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Over the last decade, the genome-wide study of both heritable and 
somatic human variability has gone from a theoretical concept to a 
broadly implemented, practical reality, covering the entire spectrum 
of human disease. Although several findings have emerged from these 
studies1, the results of genome-wide association studies (GWAS) have 
been mostly sobering. For instance, although several genes showing 
medium-to-high penetrance within heritable traits were identified by 
these approaches, the majority of heritable genetic risk factors for most 
common diseases remain elusive2–7. Additionally, due to impractical 
requirements for cohort size8 and lack of methodologies to maximize 
power for such detections, few epistatic interactions and low-pen-
etrance variants have been identified9. At the opposite end of the 
germline versus somatic event spectrum, considering that tumor cells 
abide by the same evolutionary fitness principles but on accelerated 
timescales due to mutator phenotypes, extensive somatic genomic 
rearrangements in solid tumors10 yield so many alterations that dis-
tinguishing ‘drivers’ from ‘passengers’ has been challenging.

This raises the question of whether GWAS data sets could yield 
additional insight when combined with other data modalities.  
Indeed, a number of previous studies have integrated significant  
genotype-phenotype associations with databases of gene annota-
tions, such as the Gene Ontology (GO)11, MSigDB12 or the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)13. The goal of these 
studies is to recognize higher-order structure within the data through 
the aggregation of loci in genes with similar functions or that are in 
the same pathway.

The context-specific networks of molecular interactions that 
determine cell behavior provide a particularly relevant framework 
for the integration of data from multiple ‘omics’. The rationale is 

straightforward: within the space of all possible genetic and epigenetic 
variants, those contributing to a specific trait or disease likely have 
some coalescent properties, allowing their effect to be functionally 
canalized via the cell communication and cell regulatory machin-
ery that allows distinct cells to interact and regulates their behavior. 
Notably, contrary to random networks, whose output is essentially 
unconstrained, regulatory networks produced by adaptation to spe-
cific fitness landscapes are optimized to produce only a finite number 
of well-defined outcomes as a function of a very large number of exog-
enous and endogenous signals. Thus, if a comprehensive and accurate 
map of all intra- and intercellular molecular interactions were avail-
able, then genetic and epigenetic events implicated in a specific trait or 
disease should cluster in subnetworks of closely interacting genes.

Thus, if regulatory networks controlling cell pathophysiology 
were known a priori, one could systematically reduce the number of 
statistical association tests between genomic variants and the trait or 
disease of interest by considering only events that cluster within regu-
latory networks, as topologically related events would be more likely 
to produce related phenotypic effects. Such a pathway-wide associa-
tion study (PWAS) strategy14 may improve our ability to distinguish 
signals from background noise by mitigating the need to account for a 
large number of multiple-hypothesis testing. In general, however, the 
molecular pathways governing physiological and disease-related traits 
are poorly characterized. Indeed, the classical notion of a relatively linear 
and interpretable set of regulatory pathways should be revisited in light 
of the dynamic, multiscale, context-specific nature of gene regulatory 
networks. We thus favor an alternative approach requiring the simulta-
neous reconstruction of context-specific gene regulatory networks15 as 
well as of the genetic and epigenetic variability they harbor. We call this 
second strategy integrative network-based association studies (INAS) 
and suggest that INAS will become increasingly valuable as the context-
specific logic of gene regulatory networks is further elucidated.

In this Perspective, we explore current advances in PWAS and INAS 
research, inspired by a regulatory network–oriented view of traits 
and disease, and examine future directions that are being pursued 
within the emerging community of systems geneticists. We explore 
how networks (and pathway motifs within them) can be reconstructed 
and validated and how they may provide a valuable integrative frame-
work within which to interpret GWAS results as well as other data on 
genetic and epigenetic variation.

This is not my beautiful pathway
An increasing body of evidence suggests that canonical pathways are 
incomplete and largely inaccurate models for studying the complex 
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interplay of signal transduction, transcriptional, post-transcriptional, 
metabolic and other regulatory events that determine cell behavior. 
Even today, entirely new classes of molecular entities (for example, 
long intergenic non-coding RNAs (lincRNAs))16 and interactions 
(for example, microRNA-mediated interactions)17 are being discov-
ered and shown to have critical impact on cell regulation. Pathway 
models represented as linear chains of events provide ready visu-
alization and the opportunity for intuitive predictions that can be 
experimentally tested in a manageable number of experiments. 
Unfortunately, cell regulation is anything but linear and is instead 
determined by complex, multivariate interactions that are not ame-
nable to visual intepretation. For instance, individual transcription 
factors may regulate hundreds to thousands of cell context–depend-
ent targets18,19, with functional specificity achieved by combinato-
rial transcription factor interactions20,21. For instance, FOXM1 and 
MYB individually regulate the transcription of more than 1,000  
distinct genes in human B cells. Yet, the ~100 targets they co-regulate 
are exquisitely specific to germinal center formation20 (Fig. 1a), in 
contrast to those uniquely regulated by each transcription factor. 
Similarly, transcription factor activity is modulated by hundreds of 
signal transduction proteins22, whose availability is again context spe-
cific. A map of expressed transcription factors in human B cells and 
of their computationally inferred modulators is shown in Figure 1b. 
Many of these interactions were experimentally validated, indicat-
ing that such a level of complexity is realistic. Additionally, recent 
large-scale screens for protein-protein interactions in human cells23 
suggest that the number of such interactions is orders of magnitude 
larger than the few thousand captured in canonical pathways. Finally, 
adding yet another level of complexity, causal dependencies between 
the genetic, regulatory and functional layers provide insight into the 
mechanisms by which genetic variation may affect the activity of 
entire constellations of transcription factors, which in turn regulate 
thousands of genes11,24–29 (Fig. 2).

As discussed, such intrinsic complexity is made even more daunting 
by the context-specific nature of cell regulation. For instance, the onco-
genic effect of genetic lesions depends both on cell type and microenvi-
ronment30. Finally, the paracrine and endocrine molecular interactions 
that allow distinct cell types and even whole organs to communicate 
form the highest-order networks in living organisms, directly affecting 
their physiological and pathological states and forcing the study of some 
diseases in their non–cell autonomous context. For instance, obesity 
and type 2 diabetes may result from failures in distinct organ systems. 
Similarly, insulin signaling in osteoblasts has been shown to be necessary 
for whole-body glucose homeostasis31. Thus, examination of networks 
spanning multiple tissues becomes critical to highlight interactions that 
would be otherwise invisible within individual tissue networks15. These 
examples suggest that molecular networks capable of predicting whole-
system behavior will require both de novo reconstruction of molecular 
interactions within each cellular context of interest and novel modeling 
approaches that explicitly represent interactions within a hierarchy of 
scales and across the full range of cellular compartments that define the 
physiological states relevant to a disease phenotype32.

Reverse engineering of cellular networks 
Until recently, experimental elucidation of a protein kinase substrate 
or transcription factor target may have required a year of bench work. 
As regulatory networks in eukaryotes seem to comprise hundreds 
of thousands of interactions23,33,34—both context-specific35 and 
dynamic34,36,37—dissecting them with sufficient accuracy, coverage 
and context specificity may thus seem to be an unrealistic goal. Yet, 
the field of high-throughput computational and experimental reverse 
engineering was born precisely to address this challenge.

Experimentally, over the last few years, large-scale, high-through-
put efforts have already produced critical data sets. These have been 
used as a scaffold for the assembly of molecular interaction networks, 
thus providing the first insight into the architecture of the cell, tissues 
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Figure 1  Examples of transcriptional and post-translational regulatory networks in human B cells. (a) FOXM1 and MYB co-regulation network from the 
Human B Cell Interactome. Red and blue represent over- and underexpression of genes, respectively, in centroblast versus naïve germinal centers  
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and even whole systems38. For example, pro-
tein-protein interactions have been dissected 
using the yeast two-hybrid (Y2H) system or 
tandem affinity purification and mass spec-
trometry (TAP–MS)23. Similarly, transcription 
factor–binding sites have been mapped using 
genome-wide chromatin immunoprecipitation 
approaches (ChIP-chip39 and ChIP-seq40). 
Physical interactions can also be measured  
in vitro with DNA or protein arrays, which have been used to identify 
transcription factor–binding sites41,42 and the substrates of kinases43. 
Although interactions characterized by high-throughput experimental 
methods generally have high false positive and false negative rates and 
are unlikely to generalize to cellular contexts other than the one in which 
they were ascertained, they nonetheless provide an initial, albeit sparse, 
snapshot of regulatory networks, especially when integrated with other 
types of data that can help contextualize individual interactions28.

Complementing such high-throughput approaches, computational 
reverse-engineering algorithms have recently achieved accuracy 
and sensitivity comparable with those obtained by their experi-
mental counterpart, at a fraction of the cost and time requirements. 
Computational methods for reverse engineering cellular networks were 
first developed for the study of prokaryotes and lower eukaryotes44–46 
and have more recently become highly successful in reconstructing 
the transcriptional33, post-translational34,47,48, post-transcriptional49,  
metabolic50 and protein-complex20 logic of human cells, as well as 
in elucidating the dependence of such logic on the genetic infor-
mation and variability encoded in the DNA molecule26–28,51,52.  
Moreover, the combined use of multiple evidence sources has been 
particularly effective in reconstructing accurate, high-coverage regu-
latory models20,57,58 and in integrating multiple layers of regulation 
within cellular networks. Taken together, these computational and 
experimental approaches are paving the road to regulatory network–
based studies of human disease27,53–56.

Computational methods all rely, in one way or another, on meas-
uring changes in distinct molecular moieties (for example, RNAs or 
proteins) as a response to either endogenous or exogenous perturba-
tions. The former include, for instance, differences in kinetic con-
stants caused by the genotypic variability between individuals or the 
different spectra of genetic lesions associated with particular tumor 
phenotypes53. The latter include small-molecule59, RNA interference 
(RNAi) and environmental perturbations60, such as differences in 
temperature, nutrients or culture medium, among many others. In 
fact, several methods have been described that specifically use per-
turbations to infer regulatory networks60,61 or to interrogate them to 
infer drug sensitivity62, resistance63 and mechanism of action35,46. 
Monitoring network states over time provides another systematic 
variability source for causal inference64,65.

Finally, functional rather than physical interactions, such as the 
genetic interactions that define the combinatorial relationships 
between genes and phenotypes, constitute another valuable knowl-
edge layer. In model organisms, such as yeast, genetic interaction 

networks are being systematically measured through synthetic 
lethality screens66, while, in higher eukaryotes, genetic interactions 
can be explored by a variety of combinatorial RNAi67 and RNAi-based 
screening approaches68. In the absence of previous information, how-
ever, de novo identification of such epistatic interactions from GWAS 
data is greatly limited by lack of statistical power, although emerging 
methods are beginning to address this limitation9,69.

Examples of PWAS and INAS approaches 
In the following, we discuss a few illustrative examples of PWAS and 
INAS approaches that have successfully identified genes whose genetic 
alteration or functional dysregulation induces specific phenotypes.

Canonical pathway analysis. Canonical pathways are compact 
representations of literature-based knowledge about regulatory inter
actions. Although their representation is largely incomplete and lacks 
context specificity, it provides visual access to a collection of molec-
ular interaction facts that have led to the elucidation of important 
biological mechanisms.

Some of the most accurate pathway models represent immunology-
related signaling cascades. These have been used to identify genetic 
alterations in lymphomagenesis. For instance, integration of the 
nuclear factor (NF)-κB pathway and targets with GWAS data from a 
large collection of diffuse large B-cell lymphoma (DLBCL) samples 
led to the identification of the NF-κB nuclear complex as the key 
integrator of a spectrum of upstream genetic alterations character-
izing the more aggressive activated B cell–like (ABC) subtype of the 
disease from its germinal center B cell–like (GC) counterpart70,71. 
These included several genes in the B-cell receptor (BCR) and other 
signal transduction pathways, such as CARD11, TNFAIP3, TRAF2, 
TRAF5, MAP3K7 and TRANK1, among others. Unexpectedly, whereas 
NFKB1, NFKB2, RELA, RELB and REL harbor no genetic alterations 
in ABC DLBCL tumors, the NF-κB nuclear complex constitutes a key 
non-oncogene addiction for this subtype70.

Pathways assembled by automated literature data mining approaches 
have also been useful in the study of genetic predisposition to several 
human diseases72.

Integrative genomics. There is abundant literature on cellular net-
work analysis, including of protein-protein and protein-DNA interac-
tions, to identify ‘expression-activated modules’ from gene expression 
data9,20,35,53,73–75. These are sets of proteins enriched for both net-
work interaction and co-expression across several conditions; they 
allow the thousands of interactions in a typical cellular network to 
be reduced to a handful of small, differentially activated modules. 
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Dysregulated gene set analysis via subnetworks (DEGAS) and inter-
actome dysregulation enrichment analysis (IDEA) represent recent 
examples of tools for identifying connected subnetworks enriched in 
genes or interactions that are dysregulated in a disease or following 
chemical perturbations35,76. In Parkinson’s disease, DEGAS identified 
mRNA splicing, cell proliferation and the 14-3-3 complex as candidate 
disease-progression mediators. In B-cell lymphoma, IDEA identified 
validated genetic alterations in chronic lymphocytic leukemia and 
follicular lymphoma.

In parallel, related methods have been developed for integrating 
protein networks with genome-wide linkage and association studies. 
For instance, Lage et al.77 identified protein complexes encoded by 
genes that were associated with similar phenotypes, using a protein 
interaction network assembled with both human and model organ-
ism data. Proteins were ranked by the phenotypic similarity score 
of diseases associated with them and with their directly interacting 
proteins. In dense module searching for GWAS (dmGWAS)78, dense 
subnetworks of protein-protein interactions were tested for enrich-
ment in genes harboring SNPs with low P values in GWAS studies.

A similar approach integrated genes linked to ataxia within a 
human protein interaction network, showing potential gains in 
statistical power38. Further attempts to boost statistical power in 
GWAS include the identification of SNP pairs, whose joint state 
was associated with the phenotype79. A biclustering method was 
used to cluster SNP-SNP interactions, first across genomic regions 
and then across a protein interaction network (Fig. 3). The analysis 
showed strong enrichment of GWAS genetic interactions among 
interacting proteins. This GWAS-based method suggested that the 
INO80 chromatin-remodeling complex is functionally linked to 
transcription elongation via RNA polymerase II and vacuolar pro-
tein degradation. Finally, related approaches were developed for 
using previous knowledge in the inference of epistatic interactions 
from GWAS39.

Genetics of gene expression. Systems genetics represents a broad 
class of approaches that integrate germline or somatic genetic variants 
and phenotypic data to infer causal gene-gene and gene-phenotype 
relationships. Variations in DNA can directly affect gene expression 
and protein activity and can thus be viewed as the naturally occur-
ring counterpart of the artificial perturbations commonly employed 
to establish causal relationships. However, because common forms 
of human disease and physiological differences are caused by such 
variation, they constitute a more relevant context in which to eluci-
date causal mechanisms related to disease risk assessment, initiation, 
progression and therapy.

DNA variation can be effectively used to infer causal relationships 
among molecular phenotypes24,26,27 and to reconstruct entire gene 
networks by systematically assessing its effect on gene, protein and 
metabolite expression and interactions28,51. Gene networks dissected 
from DNA variability data can elucidate gene subnetworks driven 
by common genetic factors in an unbiased, data-driven fashion. For 
instance, Zhong et al. identified such a subnetwork by studying islets 
isolated from a population of mice segregating with a type 2 diabe-
tes (T2D) phenotype29. More than half of the genes that were pre-
dicted to be causal for T2D in this population were members of this  
sub-network. Furthermore, human SNPs associated with genes in 
the mouse-derived T2D network were more than eightfold enriched 
for statistically significant associations with T2D in GWAS data. 
Notably, no enrichments were observed using established GO and 
KEGG pathways11.

Along similar lines, module-based network approaches44 were 
extended to identify genetic determinants of differential regulation 

of genetic modules80 as well as to identify genetic alterations causally 
related to the presentation of a tumor phenotype81.

Regulatory network analysis. Causal regulatory networks have also 
been successfully used to identify disease-relevant genes that were 
then experimentally validated. In these networks, interactions are 
directed (causal) rather than undirected, as in protein interaction 
networks. Thus, if networks are sufficiently accurate and compre-
hensive, they may allow traversing back regulatory event cascades 
to identify ‘master regulator’ genes that are necessary and/or suf-
ficient to induce specific disease-related molecular signatures. This 
method was originally proposed for networks reconstructed from 
DNA-binding signatures of transcription factors, without experi-
mental validation82. More recently, master regulator genes were 
inferred and experimentally validated, both in disease, for human 
high-grade glioma53, and for normal physiological formation of 
germinal centers20. In high-grade glioma, for instance, the master 
regulator inference algorithm (MARINa) identified two transcrip-
tion factors, C/EBP (including both the β and δ subunits) and STAT3, 
as master regulators of the mesenchymal subtype, which is associ-
ated with the worst prognosis in this disease. Ectopic expression of 
both transcription factors, but not of either one individually, was 
sufficient to reprogram neural stem cells along an aberrant mesen-
chymal lineage. Simultaneous silencing in high-grade glioma lines, 
but not individual silencing of either gene, was sufficient to abro-
gate the mesenchymal phenotype and tumorigenesis in vivo. Direct 
exploration of GWAS data from the Tumor Cancer Genome Atlas 
(TCGA) study on glioblastoma in the context of genes upstream of 
these master regulators has identified genetic alterations responsible 
for most mesenchymal cases.

Diseasome approaches. Genes and proteins work within highly 
coordinated programs. Thus, another approach for the analysis of 
GWAS data exploits previous biological knowledge of gene similari-
ties and dissimilarities across diseases.

For example, although the immune system is implicated in many 
pathophysiological phenotypes, suggesting that autoimmune disorders 
may share causal genetic variants with them, there are also notable 
differences. For example, the G allele of the rs2076530 polymorphism 
in BTNL2 (encoding butyrophilin-like 2, a major histocompatibility 
complex (MHC) class II–associated factor) is more frequent among 
individuals with type 1 diabetes and rheumatoid arthritis than in 
healthy controls, whereas the A allele was more frequent in individu-
als with systemic lupus erythematosus than in healthy individuals83. 
One way to use disease relationships is to compare multiple GWAS 
data sets to find risk alleles and SNPs associated with disease sets, 
whether as predisposing or protective factors. The identification of 
such ‘toggleSNPs’ was used to study molecular mechanisms in actual 
human disease incidence, providing a key advantage over similar 
studies in animal models84.

Phenotype canalization. Many diseases, including cancer, present 
a seeming paradox. Whereas the number of genetic and epigenetic 
dysregulation patterns associated with disease etiology is generally 
large, the number of distinct molecular subtypes from gene expression 
profiling analysis is substantially smaller. For instance, in high-grade 
glioma, dozens of genetic alterations have been reported85, yet there 
are only three or four distinct molecular subtypes86,87. This suggests 
the existence of an integrative logic, usually at the level of transcrip-
tional regulation, canalizing aberrant signals from complex genetic 
and epigenetic alteration patterns into a few molecular phenotypes. 
The existence of this integrative logic has been uncovered in several 
tumor types, including in lymphoma70 and in high-grade glioma53. 
These observations suggest yet another approach to INAS, based on 
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the identification of candidate genes in the 
regulatory modules that control the disease 
subtype and in their upstream pathways. 
This handful of genes can then be directly 
assessed for genetic and/or epigenetic varia-
tion, thus dramatically increasing statistical 
power by reducing the number of multiple 
hypotheses tested.

Conclusions
Regulatory network models are emerging as 
powerful integrative frameworks to under-
stand and interpret the roles of genetics and 
epigenetics in disease predisposition and eti-
ology. By providing the backbone of molecular interactions through 
which signals are transduced and gene expression is regulated, they 
dramatically limit the search space of allele variants and alterations 
that can be causally linked to the presentation of a phenotype. In 
addition, by providing accurate regulatory models of the cellular 
machinery that integrates signals that are dysregulated in disease, 
they yield valuable hypotheses for diagnostic and prognostic biomar-
kers, for therapeutic targets and for the understanding of context-
specific synthetic lethality.

For regulatory network models to yield their full potential, how-
ever, we must understand both the mechanistic and statistical impli-
cations of their variability across cellular context, their dependence 
on the genetic and epigenetic layers of regulation and their dynamics 
over time. The latter is particularly important for diseases where 
the underlying cellular pathophysiology cannot be considered to be 
close to steady state, such as metabolic and neurological diseases. We 
note that, in leveraging network models reflecting multiple condi-
tions or multiple contexts to identify key drivers of phenotypes of 
interest, particular attention must be paid to assessing the signifi-
cance of drivers predicted in one context after searching a diver-
sity of contexts. Controlling for false discovery rates in this setting 
demands that one account for all of the models queried across the 
different contexts.

Unexpectedly, even rough regulatory models that are largely 
inaccurate and incomplete are starting to show substantial value 
in dissecting the genetics of disease. Thus, we expect that, as these 
models progress and become better able to deal with the dynamic, 
cell context–specific nature of biological process regulation, they will  
dramatically increase their ability to yield key insight into both  
normal cell physiology and its dysregulation in disease. We herald 
network reverse engineering and interrogation as one of the most 
critical challenges of quantitative biology.

Assembling these models will require efforts that transcend indi-
vidual laboratories and even institutions. Yet, until very recently, 
nearly all of the historic studies that drive the current understanding 
of disease were performed by single laboratories. This process fails 
to recognize that the value of data is multiplied when it can be easily 
accessed and leveraged in ways that were not originally envisioned. 
While efforts like TCGA85, the database of Genotypes and Phenotypes 
(dbGAP), Gene Expression Omnibus (GEO) and GWAS meta-analysis 
have shown the usefulness of sharing data on a large scale, the absence 
of a culture of appropriate data sharing remains perhaps the single 
greatest impediment to the rapid development of the integrative tech-
niques described here. Even in cases where substantial effort has gone 
into providing data in the most comprehensive fashion (for example, 
in the TCGA projects), the reproduction of results derived from such 
data by others remains often elusive88.
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Figure 3  Genetic networks extracted from 
GWAS elucidate pathway architecture. 
(a) A global map of the top GWAS genetic 
interactions between protein interaction 
complexes. Each node represents a protein 
complex, and each interaction represents a 
significant number of genetic interactions. 
Node sizes are proportional to the number 
of proteins in the complex. (b,c) Genetic 
interactions mined from GWAS data are shown 
in greater detail for the interaction between the 
synaptonemal complex and the RNA polymerase 
II complex (b) and the interaction between 
the mannan polymerase II complex, the TIM9-
TIM10 complex and the TRAPP complex (c). 
Adapted from ref. 79.
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