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A balanced cyberinfrastructure

is necessary to meet growing
data-intensive scientific needs.

ost scientific disciplines
have long had both
empirical and theoretical
branches. In the past 50
years, many disciplines—
ranging from physics to ecology to lin-
guistics—have also grown a third,
computational branch. Computational
science emerged from the inability to
find closed-form solutions for complex
mathematical models. Computers make
it possible to simulate such models.

In recent years, computational sci-
ence has evolved to include informa-
tion management to deal with the
flood of data resulting from

¢ new scientific instruments that, dri-
ven by Moore’s law, double their
data output every year or so;

e the ability to economically store
petabytes of data online; and

o the Internet and Grid, which make
archived data accessible to anyone,
anywhere.

Acquisition, organization, query,
and visualization tasks scale almost
linearly with data volumes. Parallel
computers can solve these problems
within minutes or hours.
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However, the computational efforts
of most statistical analysis and data-
mining algorithms increase super-
linearly. Many tasks involve com-
puting statistics among sets of data
points in some metric space. For
example, pair algorithms on N
points scale as N2, If the data in-
creases a thousandfold, the work
and time can grow by a factor of a
million. Many clustering algorithms
scale even worse and are infeasible
for terabyte-scale datasets.

DATA-CENTRIC COMPUTATION

Next-generation computational sys-
tems will generate and analyze peta-
scale information stores. For example,
the BaBar detector at the Stanford
Linear Accelerator Center currently
processes and reprocesses a Pbyte of
event data; about 60 percent of the
system’s hardware budget is for stor-
age and IO bandwidth (www-db.cs.
wisc.edu/cidr/papers/P06.pdf).

The Atlas (http://atlasexperiment.
org) and CMS (www.cmsinfo.cern.ch)
particle detection systems have
requirements at least 100 times higher.
The Large Synoptic Survey Telescope
(www. Isst.org) has needs in the same

range: petaoperations per second of
processing and tens of Pbytes of
storage.

BUILDING BALANCED SYSTEMS

System performance has been im-
proving in line with Moore’s law and
will continue to do so as multicore
processors replace single-processor
chips and memory hierarchies evolve.
Within five years, a simple, shared-
memory multiprocessor will deliver
about half a teraoperation per sec-
ond.

Much of the effort in building
Beowulf clusters and supercomputing
centers has focused on CPU-intensive
TOPS500 systems (www.topS00.org).
Meanwhile, in most sciences the
amount of both experimental and
simulated data has been increasing
even faster than Moore’s law because
instruments are getting much better
and cheaper and storage costs have
been decreasing dramatically.

Amdahl’s laws

Four decades ago, Gene Amdahl
coined many rules of thumb for com-
puter architects:

o Parallelism—if a computation has
a serial part S and a parallel com-
ponent P, then the maximum
speedup is S/(S + P).

® Balanced systerm—a system needs
a bit of I/O per second per instruc-
tion per second.

® Memory—the Mbyte/MIPS ratio
(o) in a balanced system is 1.

e Input/output—programs do one
/O per 50,000 instructions.

Although o has increased and caused
a slight reduction in I/O density, these
“laws” are still generally valid (http://
computer.org/proceedings/icde/0506/
05060003abs.htm).

In addition, computer systems typ-
ically allocate a comparable budget
for RAM and for disk storage, which
is about 100 times less expensive per
Tbyte than RAM. Table 1 captures
this 1:100 RAM:disk capacity ratio,
along with Amdahl’s laws applied to
various system powers.
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Operations Disks for that bandwidth Disk byte capacity Disks for that capacity
per second RAM Disk I/0 bytes/s at 100 Mbytes/s/disk (100x RAM) at 1 Thyte/disk

100 Gigabyte 108 1 10™ 1

10" Terabyte 10" 1,000 10 100

10" Petabyte 10 1,000,000 10" 100,000

1018 Exabyte 10" 1,000,000,000 102 100,000,000

Scaled to a petaoperations-per-
second machine, Amdahl’s laws imply
the need for

e parallel software to wuse that
processor array and a million disks
in parallel;

e a Pbyte of RAM;

e 100 Tbytes/s of /O bandwidth and
an I/O fabric to support it;

¢ one million disk devices to deliver
that bandwidth (at 100 Mbytes/
s/disk); and

¢ 100,000 disks storing 100 Pbytes
of data produced and consumed
(at 1 Tbyte/disk), which is 10 times
fewer than the number of disks
required by the bandwidth require-
ment.

A million disks to support a peta-
scale processor’s IO needs is a daunt-
ing number. If a petascale system is
configured with fewer disks, the
processors will probably spend most
of their time waiting for IO and mem-
ory—as is often the case today.

Petascale systems

There are precedents for such petas-
cale distributed systems at Google,
Yahoo!, AOL, and MSN (http://doi.
acm.org/10.1145/945450). These sys-
tems have tens of thousands of pro-
cessing nodes (approximating a peta-
operation per second) and have about
100,000 locally attached disks to
deliver the requisite bandwidth.
Although they aren’t commodity sys-
tems, they’re in everyday use in many
data centers.

Once empirical or simulation data
is captured, huge computational
resources are needed to analyze the
data and visualize the results. Analysis

tasks involving Pbytes of information
require petascale storage and I/O
bandwidth. In addition, the data must
be reprocessed each time a new algo-
rithm emerges or researchers pose a
fundamental new question, generat-
ing even more I/O.

More importantly, to be useful,
these databases require the ability to
process information at a semantic
level. The data must be curated with
metadata, stored under a schema with
a controlled vocabulary, and orga-
nized for quick and efficient temporal,
spatial, and associative search.
Petascale database systems will be a
major part of any successful petascale
computational facility and require
substantial software investment.

DATA LOCALITY

Moving a byte of data across the
Internet has a well-defined cost (http:/
research.microsoft.com/research/pubs/
view.aspx?tr_id=655). Moving data to
a remote computing facility is worth-
while only if performing the analysis
requires more than 100,000 CPU
cycles per byte of data. SETI@home,
cryptography, and signal processing
have such CPU-intensive profiles. How-
ever, most scientific tasks are more in
line with Amdahl’s laws and much
more information-intensive, with
CPU:IO ratios well below 10,000:1.

For less CPU-intensive tasks, colo-
cating the computation with the data
is preferable. In a data-intensive world
where Pbytes are common, it’s impor-
tant to colocate computing power
with the databases rather than mov-
ing the data across the Internet to a
“free” CPU. If the data must be
moved, it makes sense to store a copy
at the destination for later reuse.

Managing this data movement and
caching poses a substantial software
challenge. Much current middleware
assumes that data movement is free
and discards copied data after use.

COMPUTATIONAL
PROBLEM SIZES

Scientific computation task sizes
depend on the product of many inde-
pendent factors. Quantities formed as
a product of independent random vari-
ables follow a lognormal distribution
(E.W. Montroll and M.E. Shlesinger,
“Maximum Entropy Formalism,
Fractals, Scaling Phenomena, and 1/f
Noise: A Tale of Tails,” J. Statistical
Physics, vol. 32, no. 2, 1983, pp. 209-
230). As a result, the sizes of scientific
computational problems obey a power
law wherein the problem size and the
number of such problems are inversely
proportional—there are a small num-
ber of huge jobs and a huge number of
small jobs.

This situation is quite evident in US
computing today. Thirty years ago,
supercomputers were the mainstay of
computational science. However,
today’s four-tier architecture—includ-
ing tier-1 supercomputers, tier-2
regional centers, tier-3 departmental
Beowulf clusters, and tier-4 single
workstations—reflects the problem-
size power law.

BALANCED
CYBERINFRASTRUCTURE

What’s the best allocation of cyber-
infrastructure investments in light of
Amdahl’s laws, the problem-size
power law, and the move to data-cen-
tric science? There certainly must be
two high-end tier-1 international data
centers serving each discipline that
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These tier-1 facilities should contain
much of science’s huge archival
datasets and can only be built as a
national or international priority.

What should US government agen-
cies and industry do about the other
tiers? They could make funding the
tier-2 and tier-3 systems entirely the
universities’ responsibility, but that
would be a mistake.

We believe that available resources
should be allocated to benefit the

broadest cross-section of the scientific
community. Given the power-law dis-
tribution of problem sizes, this means
that about half of funding agency
resources should be spent on tier-1
centers at the petascale level and the
other half dedicated to tier-2 and
tier-3 centers on a cost-sharing basis,
as Figure 1 shows.

One of the most data-intensive sci-
ence projects to date, the CERN Large
Hadron Collider (http://lhc.web.
cern.ch/lhc), has adopted exactly such
a multitiered architecture. The hier-
archy of an increasing number of tier-
2 and tier-3 analysis facilities provides
impedance matching between the
individual scientists and the huge
tier-1 data archives. At the same time,
the tier-2 and tier-3 nodes provide
complete replication of tier-1 datasets.

EXAMPLE TIER-2 NODE

Most funding for tier-2 and tier-3
centers today splits costs between the
federal government and the host insti-
tution. It’s difficult for universities to
obtain private donations for comput-
ing resources because they depreciate
so quickly. Donors generally prefer to
give money for buildings or endowed
positions, which have a long-term

DD\N’T BUN THE BISK:
EELSECURE.

Ensure that your networks operate safely
and provide critical services even in the face

of attacks. Develop lasting security solutions,
with this peer-reviewed publication.

Top security professionals in the field share
information you can rely on:

Wireless Security ® Securing the Enterprise ® Designing
for Security Infrastructure Security ® Privacy Issues
o Legal Issues ® Cybercrime e Digital Rights Management e
Intellectual Property Protection and Piracy ® The Security
Profession  Education

Order your subscription today.

www.computer.org/security/

Computer

staying value. Government funding is
therefore crucial for tier-2 and tier-3
centers in a cost-sharing arrangement
with the hosting institution.

For example, The Johns Hopkins
University received a National Science
Foundation grant toward the comput-
ers for a tier-2 center it’s building. JHU
matched the NSF funds 125 percent to
provide the hosting facility and staff to
run it. Other institutions have had sim-
ilar experiences setting up large com-
puting facilities. The price of comput-
ers is less than half the cost, and uni-
versities can meet those infrastructure
demands only if federal agencies seed
the tier-2 and tier-3 centers.

lacing all the financial resources
P at one end of the power-law dis-

tribution would create an unnat-
ural infrastructure incapable of
meeting the increasingly data-centric
requirements of most midscale scien-
tific experiments. At the system level,
focusing on CPU harvesting would
also create an imbalance. Funding
agencies should support balanced sys-
tems, not just CPU farms, as well as
petascale IO and networking. They
should also allocate resources for a
balanced tier-1 through tier-3 cyberin-
frastructure.

Gordon Bell is a senior researcher in
the Media Presence Research Group at
Microsoft’s Bay Area Research Center
(BARC). Contact him at GBell@
Microsoft.com.

Jim Gray is a distinguished engineer
in the Scalable Servers Research Group
at BARC. Contact him at Gray@
Microsoft.com.

Alex Szalay is a professor in the Depart-
ment of Physics and Astronomy at The
Johns Hopkins University. Contact him
at Szalay@jhu.edu.

Editor: Simon S.Y. Shim, Department of
Computer Engineering, San Jose State
University; sishim@email.sjsu.edu



