

Amazon Web Services

Cloud Architectures

Jinesh Varia

Technology Evangelist

Amazon Web Services

(jvaria@amazon.com)

Introduction

This paper illustrates the style of building applications using services available in the Internet cloud.

Cloud Architectures are designs of software applications that use Internet-accessible on-demand services. Applications built

on Cloud Architectures are such that the underlying computing infrastructure is used only when it is needed (for example to
process a user request), draw the necessary resources on-demand (like compute servers or storage), perform a specific job,
then relinquish the unneeded resources and often dispose themselves after the job is done. While in operation the
application scales up or down elastically based on resource needs.

This paper is divided into two sections. In the first section, we describe an example of an application that is currently in
production using the on-demand infrastructure provided by Amazon Web Services. This application allows a developer to do
pattern-matching across millions of web documents. The application brings up hundreds of virtual servers on-demand, runs
a parallel computation on them using an open source distributed processing framework called Hadoop, then shuts down all
the virtual servers releasing all its resources back to the cloud—all with low programming effort and at a very reasonable
cost for the caller.

In the second section, we discuss some best practices for using each Amazon Web Service - Amazon S3, Amazon SQS,
Amazon SimpleDB and Amazon EC2 - to build an industrial-strength scalable application.

Keywords

Amazon Web Services, Amazon S3, Amazon EC2, Amazon SimpleDB, Amazon SQS, Hadoop, MapReduce, Cloud Computing

Amazon Web Services

Why Cloud Architectures?

Cloud Architectures address key difficulties surrounding
large-scale data processing. In traditional data processing
it is difficult to get as many machines as an application
needs. Second, it is difficult to get the machines when
one needs them. Third, it is difficult to distribute and co-
ordinate a large-scale job on different machines, run
processes on them, and provision another machine to
recover if one machine fails. Fourth, it is difficult to auto-
scale up and down based on dynamic workloads. Fifth, it
is difficult to get rid of all those machines when the job is
done. Cloud Architectures solve such difficulties.

Applications built on Cloud Architectures run in-the-cloud
where the physical location of the infrastructure is
determined by the provider. They take advantage of
simple APIs of Internet-accessible services that scale on-
demand, that are industrial-strength, where the complex
reliability and scalability logic of the underlying services
remains implemented and hidden inside-the-cloud. The
usage of resources in Cloud Architectures is as needed,
sometimes ephemeral or seasonal, thereby providing the
highest utilization and optimum bang for the buck.

Business Benefits of Cloud Architectures

There are some clear business benefits to building
applications using Cloud Architectures. A few of these are
listed here:

1. Almost zero upfront infrastructure investment: If you
have to build a large-scale system it may cost a
fortune to invest in real estate, hardware (racks,
machines, routers, backup power supplies),
hardware management (power management,
cooling), and operations personnel. Because of the
upfront costs, it would typically need several rounds
of management approvals before the project could
even get started. Now, with utility-style computing,
there is no fixed cost or startup cost.

2. Just-in-time Infrastructure: In the past, if you got
famous and your systems or your infrastructure did
not scale you became a victim of your own success.
Conversely, if you invested heavily and did not get
famous, you became a victim of your failure. By
deploying applications in-the-cloud with dynamic
capacity management software architects do not
have to worry about pre-procuring capacity for large-
scale systems. The solutions are low risk because
you scale only as you grow. Cloud Architectures can
relinquish infrastructure as quickly as you got them
in the first place (in minutes).

3. More efficient resource utilization: System
administrators usually worry about hardware
procuring (when they run out of capacity) and better
infrastructure utilization (when they have excess and
idle capacity). With Cloud Architectures they can
manage resources more effectively and efficiently by
having the applications request and relinquish
resources only what they need (on-demand).

4. Usage-based costing: Utility-style pricing allows
billing the customer only for the infrastructure that
has been used. The customer is not liable for the
entire infrastructure that may be in place. This is a
subtle difference between desktop applications and
web applications. A desktop application or a
traditional client-server application runs on
customer’s own infrastructure (PC or server),
whereas in a Cloud Architectures application, the
customer uses a third party infrastructure and gets
billed only for the fraction of it that was used.

5. Potential for shrinking the processing time:
Parallelization is the one of the great ways to speed
up processing. If one compute-intensive or data-
intensive job that can be run in parallel takes 500
hours to process on one machine, with Cloud
Architectures, it would be possible to spawn and
launch 500 instances and process the same job in 1
hour. Having available an elastic infrastructure
provides the application with the ability to exploit
parallelization in a cost-effective manner reducing
the total processing time.

Examples of Cloud Architectures

There are plenty of examples of applications that could
utilize the power of Cloud Architectures. These range
from back-office bulk processing systems to web
applications. Some are listed below:

• Processing Pipelines
• Document processing pipelines – convert

hundreds of thousands of documents from
Microsoft Word to PDF, OCR millions of
pages/images into raw searchable text

• Image processing pipelines – create thumbnails
or low resolution variants of an image, resize
millions of images

• Video transcoding pipelines – transcode AVI to
MPEG movies

• Indexing – create an index of web crawl data
• Data mining – perform search over millions of

records
• Batch Processing Systems

• Back-office applications (in financial, insurance
or retail sectors)

• Log analysis – analyze and generate
daily/weekly reports

• Nightly builds – perform nightly automated
builds of source code repository every night in
parallel

• Automated Unit Testing and Deployment Testing
– Test and deploy and perform automated unit
testing (functional, load, quality) on different
deployment configurations every night

• Websites

• Websites that “sleep” at night and auto-scale
during the day

• Instant Websites – websites for conferences or
events (Super Bowl, sports tournaments)

• Promotion websites
• “Seasonal Websites” - websites that only run

during the tax season or the holiday season
(“Black Friday” or Christmas)

Amazon Web Services

In this paper, we will discuss one application example in
detail - code-named as “GrepTheWeb”.

Cloud Architecture Example: GrepTheWeb

The Alexa Web Search web service allows developers to
build customized search engines against the massive
data that Alexa crawls every night. One of the features of
their web service allows users to query the Alexa search
index and get Million Search Results (MSR) back as
output. Developers can run queries that return up to 10
million results.

The resulting set, which represents a small subset of all
the documents on the web, can then be processed
further using a regular expression language. This allows
developers to filter their search results using criteria that
are not indexed by Alexa (Alexa indexes documents
based on fifty different document attributes) thereby
giving the developer power to do more sophisticated
searches. Developers can run regular expressions against
the actual documents, even when there are millions of
them, to search for patterns and retrieve the subset of
documents that matched that regular expression.

This application is currently in production at Amazon.com
and is code-named GrepTheWeb because it can “grep” (a

popular Unix command-line utility to search patterns) the
actual web documents. GrepTheWeb allows developers to
do some pretty specialized searches like selecting
documents that have a particular HTML tag or META tag
or finding documents with particular punctuations
(“Hey!”, he said. “Why Wait?”), or searching for
mathematical equations (“f(x) = ∑x + W”), source code,
e-mail addresses or other patterns such as
“(dis)integration of life”.

While the functionality is impressive, for us the way it
was built is even more so. In the next section, we will

zoom in to see different levels of the architecture of
GrepTheWeb.

Figure 1 shows a high-level depiction of the architecture.
The output of the Million Search Results Service, which is
a sorted list of links and gzipped (compressed using the
Unix gzip utility) in a single file, is given to GrepTheWeb
as input. It takes a regular expression as a second input.
It then returns a filtered subset of document links sorted
and gzipped into a single file. Since the overall process is
asynchronous, developers can get the status of their jobs
by calling GetStatus() to see whether the execution is
completed.

Performing a regular expression against millions of
documents is not trivial. Different factors could combine
to cause the processing to take lot of time:

• Regular expressions could be complex
• Dataset could be large, even hundreds of

terabytes
• Unknown request patterns, e.g., any number of

people can access the application at any given
point in time

Hence, the design goals of GrepTheWeb included to scale
in all dimensions (more powerful pattern-matching
languages, more concurrent users of common datasets,
larger datasets, better result qualities) while keeping the
costs of processing down.

The approach was to build an application that not only
scales with demand, but also without a heavy upfront
investment and without the cost of maintaining idle
machines (“downbottom”). To get a response in a
reasonable amount of time, it was important to distribute
the job into multiple tasks and to perform a Distributed
Grep operation that runs those tasks on multiple nodes in
parallel.

GrepTheWeb

Application

RegEx

Subset of

document URLs

that matched

the RegEx

Input dataset (List of

Document Urls)

GetStatus

Figure 1 : GrepTheWeb Architecture - Zoom Level 1

Amazon Web Services

Zooming in further, GrepTheWeb architecture looks like
as shown in Figure 2 (above). It uses the following AWS
components:

• Amazon S3 for retrieving input datasets and for
storing the output dataset

• Amazon SQS for durably buffering requests
acting as a “glue” between controllers

• Amazon SimpleDB for storing intermediate
status, log, and for user data about tasks

• Amazon EC2 for running a large distributed
processing Hadoop cluster on-demand

• Hadoop for distributed processing, automatic
parallelization, and job scheduling

Workflow

GrepTheWeb is modular. It does its processing in four
phases as shown in figure 3. The launch phase is
responsible for validating and initiating the processing of
a GrepTheWeb request, instantiating Amazon EC2
instances, launching the Hadoop cluster on them and
starting all the job processes. The monitor phase is
responsible for monitoring the EC2 cluster, maps,
reduces, and checking for success and failure. The
shutdown phase is responsible for billing and shutting
down all Hadoop processes and Amazon EC2 instances,
while the cleanup phase deletes Amazon SimpleDB
transient data.

Detailed Workflow for Figure 4:

1. On application start, queues are created if not already created and all the controller threads are started. Each controller
thread starts polling their respective queues for any messages.

2. When a StartGrep user request is received, a launch message is enqueued in the launch queue.

3. Launch phase: The launch controller thread picks up the launch message, and executes the launch task, updates the
status and timestamps in the Amazon SimpleDB domain, enqueues a new message in the monitor queue and deletes
the message from the launch queue after processing.

a. The launch task starts Amazon EC2 instances using a JRE pre-installed AMI , deploys required Hadoop libraries

Launch

Phase

Monitor

Phase

Shutdown

Phase

Cleanup

Phase

Amazon

SQS

Controller

Amazon

EC2

Cluster Amazon

S3

Amazon

SimpleDB

User info,

Job status info

Launch, Monitor,

Shutdown

Input

Output

Manage phases

StartGrep

RegEx

GetStatus

Input Files

(Alexa Crawl)

Get Output

Figure 3: Phases of GrepTheWeb Architecture

Figure 2: GrepTheWeb Architecture - Zoom Level 2

Amazon Web Services

and starts a Hadoop Job (run Map/Reduce tasks).
b. Hadoop runs map tasks on Amazon EC2 slave nodes in parallel. Each map task takes files (multithreaded in

background) from Amazon S3, runs a regular expression (Queue Message Attribute) against the file from
Amazon S3 and writes the match results along with a description of up to 5 matches locally and then the
combine/reduce task combines and sorts the results and consolidates the output.

c. The final results are stored on Amazon S3 in the output bucket
4. Monitor phase: The monitor controller thread picks up this message, validates the status/error in Amazon SimpleDB

and executes the monitor task, updates the status in the Amazon SimpleDB domain, enqueues a new message in the
shutdown queue and billing queue and deletes the message from monitor queue after processing.

a. The monitor task checks for the Hadoop status (JobTracker success/failure) in regular intervals, updates the
SimpleDB items with status/error and Amazon S3 output file.

5. Shutdown phase: The shutdown controller thread picks up this message from the shutdown queue, and executes the
shutdown task, updates the status and timestamps in Amazon SimpleDB domain, deletes the message from the
shutdown queue after processing.

a. The shutdown task kills the Hadoop processes, terminates the EC2 instances after getting EC2 topology
information from Amazon SimpleDB and disposes of the infrastructure.

b. The billing task gets EC2 topology information, Simple DB Box Usage, Amazon S3 file and query input and
calculates the billing and passes it to the billing service.

6. Cleanup phase: Archives the SimpleDB data with user info.
7. Users can execute GetStatus on the service endpoint to get the status of the overall system (all controllers and

Hadoop) and download the filtered results from Amazon S3 after completion.

Amazon

SimpleDB

Amazon SQS

Controller

Amazon S3

 Master M

 Slaves N

 HDFS

Hadoop Cluster on

Amazon EC2

Launch

Queue

Monitor

Queue

Launch

Controller

Shutdown

Queue

Monitor

Controller

Billing

Queue

Shutdown

Controller

Status

DB

Output

Billing

Service

Billing

Controller

Launch

Ping

Shutdown

Insert JobID,

Status

Insert Amazon

EC2 info

Get EC2 Info

Put File

Input

Get File

Check for results

Figure 4: GrepTheWeb Architecture - Zoom Level 3

Amazon Web Services

The Use of Amazon Web Services

In the next four subsections we present rationales of use
and describe how GrepTheWeb uses AWS services.

How Was Amazon S3 Used

In GrepTheWeb, Amazon S3 acts as an input as well as
an output data store. The input to GrepTheWeb is the
web itself (compressed form of Alexa’s Web Crawl),
stored on Amazon S3 as objects and updated frequently.
Because the web crawl dataset can be huge (usually in
terabytes) and always growing, there was a need for a
distributed, bottomless persistent storage. Amazon S3
proved to be a perfect fit.

How Was Amazon SQS Used

Amazon SQS was used as message-passing mechanism
between components. It acts as “glue” that wired
different functional components together. This not only
helped in making the different components loosely
coupled, but also helped in building an overall more
failure resilient system.

Buffer

If one component is receiving and processing requests
faster than other components (an unbalanced producer
consumer situation), buffering will help make the overall
system more resilient to bursts of traffic (or load).
Amazon SQS acts as a transient buffer between two
components (controllers) of the GrepTheWeb system. If a
message is sent directly to a component, the receiver will
need to consume it at a rate dictated by the sender. For
example, if the billing system was slow or if the launch
time of the Hadoop cluster was more than expected, the
overall system would slow down, as it would just have to
wait. With message queues, sender and receiver are
decoupled and the queue service smoothens out any
“spiky” message traffic.

Isolation

Interaction between any two controllers in GrepTheWeb
is through messages in the queue and no controller
directly calls any other controller. All communication and
interaction happens by storing messages in the queue
(en-queue) and retrieving messages from the queue (de-
queue). This makes the entire system loosely coupled
and the interfaces simple and clean. Amazon SQS
provided a uniform way of transferring information
between the different application components. Each
controller’s function is to retrieve the message, process
the message (execute the function) and store the
message in other queue while they are completely
isolated from others.

Asynchrony

As it was difficult to know how much time each phase
would take to execute (e.g., the launch phase decides
dynamically how many instances need to start based on
the request and hence execution time is unknown)
Amazon SQS helped in building asynchronous systems.
Now, if the launch phase takes more time to process or
the monitor phase fails, the other components of the
system are not affected and the overall system is more
stable and highly available.

How Was Amazon SimpleDB Used

One use for a database in Cloud Architectures is to track
statuses. Since the components of the system are
asynchronous, there is a need to obtain the status of the
system at any given point in time. Moreover, since all
components are autonomous and discrete there is a need
for a query-able datastore that captures the state of the
system.

Because Amazon SimpleDB is schema-less, there is no
need to define the structure of a record beforehand.
Every controller can define its own structure and append
data to a “job” item. For example: For a given job, “run
email address regex over 10 million documents”, the
launch controller will add/update the ”launch_status”
attribute along with the ”launch_starttime”, while the
monitor controller will add/update the “monitor_status”
and ”hadoop_status” attributes with enumeration values
(running, completed, error, none). A GetStatus() call will
query Amazon SimpleDB and return the state of each
controller and also the overall status of the system.

Component services can query Amazon SimpleDB
anytime because controllers independently store their
states–one more nice way to create asynchronous highly-
available services. Although, a simplistic approach was
used in implementing the use of Amazon SimpleDB in
GrepTheWeb, a more sophisticated approach, where
there was complete, almost real-time monitoring would
also be possible. For example, storing the Hadoop
JobTracker status to show how many maps have been
performed at a given moment.

Amazon SimpleDB is also used to store active Request
IDs for historical and auditing/billing purposes.

In summary, Amazon SimpleDB is used as a status
database to store the different states of the components
and a historical/log database for querying high
performance data.

How Was Amazon EC2 Used

In GrepTheWeb, all the controller code runs on Amazon
EC2 Instances. The launch controller spawns master and
slave instances using a pre-configured Amazon Machine
Image (AMI). Since the dynamic provisioning and
decommissioning happens using simple web service calls,
GrepTheWeb knows how many master and slave
instances needs to be launched.

Amazon Web Services

The launch controller makes an educated guess, based
on reservation logic, of how many slaves are needed to
perform a particular job. The reservation logic is based
on the complexity of the query (number of predicates
etc) and the size of the input dataset (number of
documents to be searched). This was also kept
configurable so that we can reduce the processing time
by simply specifying the number of instances to launch.

After launching the instances and starting the Hadoop
cluster on those instances, Hadoop will appoint a master
and slaves, handles the negotiating, handshaking and file
distribution (SSH keys, certificates) and runs the grep
job.

Hadoop Map Reduce

Hadoop is an open source distributed processing
framework that allows computation of large datasets by
splitting the dataset into manageable chunks, spreading
it across a fleet of machines and managing the overall
process by launching jobs, processing the job no matter
where the data is physically located and, at the end,
aggregating the job output into a final result.

It typically works in three phases. A map phase
transforms the input into an intermediate representation
of key value pairs, a combine phase (handled by Hadoop
itself) combines and sorts by the keys and a reduce
phase recombines the intermediate representation into
the final output. Developers implement two interfaces,
Mapper and Reducer, while Hadoop takes care of all the
distributed processing (automatic parallelization, job
scheduling, job monitoring, and result aggregation).

In Hadoop, there’s a master process running on one node
to oversee a pool of slave processes (also called workers)
running on separate nodes. Hadoop splits the input into
chunks. These chunks are assigned to slaves, each slave
performs the map task (logic specified by user) on each
pair found in the chunk and writes the results locally and
informs the master of the completed status. Hadoop
combines all the results and sorts the results by the keys.
The master then assigns keys to the reducers. The
reducer pulls the results using an iterator, runs the
reduce task (logic specified by user), and sends the
“final” output back to distributed file system.

Map

Map

Map

…..

Map

Reduce

Combine

Hadoop Job
Tasks

User1

StartJob1 StopJob1

Service

Map

Map

Map

…..

Map

Reduce

Combine

Hadoop Job
Tasks

User2

StartJob2
StopJob2

Store status and

results

Get Result

Figure 5: Map Reduce Operation (in GrepTheWeb)

Amazon Web Services

GrepTheWeb Hadoop Implementation

Hadoop suits well the GrepTheWeb application. As each
grep task can be run in parallel independently of other
grep tasks using the parallel approach embodied in
Hadoop is a perfect fit.

For GrepTheWeb, the actual documents (the web) are
crawled ahead of time and stored on Amazon S3. Each
user starts a grep job by calling the StartGrep function at
the service endpoint. When triggered, masters and slave
nodes (Hadoop cluster) are started on Amazon EC2
instances. Hadoop splits the input (document with
pointers to Amazon S3 objects) into multiple manageable
chunks of 100 lines each and assign the chunk to a slave
node to run the map task. The map task reads these
lines and is responsible for fetching the files from Amazon
S3, running the regular expression on them and writing
the results locally. If there is no match, there is no
output. The map tasks then passes the results to the
reduce phase which is an identity function (pass through)
to aggregate all the outputs. The “final” output is written
back to Amazon S3.

Example

Regular Expression
“A(.*)zon”

Format of the line in the Input dataset

[URL] [Title] [charset] [size] [S3 Object Key of .gz file] [offset]

http://www.amazon.com/gp/browse.html?node=3435361 Amazon Web
 us-ascii 3509

 /2008/01/08/51/1/51_1_20080108072442_crawl100.arc.gz

 70150864

Mapper Implementation

1. Key = line number and value = line in the input dataset
2. Create a signed URL (using Amazon AWS credentials) using the

contents of key-value

3. Read (fetch) Amazon S3 Object (file) into a buffer

4. Run regular expression on that buffer
5. If there is match, collect the output in new set of key-value pairs

(key = line, value = up to 5 matches)

Reducer Implementation - Pass-through (Built-in Identity Function) and

write the results back to S3.

Tips for Designing a Cloud Architecture Application

1. Ensure that your application is scalable by
designing each component to be scalable on its
own. If every component implements a service
interface, responsible for its own scalability

in all appropriate dimensions, then the overall
system will have a scalable base.

2. For better manageability and high-availability,
make sure that your components are loosely
coupled. The key is to build components
without having tight dependencies between each
other, so that if one component were to die
(fail), sleep (not respond) or remain busy (slow

to respond) for some reason, the other
components in the system are built so as to
continue to work as if no failure is happening.

3. Implement parallelization for better use of the
infrastructure and for performance. Distributing
the tasks on multiple machines, multithreading
your requests and effective aggregation of
results obtained in parallel are some of the
techniques that help exploit the infrastructure.

4. After designing the basic functionality, ask the
question “What if this fails?” Use techniques and
approaches that will ensure resilience. If any
component fails (and failures happen all the
time), the system should automatically alert,
failover, and re-sync back to the “last known
state” as if nothing had failed.

5. Don’t forget the cost factor. The key to building
a cost-effective application is using on-demand
resources in your design. It’s wasteful to pay for
infrastructure that is sitting idle.

Each of these points is discussed further in the context of
GrepTheWeb.

Use Scalable Ingredients

The GrepTheWeb application uses highly-scalable
components of the Amazon Web Services infrastructure
that not only scale on-demand, but also are charged for
on-demand.

All components of GrepTheWeb expose a service
interface that defines the functions and can be called
using HTTP requests and get back XML responses. For

programming convenience small client libraries wrap and
abstract the service specific code.

Each component is independent from the others and
scales in all dimensions. For example, if thousands of
requests hit Amazon SimpleDB, it can handle the demand
because it is designed to handle massive parallel
requests.

Likewise, distributed processing frameworks like Hadoop
are designed to scale. Hadoop automatically distributes
jobs, resumes failed jobs, and runs on multiple nodes to
process terabytes of data.

Have Loosely Coupled Systems

The GrepTheWeb team built a loosely coupled system
using messaging queues. If a queue/buffer is used to
"wire" any two components together, it can support
concurrency, high availability and load spikes. As a
result, the overall system continues to perform even if
parts of components become unavailable. If one
component dies or becomes temporarily unavailable, the
system will buffer the messages and get them processed
when the component comes back up.

Amazon Web Services

In GrepTheWeb, for example, if lots of requests suddenly
reach the server (an Internet-induced overload situation)
or the processing of regular expressions takes a longer
time than the median (slow response rate of a
component), the Amazon SQS queues buffer the requests
durably so those delays do not affect other components.

As in a multi-tenant system is important to get statuses
of message/request, GrepTheWeb supports it. It does it
by storing and updating the status of your each request
in a separate query-able data store. This is achieved
using Amazon SimpleDB. This combination of Amazon
SQS for queuing and Amazon SimpleDB for state
management helps achieve higher resilience by loose
coupling.

Think Parallel

In this ”era of tera” and multi-core processors, when
programming we ought to think multi-threaded
processes.

In GrepTheWeb, wherever possible, the processes were
made thread-safe through a share-nothing philosophy
and were multi-threaded to improve performance. For
example, objects are fetched from Amazon S3 by
multiple concurrent threads as such access is faster than
fetching objects sequentially one at the time.

If multi-threading is not sufficient, think multi-node. Until
now, parallel computing across large cluster of machines
was not only expensive but also difficult to achieve. First,
it was difficult to get the funding to acquire a large
cluster of machines and then once acquired, it was
difficult to manage and maintain them. Secondly, after it
was acquired and managed, there were technical
problems. It was difficult to run massively distributed
tasks on the machines, store and access large datasets.
Parallelization was not easy and job scheduling was

error-prone. Moreover, if nodes failed, detecting them
was difficult and recovery was very expensive. Tracking
jobs and status was often ignored because it quickly
became complicated as number of machines in cluster
increased.

But now, computing has changed. With the advent of
Amazon EC2, provisioning a large number of compute
instances is easy. A cluster of compute instances can be
provisioned within minutes with just a few API calls and
decommissioned as easily. With the arrival of distributed
processing frameworks like Hadoop, there is no need for
high-caliber, parallel computing consultants to deploy a
parallel application. Developers with no prior experience
in parallel computing can implement a few interfaces in
few lines of code, and parallelize the job without worrying
about job scheduling, monitoring or aggregation.

On-Demand Requisition and Relinquishment

In GrepTheWeb each building-block component is
accessible via the Internet using web services, reliably
hosted in Amazon’s datacenters and available on-
demand. This means that the application can request
more resources (servers, storage, databases, queues) or
relinquish them whenever needed.

A beauty of GrepTheWeb is its almost-zero-infrastructure
before and after the execution. The entire infrastructure
is instantiated in the cloud triggered by a job request
(grep) and then is returned back to the cloud, when the
job is done. Moreover, during execution, it scales on-
demand; i.e. the application scales elastically based on
number of messages and the size of the input dataset,
complexity of regular expression and so-forth.

For GrepTheWeb, there is reservation logic that decides
how many Hadoop slave instances to launch based on the
complexity of the regex and the input dataset. For

Queue

A

Queue

B

Controller

A

Queue

C

Controller

B

Controller

C

Controller

A
Controller

B

Controller

C

Call Method

in C from B

Call Method

in B from A

Tight coupling (procedural programming)

Loose coupling (independent phases using queues)

Figure 6: Loose Coupling – Independent Phases

Amazon Web Services

example, if the regular expression does not have many
predicates, or if the input dataset has just 500
documents, it will only spawn 2 instances. However, if
the input dataset is 10 million documents, it will spawn
up to 100 instances.

Use Designs that Are Resilient to Reboot and Re-

Launch

Rule of thumb: Be a pessimist when using Cloud
Architectures; assume things will fail. In other words,
always design, implement and deploy for automated
recovery from failure.

In particular, assume that your hardware will fail.
Assume that outages will occur. Assume that some
disaster will strike your application. Assume that you will
be slammed with more requests per second some day.
By being pessimist, you end up thinking about recovery
strategies during design time, which helps in designing
an overall system better. For example, the following
strategies can help in event of adversity:

1. Have a coherent backup and restore strategy for
your data

2. Build process threads that resume on reboot
3. Allow the state of the system to re-sync by

reloading messages from queues
4. Keep pre-configured and pre-optimized virtual

images to support (2) and (3) on launch/boot

Good cloud architectures should be impervious to reboots
and re-launches. In GrepTheWeb, by using a combination
of Amazon SQS and Amazon SimpleDB, the overall
controller architecture is more resilient. For instance, if
the instance on which controller thread was running dies,
it can be brought up and resume the previous state as if
nothing had happened. This was accomplished by
creating a pre-configured Amazon Machine Image, which
when launched dequeues all the messages from the

Amazon SQS queue and their states from the Amazon
SimpleDB domain item on reboot.

If a task tracker (slave) node dies due to hardware
failure, Hadoop reschedules the task on another node
automatically. This fault-tolerance enables Hadoop to run
on large commodity server clusters overcoming hardware
failures.

Results and Costs

We ran several tests. Email Address Regular Expression
was ran against 10 million documents. While 48
concurrent instances took 21 minutes to process, 92
concurrent instances took less than 6 min to process.
This time includes instance launch time and start time of
the Hadoop cluster. The total cost for 48 instances was
around $5 and 92 instances was less than $10.

Conclusion

Instead of building your applications on fixed and rigid
infrastructures, Cloud Architectures provide a new way to
build applications on on-demand infrastructures.

GrepTheWeb demonstrates how such applications can be
built.

Without having any upfront investment, we were able to
run a job massively distributed on multiple nodes in
parallel and scale incrementally based on the demand
(users, size of the input dataset). With no idle time, the
application infrastructure was never underutilized.

In the next section, we will learn how each of the
Amazon Infrastructure Service (Amazon EC2, Amazon
S3, Amazon SimpleDB and Amazon SQS) was used and
we will share with you some of the lessons learned and
some of the best practices.

Amazon Web Services

Best Practices from Lessons Learned

In this section we highlight some of the best practices
from the lessons learned during implementation of
GrepTheWeb.

Best Practices of Amazon S3

Upload Large Files, Retrieve Small Offsets

End-to-end transfer data rates in Amazon S3 are best
when large files are stored instead of small tiny files
(sizes in the lower KBs). So instead of storing individual
files on Amazon S3, multiple files were bundled and
compressed (gzip) into a blob (.gz) and then stored on
Amazon S3 as objects. The individual files were retrieved
using the standard HTTP GET request by providing a URL
(bucket and key), offset (byte-range), and size (byte-
length). As a result, the overall cost of storage was
reduced due to reduction in the overall size of the dataset
(because of compression) and consequently the lesser
number of PUT requests required than otherwise.

Sort the Keys and Then Upload Your Dataset

Amazon S3 reconcilers show performance improvement if
the keys are pre-sorted before upload. By running a

small script, the keys (URL pointers) were sorted and
then uploaded in sorted order to Amazon S3.

Use Multi-threaded Fetching

Instead of fetching objects one by one from Amazon S3,
multiple concurrent fetch threads were started within
each map task to fetch the objects. However, it is not
advisable to spawn 100s of threads because every node
has bandwidth constraints. Ideally, users should try
slowly ramping up their number of concurrent parallel
threads until they find the point where adding additional
threads offers no further speed improvement.

Use Exponential Back-off and Then Retry

A reasonable approach for any application is to retry
every failed web service request. What is not obvious is
what strategy to use to determine the retry interval. Our

recommended approach is to use the truncated binary
exponential back-off. In this approach the exact time to
sleep between retries is determined by a combination of
successively doubling the number of seconds that the
maximum delay may be and choosing randomly a value
in that range.

We recommended that you build the exponential back-
off, sleep, and retry logic into the error handling code of
your client. Exponential back-off reduces the number of
requests made to Amazon S3 and thereby reduces the
overall cost, while not overloading any part of the
system.

Best Practices of Amazon SQS

Store Reference Information in the Message

Amazon SQS is ideal for small short-lived messages in
workflows and processing pipelines. To stay within the
message size limits it is advisable to store reference
information as a part of the message and to store the
actual input file on Amazon S3.

In GrepTheWeb, the launch queue message contains the
URL of the input file (.dat.gz) which is a small subset of a
result set (Million Search results that can have up to 10
million links). Likewise, the shutdown queue message
contains the URL of the output file (.dat.gz), which is a
filtered result set containing the links which match the
regular expression.

The following tables show the message format of the
queue and their statuses

ActionRequestId f474b439-ee32-4af0-8e0f-a62d1f7de897

Code Queued

Message Your request has been queued.

ActionName StartGrep

RegEx A(.*)zon

InputUrl

http://s3.amazonaws.com/com.alexa.msr.prod/msr_

f474b439-ee32-4af0-8e0f-

a979907de897.dat.gz?Signature=CvD9iHA%3D&Expire

s=1204840434&AWSAccessKeyId=DDXCXCCDEEDSDFGSDDX

ActionRequestId f474b439-ee32-4af0-8e0f-a62d1f7de897

Code Completed

Message
Results are now available for download from

DownloadUrl

ActionName StartGrep

StartDate 2008-03-05T12:33:05

DownloadUrl

http://s3.amazonaws.com/com.alexa.gtw.prod/gtw

_f474b439-ee32-4af0-8e0f-

a62de897.dat.gz?Signature=CvD9iIGGjUIlkOlAeHA%

3D&Expires=1204840434&AWSAccessKeyId=DDXCXCCDE

EDSDFGSDDX

Use Process-oriented Messaging and Document-
oriented Messaging

There are two messaging approaches that have worked
effectively for us: process oriented and document
oriented messaging. Process-oriented messaging is often
defined by process or actions. The typical approach is to
delete the old message from the “from” queue, and then
to add a new message with new attributes to the new
“to” queue.

Document-oriented messaging happens when one
message per user/job thread is passed through the entire
system with different message attributes. This is often
implemented using XML/JSON because it has an
extensible model. In this solution, messages can evolve,
except that the receiver only needs to understand those
parts that are important to him. This way a single
message can flow through the system and the different

Amazon Web Services

components only need to understand the parts of the
message that is important to them.

For GrepTheWeb, we decided to use the process-oriented
approach.

Take Advantage Of Visibility Timeout Feature

Amazon SQS has a special functionality that is not
present in many other messaging systems; when a
message is read from the queue it is visible to other
readers of the queue yet it is not automatically deleted
from the queue. The consumer needs to explicitly delete
the message from the queue. If this hasn't happened
within a certain period after the message was read, the
consumer is considered to have failed and the message
will re-appear in the queue to be consumed again. This is
done by setting the so-called visibility timeout when
creating the queue. In GrepTheWeb, the visibility timeout
is very important because certain processes (such as the
shutdown controller) might fail and not respond (e.g.,
instances would stay up). With the visibility timeout set
to a certain number of minutes, another controller thread
would pick up the old message and resume the task (of
shutting down).

Best practices of Amazon SimpleDB

Multithread GetAttributes() and PutAttributes()

In Amazon SimpleDB, domains have items, and items
have attributes. Querying Amazon SimpleDB returns a
set of items. But often, attribute values are needed to
perform a particular task. In that case, a query call is
followed by a series of GetAttributes calls to get the

attributes of each item in the list. As you can guess, the
execution time would be slow. To address this, it is highly
recommended to multi-thread your GetAttributes calls
and to run them in parallel. The overall performance
increases dramatically (up to 50 times) when run in
parallel. In the GrepTheWeb application to generate
monthly activity reports, this approach helped create
more dynamic reports.

Use Amazon SimpleDB in Conjunction With Other
Services

Build frameworks, libraries and utilities that use
functionality of two or more services together in one. For
GrepTheWeb, we built a small framework that uses
Amazon SQS and Amazon SimpleDB together to
externalize appropriate state. For example, all controllers
are inherited from the BaseController class. The
BaseController class’s main responsibility is to dequeue
the message from the “from” queue, validate the
statuses from a particular Amazon SimpleDB domain,
execute the function, update the statuses with a new
timestamp and status, and put a new message in the “to”
queue. The advantage of such a setup is that in an event
of hardware failure or when controller instance dies, a
new node can be brought up almost immediately and
resume the state of operation by getting the messages
back from the Amazon SQS queue and their status from
Amazon SimpleDB upon reboot and makes the overall
system more resilient.

Although not used in this design, a common practice is to
store actual files as objects on Amazon S3 and to store
all the metadata related to the object on Amazon
SimpleDB. Also, using an Amazon S3 key to the object as
item name in Amazon SimpleDB is a common practice.

Controller

Thread

Queue

A

Queue

B
1. Controller dequeues message from

Queue A

2. Controller executes Tasks (for eg.

Launch, monitor etc)

3. Controller Updates Statuses in status

DB

4. Controller enqueues new message in

Queue B

Execute Tasks

GetMessage() PutMessage()

Status

DB

replaceableAttribute()

Public Abstract BaseController (SQSMessageQueue fromQueue, SQSMessageQueue toQueue, SDBDomain

domain)

Figure 7: Controller Architecture and Workflow

Amazon Web Services

Best Practices of Amazon EC2

Launch Multiple Instances All At Once

Instead of waiting for your EC2 instances to boot up one
by one, we recommend that you start all of them at once
with a simple run-instances command that specifies the
number of instances of each type.

Automate As Much As Possible

This is applicable in everything we do and requires a
special mention because automation of Amazon EC2 is
often ignored. One of the biggest features of Amazon EC2
is that you can provision any number of compute
instances by making a simple web service call.
Automation will empower the developer to run a dynamic
programmable datacenter that expands and contracts

based on his needs. For example, automating your build-
test-deploy cycle in the form of an Amazon Machine
Image (AMI) and then running it automatically on
Amazon EC2 every night (using a CRON job) will save a
lot of time. By automating the AMI creation process, one
can save a lot of time in configuration and optimization.

Add Compute Instances On-The-Fly

With Amazon EC2, we can fire up a node within minutes.
Hadoop supports the dynamic addition of new nodes and
task tracker nodes to a running cluster. One can simply
launch new compute instances and start Hadoop
processes on them, point them to the master and
dynamically grow (and shrink) the cluster in real-time to
speed up the overall process.

Safeguard Your AWS credentials When Bundling an
AMI

If your AMI is running processes that need to
communicate with other AWS web services (for polling
the Amazon SQS queue or for reading objects from
Amazon S3), one common design mistake is embedding

the AWS credentials in the AMI. Instead of embedding
the credentials, they should be passed in as arguments
using the parameterized launch feature and encrypted
before being sent over the wire. General steps are:

1. Generate a new RSA keypair (use OpenSSL tools).
2. Copy the private key onto the image, before you

bundle it (so it will be embedded in the final AMI).
3. Post the public key along with the image details, so

users can use it.
4. When a user launches the image they must first

encrypt their AWS secret key (or private key if you
wanted to use SOAP) with the public key you gave
them in step 3. This encrypted data should be
injected via user-data at launch (i.e. the
parameterized launch feature).

5. Your image can then decrypt this at boot time and
use it to decrypt the data required to contact
Amazon S3. Also be sure to delete this private key
upon reboot before installing the SSH key (i.e.
before users can log into the machine). If users
won't have root access then you don't have to delete
the private key, just make sure it's not readable by
users other than root.

Credits

Special Thanks to Kenji Matsuoka and Tinou Bao – the
core team that developed the GrepTheWeb Architecture.

Further Reading

Amazon SimpleDB White Papers
Amazon SQS White paper
Hadoop Wiki
Hadoop Website
Distributed Grep Examples
Map Reduce Paper

Blog: Taking Massive Distributed Computing to the
Common man – Hadoop on Amazon EC2/S3

Amazon Web Services

Appendix 1: Amazon S3, Amazon SQS, Amazon SimpleDB – When to Use Which?

The table will help explain which Amazon service to use when:

 Amazon S3 Amazon SQS Amazon SimpleDB

Ideal for Storing Large write-once,
read-many types of objects

Small short-lived transient
messages

Querying light-weight
attribute data

Ideal examples Media-like files, audio, video,
large images

Workflow jobs,
XML/JSON/TXT messages

Querying, Mapping, tagging,
click-stream logs, metadata,
state management

Not recommended for Querying, content
distribution

Large objects, persistent
objects

Transactional systems

Not recommended
examples

Database, File Systems Persistent data stores OLTP, DW cube rollups

Recommendations

Since the Amazon Web Services are primitive building block services, the most value is derived when they are used in
conjunction with other services

• Use Amazon S3 and Amazon SimpleDB together whenever you want to query Amazon S3 objects using
their metadata

We recommend you store large files on Amazon S3 and the associated metadata and reference information on Amazon
SimpleDB so that developers can query the metadata. Read-only metadata can also be stored on Amazon S3 as
metadata on object (e.g. author, create date etc).

Amazon S3 entities Amazon SimpleDB entities

Bucket Domain (private to subscriber)

Key/S3 URI Item name

Metadata describing S3 object Attributes of an item

• Use SimpleDB and Amazon SQS together whenever you want an application to be in phases

Store transient messages in Amazon SQS and statuses of job/messages in Amazon SimpleDB so that you can update
statuses frequently and get the status of any request at any time by simply querying the item. This works especially
well in asynchronous systems.

• Use Amazon S3 and Amazon SQS together whenever you want to create processing pipelines or producer-
consumer solutions

Store raw files on Amazon S3 and insert a corresponding message in an Amazon SQS queue with reference and
metadata (S3 URI etc)

