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ABSTRACT
R is a numerical computing environment that is widely popular for
statistical data analysis. Like many such environments, R performs
poorly for large datasets whose sizes exceed that of physical mem-
ory. We present our vision of RIOT (R with I/O Transparency),
a system that makes R programs I/O-efficient in a way transpar-
ent to the users. We describe our experience with RIOT-DB, an
initial prototype that uses a relational database system as a back-
end. Despite the overhead and inadequacy of generic database sys-
tems in handling array data and numerical computation, RIOT-DB
significantly outperforms R in many large-data scenarios, thanks
to a suite of high-level, inter-operation optimizations that integrate
seamlessly into R. While many techniques in RIOT are inspired by
databases (and, for RIOT-DB, realized by a database system), RIOT
users are insulated from anything database related. Compared with
previous approaches that require users to learn new languages and
rewrite their programs to interface with a database, RIOT will, we
believe, be easier to adopt by the majority of the R users.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—scien-
tific databases, statistical databases; D.3.4 [Programming Lan-
guages]: Processors—optimization

General Terms
Design, Performance

Keywords
I/O efficiency, numerical computing

1 Introduction
Scientists and engineers rely heavily on numerical computing envi-
ronments such as R (http://www.r-project.org/) and MAT-
LAB. R is an open-source implementation of the S programming
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language, the de facto standard among statisticians for developing
data analysis tools. R has a huge user and developer base; CRAN,
the Comprehensive R Archive Network, lists more than 1,500 pack-
ages (which extend R’s functionalities) available as of September
2008. Like MATLAB, R provides a high level of abstraction to sim-
plify programming of numerical and statistical computation. Most
R users learn to program at the level of vectors and matrices instead
of using explicit loops to iterate through arrays.

The ever-growing sizes of datasets, however, pose serious chal-
lenges to these numerical computing environments. R, for exam-
ple, assumes that all data fits in main memory. When the physical
memory can no longer hold all data, the operating system’s vir-
tual memory mechanism starts to swap data to and from disk, often
causing the program to thrash and run unbearably slow. This prob-
lem stems from the difficulty for the operating system in predicting
the program’s data access pattern and optimizing I/O accordingly.

When thrashing happens, many R users’ first reaction is to rewrite
the program to manage I/O explicitly, often in a lower-level lan-
guage like C or FORTRAN. Rewriting code and hand-optimizing
I/O require a huge amount of effort and expertise. Also, what is
hand-optimized for one computer may perform poorly on another.

How can we make R programs I/O-efficient without placing so
much burden on the programmers? One approach is to use an I/O-
efficient library of routines. For example, one could simply replace
the implementation of matrix multiply with a library routine that
knows how to swap matrix elements in and out efficiently. There
are a number of such I/O-efficient numerical computing libraries
(e.g., SOLAR [18] and DRA [13]).1 While developing such li-
braries is an important first step, we argue that simply having I/O-
efficient implementations of individual operations is not enough.
Many sources of I/O-inefficiency in a program remain at a higher,
inter-operation level: e.g., how intermediate results are passed be-
tween operations, how much computation and I/O could be reduced
if certain operations are deferred and reordered, etc. We will show
in this paper the importance of optimizing I/O at this level.

Database systems seem to be a natural choice to address this
problem, because they are I/O-efficient and support SQL, a high-
level language that enables advanced optimization. R has packages
that provide database connectivity through APIs such as ODBC,
but users must be SQL experts to use it effectively for any non-
trivial numerical computation. There has been a lot of work on
bringing better storage and processing support for numerical com-
putation in database systems (e.g., [1, 11, 16]). However, much of
that work remains highly database-centric. First, users must learn
another language, very often SQL or a variant that may be unfamil-
iar to them. Second, these systems force users to draw an explicit

1We are unaware of any such libraries for R, but it should be possible to
incorporate these libraries as R packages.



boundary between database processing and processing by the host
programming language; where to draw this boundary is an opti-
mization decision that arguably should not be left to inexperienced
users. Therefore, the cost of embracing a database-centric approach
remains prohibitive for ordinary users.

To have a practical impact on the majority of the users of R (or
any other language for numerical computing), we believe that a bet-
ter approach is to make it completely transparent to the users how
we support efficient I/O. Transparency means no SQL, or any new
language to learn. Transparency means that existing code should
run without modification, and automatically gain I/O-efficiency.

Achieving transparency is challenging. First, besides making
data layout and elementary operations I/O-efficient, what are the
higher-level optimization opportunities and how critical are they?
Second, what does it take to integrate I/O-efficient data layout, al-
gorithms, and optimizations seamlessly into an existing language
environment? R and MATLAB are interpreted; is it possible to im-
plement the higher-level optimizations without switching to com-
pilation instead? To what extent do we need to modify the existing
implementation of these language environments?

This paper presents a vision for RIOT (R with I/O Transparency),
a system that makes R I/O-efficient in a transparent fashion, with-
out requiring users to learn a new language or rewrite their code.
Although we are currently focusing on R, we expect many of our
techniques to work for other numerical computing environments
such as MATLAB. We will first report our experience of imple-
menting RIOT-DB, a prototype system that uses a generic rela-
tional database system as a backend (while hiding it completely
from users). Use of a relational database system allows us to ex-
plore both limitations and opportunities offered by the full range
of database system features. Some features, such as the view fa-
cility, while seemingly unrelated to I/O-efficiency, turned out to
be indispensable to RIOT-DB. We show that it is indeed possible
to achieve I/O-efficiency transparently, not only because R already
has high-level language constructs, but also because we are able to
interface the host language environment and the database system
in a clever way to enable high-level, inter-operator optimizations,
such as avoiding materialization of intermediate results, deferring
and reordering operations, etc. We demonstrate that, despite the
overhead and inadequacy of generic database systems in handling
array data and numerical computation, RIOT-DB’s high-level opti-
mizations enable it to significantly outperform R in many common
scenarios. Finally, we outline our vision for the next generation of
RIOT, based on our experience with RIOT-DB.

2 Related Work
Many relational database systems have introduced support for ar-
rays (standardized in SQL99): e.g., Oracle’s VARRAY and nested
table, and PostgreSQL’s ARRAY. Data cubes [3] can also be re-
garded as high-dimensional arrays, and many systems offer good
storage and query support for them; however, these systems fo-
cus on OLAP-style queries instead of numerical computation over
arrays. Furthermore, all these solutions fall under the database-
centric approach discussed in Section 1, and therefore it is difficult
to gain traction in scientific and statistical user communities.

There have been a number of database systems specialized in ar-
ray processing; because of limited space, we describe only a few
representatives here. RasDaMan [1] provides extensive support
for multidimensional arrays with its own query language, RasQL,
which extends SQL92. Queries are translated into an array alge-
bra and optimized using a large collection of transformation rules.
The storage manager utilizes various array tiling strategies to sup-

port different access patterns. AML [11] is another declarative lan-
guage for manipulating arrays, along with a suite of query pro-
cessing and optimization techniques. The system allows MATLAB
users to issue AML queries and bring their results into MATLAB
for further processing. Again, in contrast to our fully transparent
approach, such systems can be considered database-centric (even
though AML is not SQL-based), because users must explicitly draw
a boundary between database processing and processing by the host
programming language. Also, RasDaMan and AML target differ-
ent application domains from ours and therefore do not treat opera-
tions such as matrix multiplication as first-class citizens; therefore,
high-level optimizations involving these operations are difficult.

ASAP [16] is an array processing system that supports primi-
tive operations oriented towards scientific computing. It also fea-
tures ChunkyStore, a storage manager highly optimized for storing
multi-dimensional arrays. The work in [16] focuses primarily on
demonstrating the I/O-efficiency brought by ChunkyStore to indi-
vidual operations; on the other hand, in this paper we emphasize
more on the high-level, inter-operation optimizations. Also, we
have the additional goal of making an existing language environ-
ment I/O-efficient in a transparent manner to users.

Lots of work from the scientific and high-performance comput-
ing communities has gone into developing I/O-efficient libraries
(e.g., [18, 13]). Toledo gives an excellent survey [17] on out-of-
core linear algebra algorithms. This line of work provides a solid
foundation for us to build on. However, as we have mentioned in
Section 1 and will show in the rest of this paper, higher-level op-
timizations are just as critical in ensuring I/O-efficiency; a library-
only approach is insufficient by itself.

Finally, we note that there are many interesting connections be-
tween our techniques (often databases-inspired) and those from the
programming languages community. Many of our optimizations
have analogies in compiler research: e.g., deferred evaluation, for-
ward substitution, loop fusion, and array contraction. However,
there are also notable differences. On the highest level, work on
programming languages tends to focus on improving performance
of memory-resident programs and/or their parallelization; I/O is-
sues are often not considered. Also, much of this line of work, fur-
ther discussed below, assumes a compilation approach, while RIOT
tries to work within the confines of R’s interpretation approach.

Traditional compiler optimization techniques for array languages
(e.g., Fortran 90) first translate array statements into scalar opera-
tions (expressed as loops), and then perform data dependence anal-
ysis and code transformations such as loop reversal and loop fu-
sion. This approach, however, as Lewis et al. [9] pointed out ele-
gantly, “solves the problem at a greater conceptual distance from
the source of the problem and at a greater cost.” Instead, RIOT
optimizes at the higher level of array operations, an approach also
used by [4, 6, 9, 8, 15].

Guibas and Wyatt [4] studied delayed evaluation in APL code
compilation, i.e., deferring the computation of intermediate results
in an APL expression until the moment they are needed. During
evaluation, intermediate results are “streamed” in time, instead of
being materialized in temporary arrays. Hwang et al. [6] general-
ized the idea and applied it to Fortran 90. They also support state-
ment merges, whereby certain adjacent statements can be merged
into one and processed as a single loop without materializing tem-
porary arrays. Lewis et al. [9] perform dependence analysis among
statements and identify clusters of statements that are “contractible”
into a single loop. Joisha and Banerjee [8] studied how to mini-
mize array storage in MATLAB, using program analysis to iden-
tify opportunities to reuse storage allocated for one array on an-
other. Rosenkrantz et al. [15] performs inter-statement optimiza-



tion to avoid materializing temporary arrays that can be obtained
by “shuffling” other stored arrays. Although RIOT effectively per-
forms similar optimizations as those cited above, our techniques are
different due to the interpreted nature of R. Also, RIOT is far more
aggressive in deferring evaluation (e.g., converting assignments to
deferrable function evaluations) and performing optimization (e.g.,
considering different data layouts and algorithms, and reordering
matrix multiplications) than these works.

Menon and Pingali [12] presented a framework for detecting
high-level matrix operations written in loop-oriented codes. The
codes are represented in an intermediate form, which is then opti-
mized using heuristic rule-based transformations; RIOT considers
a broader set of optimizations. Iu and Zwaenepoel [7] proposed
a Java bytecode rewriting tool that automatically detects and con-
verts compiled Java code that directly manipulates database tables
as Java collections (instead of using JDBC) into more efficient SQL
queries. Techniques from this line of work complement RIOT in
the sense that we can apply them to programs written with lower-
level loops (as opposed to high-level array operations) and then
make them amenable to RIOT’s optimizations.

With the recent interest in blurring the boundary between pro-
gramming and query languages (e.g., declarative networking [10],
Pig Latin [14], LINQ), we expect that more and more connections
between programming languages and databases communities will
become relevant to this research.

3 Opportunities for Improving R
To illustrate sources of I/O-inefficiency in R and opportunities for
improvement, consider the following example.

Example 1. We are given a large number of points in a 2-d space,
whose coordinates are stored by vectors x[1:n] and y[1:n]. Given
two other points (xs,ys) and (xe,ye), we want to compute the
lengths of paths between them via each of the points given earlier.
We then draw 100 such lengths at random. The following R code
accomplishes this task. Note that most operations in R are vec-
torized (e.g., ^2 squares every element of a vector and returns the
results in a new vector).

(1) d <- sqrt((x-xs)^2+(y-ys)^2) + sqrt((x-xe)^2+(y-ye)^2)
(2) s <- sample(length(x),100) # draw 100 samples from 1:n
(3) z <- d[s] # extract elements of d whose indices are in s

Avoiding Intermediate Results It is common for an expression
to involve multiple operations, such as Line (1) of Example 1. R
would generate an intermediate result for each of these operations:
first x-xs, then (x-xs)^2, and so on. If memory can hold all data
objects including intermediate results, there is no problem. How-
ever, when intermediate results accumulate and leave insufficient
memory, thrashing can occur. Consider Line (1) again. R would
generate a total of twelve intermediate results, all vectors of length
n. Even with a smart garbage collector that immediately reclaims
memory as soon as an intermediate result is no longer needed, there
can be multiple intermediate results alive at the same time. When
evaluating (y-ye)^2, for example, three intermediate results are
alive: sqrt((x-xs)^2+(y-ys)^2), (x-xe)^2, and (y-ye). To-
gether with x and y, we have five n-vectors that can easily cause
thrashing if n is large.

If we were to hand-code Line (1), we could in fact compute d

without materializing any of the twelve intermediate results, by us-
ing an explicit loop over 1:n and computing one element of d at a
time. This strategy would require a negligible amount of memory
beyond the two inputs and the output. The question, of course, is
how we can accomplish this optimization automatically.

Deferred and Selective Evaluation A closer examination of the
R code in Example 1 reveals that not all elements of d need to be
computed; in fact, only 100 of them are eventually used on Line (3).
Nonetheless, R will happily compute the entire d, wasting both
computation and I/Os. If we could somehow defer the evaluation of
d until we know which 100 elements are needed, we would selec-
tively compute them by accessing the corresponding elements in x

and y. With this optimization, we would reduce the cost of access-
ing x and y (especially if they had been swapped out previously),
and even avoid materializing the named object d.

One might argue that a programmer should know enough to avoid
useless computation, but such code is not uncommon for those
without formal training in programming. Our hope is that a pro-
grammer can focus on what they want to compute instead of how
they want to compute it, and leave the rest to RIOT.

Example 2. Given three matrices A (with dimensions n1 × n2), B
(n2×n3), and C (n3×n4), we want to compute A %*% B %*% C,
their product expressed in the syntax of R. R would first multiply A

and B, and then multiply the result and C.
Internally, R implements matrix multiplication as follows, where

T denotes the result of A %*% B. This algorithm performs a total
of n1n2n3 multiplications. R by default uses a column layout for
matrices; i.e., elements are stored in the column-major order.

for (j in 1:n3)
for (i in 1:n1) {

T[i,j] <- 0
for (k in 1:n2)
T[i,j] <- T[i,j] + A[i,k]*B[k,j]

}

Optimizing Data Layout and Algorithms When the size of data
exceeds the memory capacity, data has to be swapped in and out of
memory in blocks. For efficiency, how we lay out data should cor-
respond to how we access it, so that each disk block we read will
bring in a maximum amount of useful data. The data access pattern
of matrix multiplication in Example 2 is significantly more com-
plex than the sequential access pattern for most vector operations
in Example 1. Therefore, a closer look is warranted.

Suppose the size of a disk block is B, and the size of available
memory is M , where M ¿ min{n1n2, n2n3, n3n4}. In the al-
gorithm of Example 2, to compute each column of T, we must ac-
cess one column of B, and the entire A in row-major order. If both
A and B use column layout (R default), each access to A would
likely result in a page fault, bringing the total I/O cost to a huge
Θ(n1n2n3). Had we been smarter to choose row layout for A, the
total I/O cost would have been reduced to Θ(n1n2n3/B).

Higher I/O-efficiency can be gained by further tweaking the ac-
cess pattern of matrix multiplication. Borrowing the idea from
block nested-loop join, we could read as many rows of A as pos-
sible into memory while leaving enough memory to update the cor-
responding rows of T and a block to scan B in column-major order.
The total I/O cost would be reduced to Θ(n1n2n3(n2+n3)

BM
). As we

will show later, however, there are even better strategies if we move
beyond the built-in row and column layouts supported by R.

Reordering Computation R computes a chain of matrix mul-
tiplications in the order specified by the program. For Example 2,
this strategy requires n1n2n3+n1n3n4 multiplications and a com-
mensurate number of I/Os. However, noting that matrix multipli-
cations are associative, we could instead compute A %*% (B %*%

C), which would require n2n3n4 + n1n2n4 multiplications. De-
pending on the values of n1, . . . , n4, reordering the multiplication
may significantly reduce both computation and I/O. The challenge



is to let RIOT make such optimization decisions, much in the same
way as a database query optimizer.

4 RIOT-DB: Database as a Solution?
Having discussed some sources of I/O-inefficiency in R, we now
describe our experience of implementing RIOT-DB, a prototype
system that addresses these sources of inefficiency using a rela-
tional database system as a backend. While doing so, RIOT-DB
maintains complete transparency; i.e., existing R programs can ben-
efit from RIOT-DB without any modification. We are aware of the
overhead and inadequacy of relational database systems for this
task, as shown by previous work; ASAP, for example, revealed
gross inefficiency of such systems at the storage level [16]. We
still chose this option because it enabled rapid prototyping and of-
fered an opportunity to investigate not only the limitations but also
the potential of leveraging other relational database features (e.g.,
views, query optimization) in a new context.

Interfacing with R Instead of rebuilding R from scratch to make
it I/O-efficient, we decided on a minimally invasive approach. We
would build RIOT-DB as an R package using R’s extensibility fea-
tures, and avoid modifying the core R code whenever possible.
RIOT-DB can be dynamically plugged into an R environment, and
immediately adds I/O-efficiency to R programs. The decision to
be modular and minimally invasive is important, since we plan to
apply our techniques to other environments (e.g., MATLAB).

RIOT-DB defines three new data types, dbvector, dbmatrix,
and dbarray (with an arbitrary number of dimensions), which cor-
respond to R’s built-in vector, matrix, and array. The new types
implement the same interfaces as their built-in counterparts. Users
do not need to know whether an object they are dealing with has
a RIOT-DB type or a built-in type. R’s generics mechanism [2]
enables this transparency. Briefly put, a generic function in R is
associated with a collection of concrete methods which share the
same formal arguments, but differ in the classes of the arguments.
When a call to a generic function is evaluated, a method is selected
according to the classes of the actual arguments. This is analogous
to method overloading in some object-oriented programming lan-
guages like C++.

We illustrate how to define a new class and to use the generics
mechanism by an example. Suppose we want to add an + operator
for the new dbvector class. Below are the steps we follow.

1. Define a new class for dbvector by:
setClass("dbvector",representation(size="numeric",· · · )),
where representation(· · · ) defines the names and types
of dbvector’s members.

2. Define a method for adding two dbvectors and register it
with the + generic method:

setMethod("+", signature(e1="dbvector", e2="dbvector"),
function(e1,e2) {

.Call("add dbvectors", e1, e2)
}

)

The above code specifies that when the two operands of the +
call are both of dbvector type, the provided function should
be invoked. The provided function further calls a C function
add dbvectors. Notet that .Call can call C functions at
runtime from dynamically loaded libraries (.dll on Windows
platform or .so on Unix-like platforms).

3. Implement the addition logic in a C function:

SEXP add dbvectors(SEXP e1, SEXP e2) {
/* implementation */

}

4. When two dbvector objects are added in user R code, e.g.,
a+b, all functions registered with the + generic will be checked
for argument type match. The result is that our function in
Step 2 is selected and eventually our custom C code is exe-
cuted.

Fortunately, the object-oriented programming facility as illus-
trated above is not peculiar to R. Many other numerical comput-
ing environments, such as MATLAB, also provide mechanisms for
registering new classes and overloading operators. Thus, we expect
our general design to be portable to other environments.

A Strawman Solution A straightforward way for RIOT-DB to
leverage a relational database system is to map every RIOT-DB ob-
ject to a database table. A dbvector object would be mapped to a
table with schema (I, V), where the primary key I stores an index,
and V stores the corresponding vector element. An n-dimensional
dbarray object would be mapped to schema (I1, . . . , In, V), where
the array indexes (I1, . . . , In) serve as the primary key. The func-
tion add dbvectors, which adds two dbvector objects corre-
sponding to tables E1 and E2, would compute the result using the
following SQL query:

SELECT E1.I, E1.V+E2.V AS V FROM E1, E2 WHERE E1.I=E2.I

The result of the above query would be stored in another database
table, which is then associated with the dbvector object repre-
senting the result of addition. Execution of this query would carry
a very small memory footprint.

As shown in [16], however, storing array indexes in tables incurs
significant storage and processing overhead, which grows linearly
with the number of dimensions. Database query processing also
carries overhead, and usually cannot match R’s raw performance.

Some of these problems will go away if we move to a more spe-
cialized database system that uses, for example, a smarter storage
manager like ChunkyStore [16]. However, deeper issues still re-
main. In particular, this strawman approach leverages the power of
a database system only at an intra-operation level, and fails to ad-
dress any I/O-inefficiency that exists at the inter-operational level.
One could argue that R is partly to blame because RIOT-DB can
only take control of individual operations involving RIOT-DB types.
Next, we show how to enable higher-level optimizations within the
confines of this interface between R and RIOT-DB.

4.1 Towards Inter-Operation Optimization
Interestingly, views provide a natural mechanism for RIOT-DB to
tap more into database systems’ advanced features through its lim-
ited interface with R. Recall that when we define a view using a
query (over tables or other views), the system simply records this
query without evaluating it. When the system executes a query in-
volving a view, the query is expanded by replacing references to
the view by its definition query.

We map each RIOT-DB object to a database table or view. The
result of operating on RIOT-DB objects becomes a view, whose
definition encapsulates the computation involved in generating this
result. However, no computation actually takes place (yet). For
example, RIOT-DB’s add dbvectors function simply defines the
following view to capture the result of adding two dbvector ob-
jects, and associates the view with the result object:

CREATE VIEW E3(I,V) AS
SELECT E1.I, E1.V+E2.V FROM E1, E2 WHERE E1.I=E2.I



For a complex R expression such as Line (1) of Example 1,
RIOT-DB would define one view for each intermediate result ob-
ject. The view definition for d, when expanded by the database
system, would look like the following:

CREATE VIEW D(I,V) AS
SELECT TMP1.I, TMP1.V+TMP2.V
FROM (SELECT I, SQRT(V) AS V

FROM (SELECT TMP3.I AS I, TMP3.V+TMP4.V AS V...)) TMP1,
(SELECT I, SQRT(V) AS V
FROM (SELECT TMP5.I AS I, TMP5.V+TMP6.V AS V...)) TMP2

WHERE TMP1.I=TMP2.I

In effect, the view mechanism allows RIOT-DB to build up, one op-
eration at a time, bigger and bigger view definitions that correspond
to more and more complex R expressions. With a view represent-
ing a complex, multi-operation expression, we are now ready to
unleash other features of database systems.

Avoiding Intermediate Results To compute the result of a com-
plex R expression, RIOT-DB evaluates the definition query of the
corresponding view. Most database systems optimize and compile
the query into a tree-shaped plan, and use an iterator-based model
to execute it. Query execution proceeds in a recursive fashion,
where each plan operator obtains its input tuples one at a time, as
needed, from its child operators. Leveraging this execution model,
RIOT-DB effectively pipelines processing among plan operators,
and eliminates the need to materialize intermediate results (although
in some cases the database system can still decide to materialize
for performance). Compared with the strawman approach, RIOT-
DB avoids storing intermediate results in temporary tables on disk.
Compared with plain R, RIOT-DB avoids creating large intermedi-
ate results in memory; in a memory-constrained setting, I/O savings
resulted from fewer virtual memory swaps can be substantial.

For example, to compute d in Example 1, RIOT-DB only needs
a single pass over the tables associated with x and y, and incurs no
additional I/Os for intermediate results.

Deferred and Selective Evaluation RIOT-DB does not restrict
the use of views to unnamed intermediate results produced within
a single R expression. Named objects can be created with views
as well,2 effectively deferring their evaluation. If a named object
is subsequently referenced, RIOT-DB simply uses the view asso-
ciated with that object. In Example 1, object z on Line (3) would
correspond to the following view (note how dereferencing a vector
with a vector of indices translates cleanly to a join between them):

CREATE VIEW Z(I,V) AS
SELECT S.I, D.V FROM D, S WHERE D.I=S.V

At this point, RIOT-DB has defined view D, but not yet computed
its content. Suppose we now want the result in z. RIOT-DB will
effectively compute the following query, where xs , xe , ys , and
ye should be replaced with their actual values:

SELECT S.I, SQRT(POW(X.V-xs,2)+POW(Y.V-ys,2))
+ SQRT(POW(X.V-xe,2)+POW(Y.V-ye,2))

FROM X, Y, S WHERE X.I=Y.I AND X.I=S.V

Since S is very small, a reasonable database query optimizer would
pick an index nested loop plan, which probes X and Y with each S.V
value and computes the SELECT clause. Hence, RIOT-DB is able to
compute just those d elements that are actually used, thereby saving
both computation and I/O.
2There is one technicality here. Assignments introduce dependencies on
views created by RIOT-DB, but R does not notify RIOT-DB of assignment
operations. To be able to safely drop views, RIOT-DB must track such
dependencies. Therefore, we had to introduce this additional hook for R
assignments (which was the only modification we made to the core R code).

Optimizing Algorithms and Data Layout Although generic data-
base systems handle vectors reasonably well, optimizations beyond
vectors are still worrisome. For example, RIOT-DB defines matrix
multiplication (cf. Example 2) as follows:

SELECT A.I, B.J, SUM(A.V*B.V) AS V
FROM A, B WHERE A.J=B.I GROUP BY A.I, B.J

The optimized query plan3 does a hash join on A.J=B.I, and then
sorts the result by (A.I, B.J) to perform group-by and aggregation.
Unfortunately, as we will show in Section 5, this plan is far from the
optimum. We believe the problem lies in that SQL is too low-level
for representing many linear algebra operations; optimizing at this
level is much less effective than if we know the high-level seman-
tics of these operations. We will revisit this point when presenting
our design for the next generation of RIOT in Section 5.

In terms of matrix data layout, there is little in a generic database
system for RIOT-DB to leverage. RIOT-DB can specify either
row or column layout by changing the order of index attributes in
the primary key. With automated database design techniques, it
might be possible to automate the choice between these two lay-
outs. However, it is awkward to specify more advanced layouts
such as tiling (further discussed in Section 5) in a generic database
system, let along finding the best tiling strategy.

4.2 Experiment Results
To evaluate the performance of RIOT-DB and the savings obtained
by its various optimizations, we compare four approaches:

• Plain R;
• RIOT-DB/Strawman, as described earlier in this section (with

no views);
• RIOT-DB/MatNamed, which uses views, but materializes all

named objects;
• RIOT-DB (the full version).

Our RIOT-DB uses MySQL with MyISAM storage engine as the
backend. All experiments are conducted on a Solaris 10 machine
with an AMD Opteron 275 processor. To limit the burden placed
on the testing machine, we did not test with very large vectors
whose sizes are greater than the actual amount of physical mem-
ory. Instead, we simulated a limited-memory environment by us-
ing a simple program to lock down a large portion of the memory.
The program uses the shmat(2) system call on Solaris, with the
SHM SHARE MMU flag. This operation has the consequence of lock-
ing down the allotted memory pages in physical memory such that
they will never be paged out.

We run the code in Example 1, capping the available amount of
physical memory at 84MB, just enough to hold the R runtime plus
two vectors with 222 elements each. To be fair, we set the same
memory cap for RIOT-DB variants (which include the MySQL
sever). To force computation of z, we add a final line: print(z).

Two metrics are used to compare the performance of the four ap-
proaches: execution time and disk I/O. To measure the amount of
I/O, we utilize the DTrace facility on the Solaris platform. From
Solaris Dynamic Tracing Guide, “DTrace is a comprehensive dy-
namic tracing facility that is built into Solaris that can be used by
administrators and developers on live production systems to exam-
ine the behavior of both user programs and of the operating system
itself.” We use DTrace to monitor different statistics for plain R
and RIOT-DB:

3Although we implemented RIOT-DB with MySQL, we obtained this plan
on a commercial database system with a well-regarded optimizer.



• For plain R, I/O is caused by the swapping of data into and
out of the physical memory. We thus monitor virtual memory
paging statistics.

• For RIOT-DB, virtual memory paging activity is negligible
assuming there is enough memory to run R and MySQL;
most I/O is caused by the MySQL database server reading
and writing its data and index files. Therefore we monitor
disk I/O statistics pertaining to MySQL files.

Results are shown in Figure 1. When vectors are sized at 221

and 222, RIOT-DB/Strawman underperforms plain R, even though
R already suffers significantly from thrashing. The reason lies in
the overhead of MySQL for storage (additional columns for array
indexes) and numerical computation, and in that MySQL is used
only at an intra-operation level. Intermediate results are particularly
damaging to RIOT-DB/Strawman, because it writes them all into
database tables. Nonetheless, MySQL-managed I/Os are mostly
bulky and sequential, and therefore do not impact the execution
time as much as the virtual memory I/Os incurred by R; also, per-
formance of RIOT-DB/Strawman degrades linearly with the data
size, much more gracefully than plain R.

Once we enable inter-operation optimizations, performance im-
proves dramatically. RIOT-DB/MatNamed, by avoiding material-
ization of nameless objects and pipelining query execution, already
nets significant gains over R. RIOT-DB is barely visible in the fig-
ures because it is so much faster than others. By further deferring
evaluation across statements and using the database optimizer to
avoid unnecessary evaluation, it is able to outperform plain R by
orders of magnitude. These results demonstrate the importance and
potential of inter-operation optimizations.

5 RIOT: The Next Generation
RIOT-DB has shown the feasibility of bringing I/O-efficiency to R
in a transparent manner, revealed the overhead and inadequacy of
generic database systems for numerical computation, and demon-
strated the potential of higher-order, database-style optimizations.
Based on these lessons, we now outline our design for the next gen-
eration of RIOT, which is currently under development.

Data Storage and Layout Options To address well-understood
inefficiencies of the simple relational representation for arrays, RIOT
draws ideas from ChunkyStore [16]: e.g., no explicit storage of ar-
ray indices, and flexible tiling (called chunking in ChunkyStore).
With tiling, an array is partitioned into (hyper)rectangular tiles;
each tile is stored in a disk block, but the aspect ratio of tiles can
be controlled. For matrices, row and column layouts correspond to
tiling strategies where tiles are long and skinny; however, higher
I/O-efficiency is possible with more flexible tiling strategies.

Beyond the features of ChunkyStore, RIOT also provides ad-
vanced linearization options for controlling the order in which tiles
are stored on disk. This ordering is important because of the perfor-
mance difference between sequential and random I/O. RIOT plans
to support linearizations based on space-filling curves, for arrays
whose access patterns are not known in advance.

Expression Algebra RIOT-DB made extensive use of SQL views
to piece together individual operations into larger expression for
optimization and execution. However, we do not need SQL views
per se for this purpose. With an appropriate high-level expression
algebra, RIOT can build up an expression DAG, operation by oper-
ation, in the same fashion as RIOT-DB.

RIOT’s expression algebra includes standard linear algebra oper-
ations, such as matrix multiplication and LU decomposition. This

approach departs from those that are more minimalist in design
(e.g., RasDaMan [1], AML [11]), where such operations are ex-
pressed using a combination of lower-level operators. From the
RIOT-DB experience, we have seen that a minimalist approach
might make high-level optimization more difficult (e.g., if matrix
multiplication is expressed in relational query operators).

Given the abundance of previous work on array algebras and lim-
ited space, we will not go into the details of the RIOT algebra.
Instead, we present one example to highlight some of the unique
aspects of our design. Consider the following R code fragment. It
computes vector b as the element-wise square of a, sets all elements
of greater than 100 to 100, and then prints the first 10 elements:

b <- a^2; b[b>100] <- 100; print b[1:10]

Recall from Section 4 that we use views to defer evaluation as
much as possible. However, as soon as an object is modified (e.g.,
b[b>100] <- 100), RIOT-DB forces computation and material-
ization of the object (in this case, b) before modifying it.

In RIOT, however, we propose to defer modifications as well, by
modeling them using an operator that takes the old object state and
the new content as input, and returns the new state as output. The
expression b[1:10], at the end of the code fragment, would be rep-
resented by the expression DAG shown in Figure 2(a). The []<-

operator models vector modification. Turning modifications (with
side-effects) into functions (without side-effects) allows RIOT to
defer evaluation further, build up larger expressions to optimize,
avoid materializing modified objects, and, as we will see shortly,
potentially eliminate the need to perform some modifications.

New state of b []

[]<-

100
a 2 (a)

> 100

:

1 10

^

[]<-

100>

100
[] 2

a :

101

(b)

^Old state of b

Figure 2: Expression DAGs for b[1:10].

Optimization Given an expression DAG consisting of high-level
operators, RIOT carries out database-style optimizations. For ex-
ample, via a series of transformation rules, RIOT can optimize the
expression DAG in Figure 2(a) into the one in Figure 2(b). Note
that the “selection” of the first 10 elements in modified b has been
“pushed down” all the way onto a. Hence, modifications to b (as
well as tests of whether an element of b should be modified) only
need to be executed on 10 elements.

For examples of RIOT optimizations specific to numerical com-
putation, we show how to optimize the matrix multiplication chain
in Example 2. First, consider multiplying two matrices A (n1×n2)
and B (n2×n3) with memory M and block size B. Previous work
has established a lower bound [5, 17] of Ω(n1n2n3/(B

√
M)) I/Os

for algorithms requiring Θ(n1n2n3) multiplications,4 and proposed
an algorithm with matching complexity [17], which we describe
below. We present an alternative proof for this lower bound in Ap-
pendix A that gives more insight into how to achieve it, which leads
naturally to the algorithm.

This algorithm divides available memory into three equal parts,
each storing a p × p (where p =

p
M/3) square submatrix: one

4There exist algorithms that use fewer multiplications, such as Strassen’s,
although they are harder to implement and numerically less stable.
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Figure 1: Performance of R vs. RIOT-DB variants.

from A, one from B, and the other for the result T. For simplic-
ity, assume that n1, n2, and n3 are multiples of p. The algorithm,
captured by the pseudocode below, looks similar to the one in Ex-
ample 2, except that it operates on the level of submatrices:

for (i in 1:(n1/p))
for (j in 1:(n3/p)) {

Tsub <- matrix(0,p,p)
for (k in 1:(n2/p)) {

read Asub <- A[(i*p-p+1):(i*p),(k*p-p+1):(k*p)] from disk
read Bsub <- B[(k*p-p+1):(k*p),(j*p-p+1):(j*p)] from disk
Tsub <- Tsub + Asub %*% Bsub

}
write Tsub as T[(i*p-p+1):(i*p),(j*p-p+1):(j*p)] to disk

}

A storage layout strategy that works well with this algorithm is to
use square tiles of area B, such that each p× p submatrix requires
O(p2/B) I/Os. The total number of I/Os is Θ(n1n2n3/(B

√
M)),

matching the lower bound. For large matrices, this algorithm beats
the one in Section 4 inspired by block nested-loop join, which uses
row and column layouts.

Stepping up a level, we now discuss how to optimize a chain
of matrix multiplications. With dynamic programming [5], we can
find a multiplication order that minimizes the total number of mul-
tiplications. Let N denote this number. Using the matrix multipli-
cation algorithm above and square tiling for all matrices, RIOT can
compute the chain in Θ(N/(B

√
M)) I/Os. Asymptotical optimal-

ity is shown in Appendix B.
To illustrate the effectiveness of RIOT optimizations related to

matrix multiplications, we compare four strategies for computing A

%*% B %*% C:
• RIOT-DB uses a plan consisting of two hash-join-sort-aggregate

subplans (Section 4), one to first multiply A and B, and the other
to multiply with C;

• BNLJ-Inspired assumes that the matrices use row, column, and
column layouts respectively, and performs the matrix multipli-
cations in order, using the algorithm in Section 4 inspired by
block nested-loop join;

• Square/In-Order assumes square tiling for all matrices, and
performs the matrix multiplications in order, using the algo-
rithm described in this section;

• Square/Opt-Order also employs square tiling and the same
matrix multiplication algorithm as Square/In-Order, but first uses
dynamic programming to find the best multiplication order.

Suppose A, B, and C have dimensions n × n
s

, n
s
× n, and n ×

n, respectively, where s > 1 is a skewness factor, which causes

Square/Opt-Order to choose the multiplication order A(BC). The
block size B = 1024. Figure 3(a) compares the calculated I/O
costs of the four strategies5 for n = 100000 and 120000, and
for memory sizes of 2GB and 4GB. We see a progression of im-
provements as more optimizations are introduced, and this trend is
consistent for all parameter settings tested. Figure 3(b) shows the
results when we vary s, the skewness factor. Memory is set at 2GB
and n = 100000. RIOT-DB is no longer shown because it per-
forms far worse than others. As s increases, the performance gap
between Square/Opt-Order and others widens, demonstrating the
importance of optimizing the multiplication order.

Discussion This section has sampled some important ideas that
we plan to investigate in RIOT. There are some other interesting re-
search issues, such as how to make better materialization and data
layout decisions. Briefly, RIOT needs materialization to comple-
ment deferred evaluation; otherwise, RIOT may have to repeat the
same computation across multiple complex expression DAGs that
it has built up. RIOT needs to jointly optimize data layout and
processing, and consider the option of dynamically changing data
layout should access patterns change. These decisions are chal-
lenging because RIOT must make them on the fly, without knowing
what computation might come in the future. We believe there is an
opportunity for developing better, practical solutions by combin-
ing ideas from scientific computing, programming languages, and
databases.

6 Conclusion
I/O-efficiency and query optimization are features standard to mod-
ern database systems, but sorely missed by many numerical com-
puting environments like R. Instead of forcing R users to learn to
use database systems, however, we propose to build a system called
RIOT that brings I/O-efficiency and database-style optimizations in
a completely transparent manner to R users.

Our experience of implementing RIOT-DB has provided many
insights, the most important of which is the fact that I/O-efficiency
cannot be achieved without high-level, inter-operation optimiza-
tions. Even though the generic database system used by RIOT-
DB carries enormous overhead in storing and processing arrays, its
pipelined execution model and query optimizer are able to turn the
tide to its favor in many cases. With a specialized storage engine,

5To focus our comparison on evaluation strategies, Figure 3 excludes the
overhead of storing array indexes in RIOT-DB; this adjustment has no effect
on the relative ordering of performance, however.
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Figure 3: I/O costs of a chain of three matrix multiplications.

algorithms, and database-style optimization strategies tailored to-
wards numerical computing, we expect the next generation of RIOT
to make significant further gain in I/O-efficiency. Another pleasant
surprise from this experience is that transparency is indeed possi-
ble, with ideas such as deferred evaluation and clever mechanisms
to implement them within the confines of R. As future work, we
plan to investigate how to apply our techniques to other language
environments beyond those intended for numerical computing.
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APPENDIX

A I/O Lower Bound of Matrix Multiplication

Problem: Given two matrices A(m× l) and B(l×n), compute
their product C = AB. The available memory can hold M scalar
numbers. Suppose min{ml, ln, mn} À M . A and B initially
reside on disk. Each disk block can store B numbers. Assum-
ing any algorithm requiring Θ(lmn) scalar multiplications can be
used, give an optimal schedule that minimizes the amount of I/O in
terms of disk blocks read/written.

Solution: We first give a lower bound for the amount of I/O and
then give a schedule that achieves this lower bound.

At any time, the memory contains elements from A, B or C.
During M number of I/Os, the number of distinct elements from
the three matrices must be ≤ 2M (elements initially in memory
plus newly fetched ones). Let the number of distinct, active ele-
ments from A, B, and C that contribute to the matrix multipli-
cation be a, b and c, respectively. An active element is one that
either participates in element multiplication (elements in A and
B), or gets assigned (elements in C). Further suppose that the
a elements from A are taken from U rows, each having ui ele-
ments, where i = 1, . . . , U . Similarly, suppose that the b elements
from B are taken from V columns, each having vj elements, where
j = 1, . . . , V . Note that if active elements from row i of A and
column j of B are multiplied and contribute to C[i, j], then C[i, j]
must appear in memory. Thus we have

a =
X

1≤i≤U

ui

b =
X

1≤j≤V

vj

c ≥ UV

a + b + c ≤ 2M.

Now consider the number of scalar multiplication operations,
which we denote by Z, that can be performed with the above con-
straints. Note that A[h, i] and B[j, k] are multiplied if and only if
i = j. Thus, for each row i of A and each column j of B, the max-
imum number of scalar multiplications is min(ui, vj). Therefore,

Z =
X

1≤i≤U

X

1≤j≤V

min(ui, vj).

We want to maximize Z in order to minimize the amount of I/Os.
Without loss of generality, let us assume u1 ≤ u2 ≤ · · · ≤ uU and
v1 ≤ v2 ≤ · · · ≤ vV . Let all ui’s that are greater than v1 and
less than (v1 + vV )/2 be D = {ud, . . . , ud+r}, and all ui’s that
are between (v1 + vV )/2 and vV be E = {ue, . . . , ue+s}. Let
all ui’s greater than vV be F = {uf , . . . , uf+t}. Now consider
the following change: We remove v1 and vV and introduce two
identical numbers (v1 + vV )/2. There are still V numbers, with
their sum unchanged. Consider the resulting Z. All elements in D
now contribute to Z once because of the change from v1 to (v1 +
vV )/2. All elements in E have their contribution to Z decremented
by one because of the change from vV to (v1 + vV )/2. So the net

change in Z is

∆Z =
X
u∈D

u−
X
u∈E

u− v1(|D|+ |E|+ |F |)− vV |F |

+ 2
v1 + vV

2
(|E|+ |F |)

=

 X
u∈D

u− v1|D|
!

+

 
vV |E| −

X
u∈E

u

!

=
X

d≤i≤d+r

(ui − v1) +
X

e≤i≤e+s

(vV − ui)

≥ 0.

If we repeat this operation, i.e., replacing the smallest and the largest
numbers with two copies of their mean, we can eventually make all
vi’s equal. The same procedure can be done to ui’s. Thus, when
Z achieves its maximum, we have u1 = · · · = uU = a/U and
v1 = · · · = vV = b/V . Now consider maximizing Z under this
condition. Let u = a/U and v = b/V . Without loss of generality,
we assume u ≤ v, or equivalently aV ≤ bU , in which case Z
becomes

Z = UV · u. (1)

We want to maximize (1) subject to:

u ≤ v

uU + vV + UV ≤ 2M

Let f = UV u + α(v − u) + β(2M − uU − vV − UV ). Using
Lagrange multiplier, we know Z gets its maximum when ∇f = 0;
that is:

∂f

∂u
= UV − α− βU = 0 (2)

∂f

∂v
= α− βV = 0 (3)

∂f

∂U
= uV − βu− βV = 0 (4)

∂f

∂V
= uU − βv − βU = 0 (5)

∂f

∂α
= v − u = 0 (6)

∂f

∂β
= 2M − uU − vV − UV = 0 (7)

By (4), (5), and (6) we have (u − β)V = (u − β)U . Note that
we cannot have u = β, because plugging it into (4) would yield
u = β = 0. So we must have U = V . Now combining with (2)
and (3), we get U = 2β. Plugging this into (4), we get u = U .
Coming back to (7), we have a = uU = 2

3
M . We conclude that

Z ≤ (
p

2M/3)3.
Recall that Z is the number of scalar multiplications performed

during M elements of I/Os. Because the algorithm for computing
C requires a total of lmn scalar multiplications, the total number
of element I/Os should be at least

lmn„q
2M
3

«3 M = Θ

„
lmn√

M

«
.

In the best case, we can service these element I/Os with Θ
“

lmn

B
√

M

”

number of block I/Os, which is the lower bound.
The design of a schedule that achieves the minimum now be-

comes straightforward. The condition that yields the minimum is



a = b = c and U = u1 = · · · = uU = V = v1 = · · · = vV .
We can divide A, B and C into submatrices of size p × p, where
p =

p
M/3. The memory can hold exactly three such submatrices.

For each block Ci,j in C, we perform the block matrix algorithm
by loading and multiplying pairs of submatrices from A and B in
turn—{Ai,1,B1,j},. . . ,{Ai,k,Bk,j}—to compute Ci,j . For each
Ci,j , we read in 2p2

B
l
p

blocks, and write out the result, which has
p2

B
blocks. There are mn

p2 submatrices in C. So the total number of
I/Os (blocks) is

„
2p2

B

l

p
+

p2

B

«
mn

p2
=

2
√

3lmn

B
√

M
+

mn

B
.

B I/O Lower Bound for a Chain of Matrix
Multiplications

Problem: Given n matrices Ai(di × di+1), i = 1, . . . , n, com-
pute their product C = A1A2 · · ·An. The available memory can
hold M scalar numbers. Suppose any matrix involved in the com-
putation of C has size À M . Let N be the number of scalar mul-
tiplications performed in order to compute C. All input matrices
and the result matrix reside on disk. Each disk block can store B
numbers. Give an optimal schedule that minimizes the amount of
I/O in terms of disk blocks read/written.

Solution: We first bound the number of scalar multiplications
that can happen during M elements of I/Os. During M elements of
I/Os, the number of distinct elements that appear in memory must
be ≤ 2M . Define an active matrix multiplication to be Z = XY,
where X, Y, and Z can be input matrices or intermediate results,
and some elements of X and Y are in memory and produce some
elements of Z. There could be multiple active matrix multiplica-
tions in progress. Suppose m1, . . . , mk memory resource is allo-
cated to each active matrix multiplication, so that m1+ · · ·+mk ≤
2M . According to the proof in Appendix A, at most
„

2m1

3

« 3
2

+· · ·+
„

2mk

3

« 3
2

≤
„

2m1

3
+ · · ·+ 2mk

3

« 3
2

=

„
4M

3

« 3
2

multiplications can happen during M number of I/Os.
It follows that the minimum number of element I/Os for comput-

ing C is

N
`

4M
3

´ 3
2

M = Θ

„
N√
M

«
.

Therefore, the I/O lower bound in terms of blocks is Θ
“

N

B
√

M

”
.

The above reasoning also indicates that the lower bound is achieved
by doing one active matrix multiplication at a time, and by applying
the optimal schedule in Appendix A to each matrix multiplication.
As an example, suppose we want to compute C = A1A2A3, and
among all possible ways of parenthesizations, A1(A2A3) takes
the minimum number of scalar multiplications. The optimal I/O
performance is attained by first using the schedule in Appendix A
to compute T = A2A3 and materialize T. Following that, C =
A1T is similarly computed.


