power analysis on spiked data: 

Next, we tested SIXPAC's computational sensitivity by searching for synthetic interactions inserted into 

the bipolar cases while keeping the joint controls unchanged. 11 recessive-recessive interaction pairs 

between 22 SNPs on successive autosomal chromosomes (chr1 and chr2, chr3 and chr4, etc.) were 

simulated over a range of different parameters. Interactions between each pair of SNPs were simulated in 

a manner not to introduce and main effect, but effectively introduce only interaction effects. Details of 

this procedure are outlined in Supplementary Section 6.  

Algorithm 2 configures the search parameters according to two user inputs: (i) a significance cutoff (LD-

contrast test p-value), and (ii) the minimum search power (defined as the power to discover all variable 

pairs that exceed the given significance cutoff, assuming such interactions exist). We tested SIXPAC on 

the synthetic datasets over a range of different input value combinations, to check whether we could 

discover the spiked interactions in accordance with theoretical estimates, and confirmed finding all of 

them at (or above) the power guaranteed to the user (Supplementary Section 7). 

Computational savings from group-sampling: 

To put the computational savings of our novel approach in context, we reviewed the literature for 

published, high-performance, genome-wide pairwise search methodologies that either (i) contrast a 

statistic for a pair of SNPs between cases and controls or (ii) directly test for statistical epistasis between a 
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pair of SNPs using a regression model. Plink (Purcell et al. 2007) offers a --fast-epistasis option that tests 

pairs of SNPs using a statistic similar to ours: specifically, it collapses each pair of SNPs completely into 

a 2x2 table of major vs. minor allele counts, and subsequently contrasts the odds ratios of each 

combination between cases and controls. On the other hand, EPIBLASTER (Kam-Thong et al. 2010) 

operates on the entire 3x3 table of genotypes to contrast the exact Pearson’s correlation of each SNP-pair 

between cases and controls. Like Plink, SHEsisEPI (Hu et al. 2010) also contrasts odds-ratios of all SNP 

pairs reduced to a 2×2 table. Both EPIBLASTER and SHEsisEPI achieve speedup through the use of a 

GPU stack.  

Among the methods that directly test for statistical epistasis, we report TEAM (Zhang et al. 2010) and 

FastEpistasis (Schüpbach et al. 2010). The authors of FastCHI (Zhang et al. 2009), FastANOVA (Zhang 

et al. 2008), COE (Zhang, et al. 2010) and TEAM presented a review (Zhang et al. 2011) in which TEAM 

was reported as the most appropriate for handling human datasets, and was therefore chosen to represent 

the family of methods. TEAM achieves computational speedup by a novel approach that allows it to 

accurately identify interacting SNP-pairs (for most statistical tests) by checking only a small subset of 

individuals in the cohort. Unlike EPIBLASTER, Plink --fast-epistasis and SIXPAC, TEAM works 

directly on the logistic regression framework – giving it the ability to test a broader range of interaction 

models. The other method, FastEpistasis, reports epistasis in the analysis of quantitative traits (and is 

particularly built for gene-expression analysis) by implementing a rapid linear regression that takes 

advantage of multi-core processor architectures. Notable among methods omitted in this comparison are 

Multifactor Dimensionality Reduction (Ritchie et al. 2001) and Restricted Partition Method (Culverhouse 

et al. 2004), both of which partition the data according to genotypic effect in a relatively model agnostic 

manner. Consequently both methods test a variety of interaction models (alternate parameterizations) that 

are not currently captured by high-performance computational techniques like ours and others previously 

discussed. Another widely cited method, BEAM (Zhang and Liu 2007) does not scale to present day 

datasets (Cordell 2009) and was left out of this analysis. There are numerous other methods which 
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perform whole-genome interaction scans (Liu et al. 2011; Emily et al. 2009; Achlioptas et al. 2011; 

Greene et al. 2010; Zhang et al. 2009), and an older review of a few of these is provided elsewhere 

(Cordell 2009). 

Except for SIXPAC, all the time-scales presented in Table 1 are performance figures as self-reported by 

the authors of each method (or in the case of TEAM, extrapolated from performance figures reported 

therein) on a dataset of this size. Our synopsis does not constitute a comprehensive methods comparison, 

and is presented solely to highlight the computational savings achieved by group-sampling (Figure 2). 

The reason SIXPAC is able to achieve its speedup without GPUs is because it does not need to 

exhaustively test all pairs of SNPs to identify the significant combinations†. On the other hand all other 

methods are burdened by a brute-force test of all pairs to identify such combinations. In confirmation of 

our estimates, they also report that genome-wide testing on ordinary CPUs requires several weeks of 

compute time (some report weeks even on a small cluster of computers). The application of group-

sampling was able to reduce this computational investment to around 8 hours. 

Novel Significant Interaction in Bipolar Disorder: 

We ran SIXPAC on the BD dataset with >95% power to check whether there exist any significant LD-

contrasts between pairs of physically unlinked variables (SNPs >5cM apart). We report the presence of 

only one statistically significant two-locus contrast (BD cases vs. NBS+58C controls LD-contrast 

p � 1.2 	 10���) between SNPs lying within two calcium channel genes : rs10925490 within RYR2 on 

chr1q43, and rs2041140 and rs2041141 within CACNA2D4 on chr12p13.33. We successfully replicated 

the signal from this region at Bonferroni significance levels in a different bipolar dataset of Europeans 

(653 BARD cases, 1034 GRU controls) from the GAIN initiative (Manolio et al. 2007; Smith et al. 2009; 

also see www.genome.gov/19518664) which were typed on a different platform (Affymetrix 6.0). Deeper 

                                                           
†However, we report that the SIXPAC implementation currently takes advantage of multi-core CPU architectures 
with large reserves of RAM to speed up computation, as well as cluster computing infrastructures to distribute 
computational burden across multiple nodes - all with little or no effort on the part of the end user. Details are 
provided on the software webpage.  
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investigation revealed that the SNP in CACNA2D4 is 200Kbp away from CACNA1C – a known calcium 

channel gene whose association to BD was only recently confirmed by combining large GWAS datasets 

for meta-analyses (Ferreira et al. 2008; Sklar et al. 2008). Functional experiments have also confirmed the 

role played by genes at this locus in bipolar disorder (Perrier et al. 2011). Although channel ideopathies 

(and more specifically faults in calcium channels and signaling) have long been known to play a major 

role in bipolar disorder, single-locus association methods were underpowered to implicate genes in these 

pathways without considerably boosting their sample sizes (Craddock 2007; Sklar et al. 2008; Ferreira et 

al. 2008). Neither gene that we report – either at the known locus or novel locus - was identified as a 

candidate by the original WTCCC analysis (Craddock 2007) which focused on effects visible to single-

locus association. 

Specifically, we found that the dominance variable of rs10925490 (one or more minor alleles) was in 

severe positive linkage disequilibrium with the recessive variables of adjacent SNPs rs2041140 and 

rs2041141 (two minor alleles each) in BD cases, and slight negative disequilibrium with them in controls, 

giving an LD-contrast � � 4.6 	 10���. To verify that this signal was not due to any unaccounted biases, 

we first confirmed that high LD between the two variables was specific to BD cases only, even when 

contrasted against samples from all other WTCCC disease phenotypes (6 tests of BD vs. other-disease-

cases all show LD-contrast p � 10�+).  Next, we performed a permutation analysis to characterize the 

empirical distribution of the LD-contrasts statistic at the theoretical significance level of � � 4.6 	 10��� 

(i.e. to check if ���������� K 0.05). We ran SIXPAC on 100 phenotype permuted versions of the same 

dataset (i.e. 100 whole-genome, all-pairs scans for interaction) and observed � K 4.6 	 10���  between a 

pair of SNPs in only 1 such permutation (���������� [ 0.01). 

Finally, we sought to replicate the observed difference in LD at these loci. In the GAIN dataset, we 

considered all LD-contrasts in an area of 1 SNP immediately upstream and downstream of rs10925490 in 

the dominant allelic mode, against 1 SNP immediately upstream and downstream of rs2041140 in the 

recessive allelic mode. In other words, we tested 3 	 3 � 9 pairs (around and including the original 

 Cold Spring Harbor Laboratory Press on November 20, 2012 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


21 

 

 

 

interaction), to test if any pair in this area bore an LD-contrast that passed the conservative Bonferroni 

significance cutoff α � �.�*

+
[ 0.005. This roughly translates to a region K 5Kbp upstream and 

downstream of each SNP in the original pair. Although there was no appreciable difference in LD 

between the same SNPs (rs2041140/rs10925490 shows LD-contrast � 8 0.01), we observed a significant 

LD-contrast �� � 4 	 10�*� between rs2041140 and rs677730 (the SNP immediately upstream of 

rs10925490 on the Affymetrix 6.0 platform). To confirm that this observation was not likely by chance, 

we randomly picked 5000 pairs of physically unlinked (>5cM apart) SNPs genome-wide and tested an 

equal neighborhood of 3 	 3 LD-contrasts around each pair in the GAIN dataset. Only 1 out of 5000 

random areas contained a SNP-pair with a more significant LD-contrast ����������� � 0.0002�. 

To get a better picture of the LD-contrast landscape between SNPs in this region, we conducted a wider 

survey of the area spanning ]25 SNPs (upstream, downstream and including) both rs2041140 and 

rs10925490 �i. e. 51 	 51 tests�. The scan reveals several additional pairs of SNPs that show differences 

in LD going in the same direction (strong LD in cases, weak negative LD in controls) – arranged in a 

strikingly similar pattern in both datasets, presenting strong evidence of an inter-locus effect. The 2 

dimensional LD-contrast spectrum for this larger area is presented in Figure 3, alongside the Manhattan 

plots for marginal association at each locus. The top SNP-pair in the area (rs677730,dom × 

rs11062012,rec) had LD-contrast � � 1.19 	 10�� in GAIN: a similar phenotype permutation analysis as 

earlier reveals that only 19 out of the 5000 randomly chosen 51 	 51 areas genome-wide contained a 

more significant pair ����������� � 0.0038�. It can also be seen that there is no marginally significant 

association at these loci  in either dataset. Table 2 presents a summary of the results along with the single 

most significant variable pair in the larger test area for each dataset.  
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DISCUSSION 

In this work we introduced a novel method that defuses the computational challenge of a genome × 

genome interaction scan by using the statistical constraint towards, rather than against our goal. Focusing 

only on interactions that have a chance of achieving statistically significant association, we developed a 

rapid filter that does not require the naïve arduous scan of all pairs of variants. To demonstrate its utility, 

we implemented an established test for interaction which contrasts LD between cases and controls, to 

demonstrate how an exhaustive genome-wide multi-locus association search is possible while saving an 

order of magnitude or more in computational resources. Usefully, we are also able to provide 

performance guarantees and quantify the approximate nature of our output, and our algorithm brings 

genome-wide three-locus scans into the realm of feasibility.  

While the focus of this contribution is computational methodology, we prove applicability in practice to a 

classical GWAS dataset. Among widely investigated common diseases, bipolar disorder remains one of 

the most recalcitrant phenotypes to GWAS methodology (Craddock and Sklar 2009), perhaps in part 

because of the limitations of single locus association analysis. We highlight the power and utility of 

multi-locus effects in terms of uncovering molecular processes by exposing two calcium channel coding 

genes as affecting bipolar disorder, supporting recent discoveries that were only made possible through a 

significant increase in dataset size.  We have replicated this observation in an independent dataset, 

strongly suggesting a bona-fide underlying interaction between members of a gene-family known to be 

functionally associated with bipolar disorder, making it suitable for further investigation.  

Compared to the number of single-locus associations, GWAS of common phenotypes in humans have 

uncovered very few reproducible gene-gene effects so far. This is partly because interaction analyses for 

human populations are difficult to design and interpret (Cordell 2002; Phillips 2008). A conventional test 

for statistical epistasis is expected to only identify loci whose combined effect on phenotype is not 

explained by the addition of their individual effects, for an appropriately chosen scale. In case-control 
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studies, this typically involve applying a logistic regression to check for significance of the interaction 

term(s) after accounting for main effects (Wang et al. 2010): which is equivalent to a test for deviation 

from multiplicative odds (or additive log-odds). However, there are several limitations to this approach – 

scale of choice (Mani et al. 2008), assumption of a genetic model by which two-loci combine their effects 

(Hallander and Waldmann 2007), limited models of interaction that can be tested (Li and Reich 1999; 

Hallgrímsdóttir and Yuster 2008) and limited sensitivity of logistic regression to non-normal residuals, 

among others. How these factors might cumulatively affect a test for other models of genetic interaction 

has not yet been decisively established.  

Further, true biological interaction between two or more loci may or may not manifest itself as a departure 

from additivity. Two loci whose main effects appear to combine in an additive manner might also indicate 

their biological co-involvement (and hence “interaction”) underlying the disease (Wang et al. 2011). In 

general, two-locus association tests are known to contribute signal independent from what is seen by 

conventional single locus association tests (Kim et al. 2010; Marchini et al. 2005) and comprehensive 

multi-locus association strategies may be worth undertaking despite the increased multiple testing burden 

(Evans et al. 2006). Indeed, recent work (Zuk et al. 2012) showing that alternate models of biological 

interaction could confound estimates of heritability have redirected the attention of the genetics 

community on the potential of interaction studies. 

A previous genome-wide scan for statistical epistasis on the same bipolar disorder dataset had reported 

Bonferroni significant epistasis between rs10124883 and four other SNPs (Hu et al. 2010). As expected, 

all four pairs approached (but did not clear) Bonferroni significance levels as per the LD-contrast test as 

well �p [ 10���� – and could therefore be captured simply by lowering the significance cutoff. This 

congruence between tests for statistical epistasis and contrast tests has been exploited by others (Plink, 

EPIBLASTER) and indeed, also holds for the binary LD-contrast test (see tables in Supplementary 

Section 6). But whereas other methods would employ a brute-force testing strategy to identify candidate 
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SNP-pairs, PAC testing will accomplish the same result much quicker by looking at a small fraction of 

the pairs.  

Our findings do suggest that unlike stepwise regression approaches that sequentially attribute residual 

variance/deviance to each of their components, tests that make fewer assumptions regarding scale may 

indeed be more powerful at capturing a wider range of interactions. Conversely, a distinct advantage of 

regression over our LD-contrast test remains its clear interpretation and measurement of effect size: 

though the difference in LD between cases and controls is consistent and reproducible across datasets, it 

does not immediately suggest a clear causal genetic model underlying this signal. We dissected this 

interaction using the standard logistic regression, ln � $

��$
� ~ P��� 6 P��� 6 P������, where �� � �0,1� 

codes for dominance carrier status at rs10925490 while �� codes for recessive carrier status at rs2041140. 

The main effects P�,  P� were observed to be not significant, while the epistasis term P�� was considerable 

(� [ 10�+), suggesting deviation from multiplicative odds is one option. We also considered the standard 

full genotype model (0/1/2 parameterization of predictor variables) with 8 degrees of freedom (Cordell 

and Clayton 2002) as implemented by INTERSNP (Herold et al. 2009), where the most significant test 

(Test 6,  � [ 10�+) was the one comparing the full model against a model that accounts for just within-

SNP additive and dominance effects. In a genome-wide search for interaction using logistic regression, 

these levels are likely  to fall short of significance cutoffs after correcting for hundreds of billions of tests 

performed: which explains why other methods seeking statistical epistasis on the same BD dataset did not 

report LD between the RYR2-CACNA2D4 as a significant finding. A true etiological understanding of this 

persistent difference in LD may require sequencing at each locus to identify the interacting variants.  

Limitations and Extensions. 

The major contribution of this work is a computational technique to rapidly identify SNP-pairs with  large 

values of a test statistic without performing a brute-force search. While we assessed the issue of power 

with regards to our randomization algorithm, we left the separate (but equally important) concept of 
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statistical power unaddressed – i.e. the ability of an interaction test to spot a true biological interaction in 

the dataset. Although contrasting LD, correlation and odds-ratios between cases and controls have all 

separately been characterized as powerful tests for interaction, each test makes specific model 

assumptions and is powerful only under its own regime. Consequently, the absence of interaction reported 

by SIXPAC (or indeed, by any other software) does not imply the absence of interaction itself, but could 

simply mean lack of statistical power of the test, inadequate number of samples, or simply, incorrect 

model assumptions. During the course of publishing this method, minor corrections were suggested for a 

range of contrast statistics to improve their power and decrease type I error rate (Ueki and Cordell 2012). 

Again, we note that modifications to these tests can be easily adopted into our computational methods – 

which are agnostic of statistics. 

In contrast to the performance gains offered by group-sampling are its two notable weaknesses. First - 

like any other randomization algorithm - group-sampling can never achieve 100% power (probability of 

completion), whereas brute-force approaches will. Second, by virtue of limiting itself to binary features, 

testing for genetic models that incorporate allelic dosage and trend effects using group-sampling does not 

appear straightforward. Although extending our computational principles to implement rapid correlation 

and odds-ratio contrast tests (among others) may be appealing, the loss of statistical power from 

increasing the number of tests is less easily addressed.  Where we currently encode recessive and 

dominance binary status, each additional test may require a different encoding of features (genotypes, or 

combinations thereof), thereby adding to the multiple testing burden. Overcoming these limitations 

appears non-trivial, and increases in sample size will almost certainly play a crucial role in discovering 

these hidden genetic connections.  

Extrapolating from the hardware speedups reported by others (Kam-Thong et al. 2010; Hu et al. 2010)  

may suggest that a high-performance GPU-enabled implementation of  our method might offer a scan of 

all-pairwise interactions in a few minutes, and all 3-way interactions on the order of a day(s) in large 

GWAS datasets. But a more immediate concern related to testing 3-way interactions would be the 
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statistical power and semantic interpretation of such a test (conceivably devised on a 2×2×2 binary table). 

In conclusion, we note that while the transition of association studies from SNP arrays to full 

ascertainment of variants may have led to analytical emphasis on rarer alleles, it has only increased the 

impetus to examine the spectrum of multi-locus effects. With so many more variants to consider, the 

computational limitations will only become more severe, but the solutions reported will be ever more 

essential.  
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FIGURE LEGENDS  

Figure 1: Group Sampling.  

A cohort of 
 cases is shown on the left, where the cases outlined in red – �, b, c and R – harbor an 

interacting pair of recessive variables. In other words, more cases carry the recessive-recessive 

combination than would be expected by chance, given the marginal frequencies of each recessive allele. 

By repeatedly drawing random groups of J cases (here J � 3), we are guaranteed to have drawn at least 

one group of individuals that carries both the variables in M attempts with probability ( �1 � P�. These 

variables (and others) are quickly determined by a bitwise-AND operation between the group of cases. 

Then, all pairs of co-carried variables are enumerated and tested against the stage 1 null-hypothesis (case-

only analysis). Rejected combinations are shortlisted and followed-up in stage 2 (case versus control 

analysis), where an interaction is identified. 

Figure 2: Computational Efficiency.  

Our implementation of the two-stage PAC-testing framework (SIXPAC, orange line) was benchmarked 

on the cleaned WTCCC bipolar disorder dataset (approximately 2K cases, 3K controls, 450K SNPs, 4 

genetic models tested per distal SNP-pair, 400 billion pairwise tests genome-wide). Part (a) shows the 

factor reduction in the universe of SNP-pairs achieved by stage 1, for each power setting. Note that unlike 

brute-force, this does not mean down-sampling the universe of SNP-pairs, but rather involves reducing 

the probability of identifying any one of them. For example, a brute-force method would presumably test 

40 billion pairs (and ignore the remaining 360 billion) to achieve 10% power on this dataset. However, 

PAC-testing scans all 400 billion pairs, but simply reduces the probability of finding the significant 

interactions among them to 10%. This results in shortlisting approximately 68X fewer combinations 

through stage 1. Part (b) shows the efficiency of our software implementation of this method. We 

compare the performance of SIXPAC against the time taken by a brute-force approach of applying the 
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LD-contrast test directly to all pairs (green line). All tests were benchmarked on a common desktop 

computer configuration (Intel i7 quad-core processor, 2.67 GHz with 8GB RAM). The last data-point 

shows the 90% power benchmarks, followed by dotted lines which illustrate how these estimates may 

continue as we approach 100% power. SIXPAC, like any randomization algorithm, will require infinite 

compute time to achieve 100% power, but can approach very close at a small fraction of the brute-force 

cost. Lastly, we note that these measurements only reflect the performance of our java program rather 

than what might be feasible with a different implementation of the algorithm. 

Figure 3. Bipolar Disorder Interaction 

In a genome-wide scan of all 400 billion variable-pairs (4 genetic models tested per SNP-pair) in the 

WTCCC bipolar disorder dataset (Affymetrix 500K), SIXPAC found one significant interaction �� �
1.2 	 10���� between SNPs >5cM apart that satisfied all our filtering criteria. The SNPs rs10925490 and 

rs2041140 lie within the RYR2 gene on chr1q43 and the CACNA2D4 gene on chr12p13.33 respectively. 

Each figure shows the -log(pvalue) from a standard single-locus association test (allelic model) of the two 

SNPs as well as 25 SNPs immediately upstream and downstream from each of them, along the X and Y 

axis. Also shown in the grayscale area is the –log(p) from the pairwise LD-contrast test of all 51 	 51 �
2601 variable-pairs. As suggested by the original finding, SNPs around rs10925490 were considered in 

dominant allelic mode, while SNPs around rs2041140 were in recessive mode. We replicated this signal 

by similarly testing 2601 dominant-recessive pairs of variables around the very same SNPs in a much 

smaller bipolar disorder dataset from the GAIN consortium (Affymetrix 6.0). In the replication dataset, 

we observe several pairs that cross the significance threshold and a strikingly similar visual pattern in the 

LD-contrast landscape (see main text for a permutation analysis). The top pair (rs677730- rs11062012) in 

this area is pinpointed with dashed lines (see main text for permutation analysis). Standard single-locus 

association analysis does not yield any significant result in either dataset, as seen in the marginal 

Manhattan plots (gray dashed line represents genome-wide significance level). 
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TABLES 

Table 1: Methods comparison 

We list the approximate times reported by five other recent pairwise interaction methods (all perform an 

exhaustive, genome-wide search) to process a dataset the size of WTCCC bipolar disorder (approximately 

2K cases, 3K controls, 450K SNPs, 1 genetic model tested per distal SNP-pair, ≈100 billion pairwise 

tests). For methods that do not use a GPU cluster, reported times were measured on a comparable desktop 

computer configuration to the one that SIXPAC was benchmarked on (Intel i7 quad core processor, 

2.67Ghz with 8GB RAM). For TEAM, we extrapolated runtime based on performance figures reported 

on a smaller dataset. Graphical Processing Units (GPUs) are computing chips which provide around 100X 

speedup over regular CPUs, and were therefore used by two recent high-performance implementations. 

Despite not using such specialized hardware, SIXPAC is the only method which can scan a GWAS 

dataset of this size in a few hours. This is because while most methods effectively need to test each pair to 

find the few significant combinations, group-sampling allows SIXPAC to drastically prune the search 

space while simultaneously guaranteeing that all the statistically significant pairs will make it through 

such a pruning.  

Method Type of test Computational approach Approx. time to 
process dataset‡ 

Run on 
specialized 
hardware 

Plink§ Odds-ratio Contrast Brute-force Weeks No 
FastEpistasis Linear Regression Brute-force Weeks No 
TEAM Logistic Regression Check fewer individuals Weeks** No 
EPIBLASTER Correlation Contrast Brute-force ~1 day Yes (4 GPUs) 
SHEsisEPI Odds-ratio Contrast Brute-force ~1 day Yes (2 GPUs) 
SIXPAC LD Contrast Group Sampling 8 hours††  No 

 

  

                                                           
‡ All times as self-reported by authors of these tools, or extrapolated from performance metrics provided therein. 
§ Operating in the --fast-epistasis mode 
** 10K SNPs all-pairs test reported in 1000 seconds, scaling linearly with number of SNP-pairs thereon. 
†† Time taken to find all pairs with LD-contrast p<1e-12 with >90% power, multi-threaded mode.  
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Table 2: Bipolar Disorder Interaction. 

The upper table lists the most significant LD-contrast SNP-pair spanning two calcium channel genes 

RYR2 and CACNA2D4, in both the original (WTCCC) as well as the replication datasets (GAIN). 

Columns 2 and 3 present the apparent mode of action for this SNP-pair (represented as SNP rsid, allelic 

mode – dominant d, recessive r), and the p-value for each SNP using single-locus association analysis. 

Columns 4 and 5 show the LD between these SNPs in cases and controls (each normalized into a Z-

score), which are derived by comparing the expected to the observed co-carriers in cases and controls (see 

boxes below). These counts are outlined in the smaller tables below, and show a clear enrichment of 

observed minor allele co-carriers in cases and depletion in controls (against their corresponding null 

expectations, assuming linkage equilibrium). Column 5 reports the LD-contrast significance (note that the 

LD-contrast statistic is not a simple difference in Z-scores). Although LD-contrast does not seek or imply 

statistical epistasis, we can see that the pair is also a nominally significant candidate as per a logistic 

regression based 1 d.f. test for interaction term, as shown in column 6.  

Dataset 
1q43 (RYR2) 12p13 (CACNA2D4) 

LD-cases 
(Z-score) 

LD-controls 
(Z-score) 

Interaction p-value 

SNP, mode p-value 
(Marginal) 

SNP, mode p-value 
(Marginal) 

LD-contrast 
test 

Logistic 
Regression 

WTCCC rs10925490, d 0.5974 rs2041140, r 0.6594 ,7.7 .2.3 4.61e-14 1.28e-09 

GAIN rs677730, d 0.17 rs11062012, r 0.05 ,5.1 .1.2 1.19e-06 0.0001 

 

  

 

 

  

Observed  
(Expected) 

� 2 

min allele 
� 2 

min allele 

� 1  
min allele 

1617  
�1601.6� 

17  
�32.4� 

( 1 

min allele 
214  
�229.4� 

20  
�4.6� 

Observed 
(Expected) 

� 2 

min allele 
� 2 

min allele 

� 1 

min allele 
2533 

�2538.3� 
52  
�46.7� 

( 1 

min allele 
352  
�346.7� 

1  
�6.3� 

rs1

09

25

49

0, 

rs2041140, r WTCCC Cases WTCCC Controls rs2041140, r 

rs1

09

25

49

0, 
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LIST OF ALGORITHMS 

Algorithm 1: Group Sampling Toy Problem. 

 

  

Algorithm 1. 

  

Given all variables within frequency range C�?� � e� � �
 $ ? � @�A,  �A 6 B�� 
Calculate significance threshold I#�# 

Calculate sampling parameters J and M 

Repeat M times : 

 Randomly choose a group f of J cases (J rows from ����	) 

 Co-carried variables fC g h�M?� S i
1 � f � 

 For all unique combinations �! � ��, ��� $ fC 	 fC : 

 If 01
��
���� (  < 

�  do RjklMm� M g RjklMm� M n  e�! o 

 Cold Spring Harbor Laboratory Press on November 20, 2012 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


32 

 

 

 

Algorithm 2: Group Sampling Genome-wide. 

 

  

Algorithm 2. SIXPAC 

  

Assign all variables genome-wide to frequency windows p � �?�, … , ?���� 
For every pair of windows  �?3, ?!� $ p 	 p : 

   Calculate significance threshold I3�! 

   Calculate sampling parameters J3�! and M3�! 

   Repeat M3�! times: 

      Randomly choose group f of J3�! cases  

      Co-carried variables fC g h�M?� S i
1 � f � 

      Identify variables fC3 g C�?3� q fC 

      Identify variables fC! g C�?!� q fC 

      For all unique combinations �! � ��, ��� $ fC3 	 fC!: 

         If 01
��
���� (  < 

�  do RjklMm� M g RjklMm� M n  e�! o 
      For all shortlisted variables �! $ RjklMm� M: 

         If 01
��
���� (  <! output �! as an interaction 
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