
A Stateful Intrusion Detection System
for World-Wide Web Servers

Giovanni Vigna William Robertson Vishal Kher Richard A. Kemmerer

Reliable Software Group
Department of Computer Science

University of California, Santa Barbara
{vigna,wkr,vkher,kemm}@cs.ucsb.edu

Abstract

Web servers are ubiquitous, remotely accessible, and of-
ten misconfigured. In addition, custom web-based appli-
cations may introduce vulnerabilities that are overlooked
even by the most security-conscious server administrators.
Consequently, web servers are a popular target for hack-
ers. To mitigate the security exposure associated with web
servers, intrusion detection systems are deployed to analyze
and screen incoming requests. The goal is to perform early
detection of malicious activity and possibly prevent more
serious damage to the protected site. Even though intrusion
detection is critical for the security of web servers, the in-
trusion detection systems available today only perform very
simple analyses and are often vulnerable to simple evasion
techniques. In addition, most systems do not provide sophis-
ticated attack languages that allow a system administrator
to specify custom, complex attack scenarios to be detected.
This paper presents WebSTAT, an intrusion detection sys-
tem that analyzes web requests looking for evidence of mali-
cious behavior. The system is novel in several ways. First of
all, it provides a sophisticated language to describe multi-
step attacks in terms of states and transitions. In addition,
the modular nature of the system supports the integrated
analysis of network traffic sent to the server host, operating
system-level audit data produced by the server host, and
the access logs produced by the web server. By correlating
different streams of events, it is possible to achieve more ef-
fective detection of web-based attacks.
Keywords: World-Wide Web, Security, Intrusion Detection

1 Introduction

Attacks against web servers and web-based applications
account for a substantial portion of the security incidents

on the Internet [11]. The large number of web servers and
the continuous disclosure of vulnerabilities associated with
web-based applications makes web servers a popular target
for malicious hackers and worms [3, 4]. In fact, in the pe-
riod between April 2001 and March 2002 web-related vul-
nerabilities accounted for 23% of the total number of vul-
nerabilities disclosed to the public [19].

Intrusion detection plays an important role in addressing
the security problems of web servers, by providing timely
identification of malicious activity and supporting effective
response to attacks. Unfortunately, detection of attacks has
been performed by applying simple pattern-matching tech-
niques to the contents of HTTP requests or by identifying
trends in a large set of web-related events. In addition, most
intrusion detection systems focus on a single event stream,
such as the network traffic directed to a server host or the
access logs produced by a server application. The lack of
a stateful detection model and the inability to analyze dif-
ferent event streams in an integrated way severely limits the
effectiveness of current intrusion detection approaches.

To improve the detection of web-based attacks, we pro-
pose an integrated approach that performs intrusion detec-
tion using stateful analysis of multiple event streams. The
approach is centered around the State-Transition Analy-
sis Technique (STAT) [9], which supports the modeling of
multi-step, complex attacks in terms of states and transi-
tions. STAT-based intrusion detection systems can be de-
veloped in a modular fashion, by extending an application-
independent runtime with components that deal with spe-
cific application domains.

This paper describes WebSTAT, a STAT-based intrusion
detection system that supports the modeling and detection
of sophisticated attacks. WebSTAT operates on multiple
event streams, and it is able to correlate both network-level
and operating system-level events with entries contained in
server logs. This integrated approach supports more effec-
tive detection of web-based attacks and generates a reduced

1

number of false positives.
The remainder of this paper is structured as follows. Sec-

tion 2 describes related work on the detection of web-based
intrusions. Section 3 describes the STAT framework, which
has been used as the basis for the development of WebSTAT.
The characteristics of WebSTAT are presented in Section 4.
Section 5 evaluates the performance impact of the system
on deployed web servers. Finally, Section 6 draws conclu-
sions and outlines future work.

2 Related Work

Intrusion detection is performed by analyzing one or
more input event streams, looking for the manifestation of
an attack. Historically, detection has been achieved by fol-
lowing one of two different approaches: anomaly detection
or misuse detection. Anomaly detection relies on models of
the “normal” behavior of a computer system. These models
can focus on the users, the applications, or the network. Be-
havior profiles are built by performing a statistical analysis
on historical data [8, 10] or by using rule-based approaches
to specify behavior patterns [12, 24, 25]. An anomaly detec-
tor then compares actual usage patterns against established
profiles to identify abnormal patterns of activity.

Misuse detection systems take a complementary ap-
proach. Misuse detection systems are equipped with a num-
ber of attack descriptions. These descriptions (or “signa-
tures”) are matched against a stream of audit data to find
evidence that the modeled attack is occurring [9, 14, 16].

Anomaly and misuse detection both have advantages and
disadvantages. Anomaly detection systems have the advan-
tage of being able to detect previously unknown attacks.
This advantage is paid for with a large number of false pos-
itives and the difficulty of training a system for a very dy-
namic environment. Misuse detection systems can detect
only those attacks that have been modeled, even though, in
some cases, it is possible to detect variations of the attacks.
This limitation is balanced by the highly focused analysis of
the audit data that these systems can perform. As a conse-
quence, misuse detection system are less prone to the gen-
eration of false positives. Because of this, misuse detection
is by far the most popular approach to intrusion detection.
Misuse detection systems can be further classified using the
type of analysis they perform and the source event stream
they use.

Misuse detection analysis can be stateless or stateful.
Stateless analysis examines each event in the input stream
independently, while stateful analysis considers the rela-
tionships between events and is able to detect event “histo-
ries” that represent attacks. This analysis is more powerful
and allows one to detect more complex attacks. At the same
time, stateful approaches are more expensive in terms of
CPU and memory requirements and may be vulnerable to

denial-of-service attacks that target the intrusion detection
system itself.

Misuse detection analysis can be performed on different
event streams. Traditionally, event sources are either rep-
resented by packets transmitted on a network segment or
by the audit records produced by the auditing facility of an
operating system. Examples of event streams are the au-
dit records generated by the Solaris Basic Security Module
(BSM) [17] and traffic logs collected using tcpdump [18].
Recently, the focus of analysis has been broadened to in-
clude other event sources, including the logs produced by
applications [1] and the alerts produced by the intrusion de-
tection systems themselves [20].

Misuse detection of web-based attacks has been per-
formed both at the network level, analyzing network traf-
fic [16], and at the application level, analyzing server
logs [7]. Both of these approaches have some limitations.

Network-based intrusion detection is vulnerable to in-
sertion and evasion attacks [15]. These attacks attempt to
desynchronize the view of the intrusion detection system
(IDS) with respect to the view of the actual target, that is,
the web server. In addition, intrusion detection systems do
not take into account the application-level logic of the web
server, and, therefore, they cannot identify attacks that ex-
ploit the organization and configuration of the server ap-
plication. Finally, only a few network-based intrusion de-
tection systems support stateful analysis of web requests.
Maintaining information about histories of requests is an
important aspect of intrusion detection, but this type of anal-
ysis is seldom performed because of the complexity intro-
duced by the detection of multi-step attacks.

Application-based intrusion detection solves some of the
problems that are inherent to network-based detection of
web-based attacks. For example, in [2], the authors de-
scribe an intrusion detection system that is embedded in an
Apache web server. The advantage of this solution is the
ability to perform intrusion detection analysis at different
stages in the processing of client requests. This approach
makes evasion techniques ineffective, because the view of
the intrusion detection system and the view of the server
application are tightly integrated. On the other hand, a dis-
advantage of this approach is that by “in-lining” intrusion
detection analysis the performance of the web server is im-
pacted. In addition, the proposed solution is specific to the
Apache web server and cannot be easily ported to different
servers.

A different approach is followed by the system described
in [1]. In this case, the intrusion detection system analyzes
the logs generated by a web server, looking for patterns of
malicious activity. This approach does not directly impact
the efficiency of the server application. On the other hand,
the attacks that were analyzed were limited to the exploita-
tion of CGI scripts. Attacks that target the web server it-

2

self, such as buffer overflows, are not detected. In addi-
tion, the analysis performs simple pattern matching on the
URL contained in a single request. Even though a module
to combine alerts is provided, composite patterns are lim-
ited to the use of Boolean logic (e.g., conjunction of alert
conditions). Therefore, attacks that may involve multiple
steps, with complex timing relationships between requests,
cannot be modeled.

The approach to intrusion detection presented in this pa-
per performs stateful analysis on a number of web-related
event streams. The approach has been implemented, and
an intrusion detection system, called WebSTAT, has been
developed by leveraging the STAT framework [22]. The
resulting system has a number of advantages in terms of
flexibility and performance.

First of all, complex multi-step attacks can be modeled
in a high-level language, called STATL [6]. The expressive-
ness of the language allows the attack modeler to describe
timing relationships between events, the branching of attack
histories, and the unwinding of partially matched scenarios.
Second, the system can operate on logs produced by differ-
ent web servers, such as Apache and Microsoft IIS. Third,
the system can perform integrated analysis of multiple event
streams. The multi-threaded nature of the event collection
module supports the concurrent analysis of multiple web
server logs, and the correlation of these event streams with
lower-level event streams, such as operating system-level
audit records and network packets. Finally, the system al-
lows an administrator to associate response actions with the
intermediate steps of an attack. This feature supports timely
deployment of countermeasures and the fine-tuning of intru-
sion detection responses with respect to the site’s security
policy.

3 The STAT Framework

The WebSTAT intrusion detection system has been de-
veloped by using the STAT framework. The framework pro-
vides the implementation of a domain-independent analysis
engine that can be extended in a well-defined way to per-
form intrusion detection analysis in specific application do-
mains.

The STAT framework centers around an intrusion mod-
eling technique that characterizes attacks in terms of transi-
tions between the security states of a system. This approach
is supported by the STATL attack modeling language.

The STATL language provides constructs to represent an
attack as a composition of states and transitions. States are
used to characterize different snapshots of a system during
the evolution of an attack. Obviously, it is not feasible to
represent the complete state of a system (e.g., volatile mem-
ory, file system); therefore, a STATL scenario uses variables
to record just those parts of the system state that are needed

to define an attack signature (e.g., the value of a counter or
the source of an HTTP request). A transition has an associ-
ated action that is a specification of the event that can cause
the scenario to move to a new state. For example, an action
can be the opening of a TCP connection or the execution
of a CGI script. The space of possible relevant actions is
constrained by a transition assertion, which is a filter con-
dition on the events that can possibly match the action. For
example, an assertion can require that a TCP connection be
opened with a specific destination port or that a CGI appli-
cation be invoked with specific parameters.

It is possible for several occurrences of the same attack
to be active at the same time. A STATL attack scenario,
therefore, has an operational semantics in terms of a set of
instances of the same scenario specification. The scenario
specification represents the scenario’s definition and global
environment, and a scenario instance represents a particular
attack that is currently in progress.

The evolution of the set of instances of a scenario is de-
termined by the type of transitions in the scenario definition.
A transition can be nonconsuming, consuming, or unwind-
ing.

A nonconsuming transition is used to represent a step
of an occurring attack that does not prevent further occur-
rences of attacks from spawning from the transition’s source
state. Therefore, when a nonconsuming transition fires,
the source state remains valid, and the destination state be-
comes valid too. For example, if an attack has two steps
that are the uploading of a file to a web server though FTP
followed by an HTTP request for that file, then the second
step does not invalidate the previous state. That is, another
HTTP request for the same file can occur. Semantically,
the firing of a nonconsuming transition causes the creation
of a new scenario instance. The original instance is still in
the original state, while the new instance is in the state that
is the destination state of the fired transition. In contrast,
the firing of a consuming transition makes the source state
of a particular attack occurrence invalid. Semantically, the
firing of a consuming transition does not generate a new
scenario instance; it simply changes the state of the original
one. Unwinding transitions represent a form of “rollback,”
and they are used to describe events and conditions that can
invalidate the progress of one or more scenario instances
and require the return to an earlier state. For example, the
deletion of a file can invalidate a condition needed for an
attack to complete, and, therefore, a corresponding scenario
instance can be brought back to a previous state, such as be-
fore the file was created. For details about the semantics of
the STATL language, see [6].

The STAT Core module is the runtime for the STATL
language. The Core implements the concepts of state, tran-
sition, instance, timer, etc. In addition, the STAT Core is re-
sponsible for obtaining events from the target environment,

3

and matching this event stream against the actions and as-
sertions corresponding to transitions in the active attack sce-
narios.

The STATL language and the Core runtime are domain-
independent. They do not support any domain-specific fea-
tures, which may be necessary to perform intrusion detec-
tion analysis in particular domains or environments. For
example, network events such as an IP packet or the open-
ing of a TCP connection cannot be represented in STATL
natively. Therefore, the STAT framework provides a num-
ber of mechanisms to extend the STATL language and the
runtime to match the characteristics of a specific target do-
main [23].

Domain-specific events and predicates are defined by
subclassing specific C++ classes of the STAT Framework.
These classes are encapsulated in a language extension
module. The module is then compiled into a dynamically
linked library (i.e., a “.so” file in a UNIX system or a
DLL file in a Windows system). Once the event set and as-
sociated predicates for a language extension are available,
it is possible to use them in a STATL scenario description
by including them with the STATL use keyword. STATL
scenarios are then translated into C++ and compiled into
dynamically linked modules as well.

The input event streams analyzed by a sensor are pro-
vided by one or more event providers. An event provider
collects events from the external environment (e.g., by ob-
taining packets from the network driver), creates events
as defined in one or more STAT language extensions, en-
capsulates these events into generic STAT events, and in-
serts them into the input queue of the STAT Core. Event
providers are compiled into dynamically linked modules,
following a process that is similar to the one followed for
language extensions.

In summary, a STAT-based sensor is created by devel-
oping a language extension that describes the particular do-
main of the application, an event provider that retrieves in-
formation from the environment and produces STAT events,
and attack scenarios that describe attacks in terms of state-
transition models of STAT events. In addition, it is possi-
ble to create response libraries that are specific to a certain
domain. The response functions in the library can be dy-
namically associated with the states modeled in the attack
scenarios.

4 An Intrusion Detection System for Web
Servers

The WebSTAT intrusion detection system was developed
by following the process outlined above. WebSTAT was
built by developing new modules and reusing other mod-
ules developed for other sensors. More precisely, a lan-
guage extension module that defines web-specific events

was developed and an event provider that parses web server
logs and generates the corresponding events was also de-
veloped. In addition, pre-existing language extensions and
event providers that manage operating system-level and
network-level events were included in the system. These
modules were originally developed to build network-based
and host-based intrusion sensors [21] but could be re-used
in WebSTAT without modification, thanks to the modular
nature of the STAT framework. As a last step, a num-
ber of STATL scenarios were developed to detect attacks
against web servers. These attacks rely on one or more
event streams to identify the evidence of an attack. The
resulting system is shown in Figure 1.

The web language extension contains the definition of
the basic client request event, auxiliary types, and web-
specific predicates. Figure 2 shows a simplified version
of the class for the Request event, which is an abstrac-
tion of an entry in the application log generated by a web
server. Note that the class Request is a subclass of
STAT Event, which is the root event class of the STAT
framework. Every new event introduced by a language ex-
tension must be a subclass of STAT Event.

class Request : public STAT_Event
{
public:

string request; // Client request
string userAgent; // User agent
string encodedRequest; // Decoded string
bool isRequestEncoded; // Encoding flag

[...]
}

Figure 2. The Request event defined in the
web language extension.

The log-based event provider reads the events stored
in the server application log file as they are generated.
The event provider parses the Common/Extended Log For-
mat representation of the events and creates corresponding
Request objects. These events are then inserted in the
STAT Core event queue. The STAT Core extracts the events
from the event queue and passes them to active attack sce-
narios for analysis (see Figure 1).

Attacks are represented by using STATL to specify state-
transition models over the stream of events generated by the
event providers. A number of attack scenarios have been
developed; the following sections describe a subset of the
existing scenarios.

A common pattern used by many of the WebSTAT sce-
narios is the “counting scenario” pattern. Each scenario that
conforms to this pattern requires the following integer pa-

4

OS−level
Extension

TCP/IP
Extension

Core
STAT

Response
Module

Extension
Web

Server Log OS Network

Event queue

Server Log

Server host

System
Auditing

Web Server WebSTAT

Network
Driver

Network

Attack Scenarios

Event Provider Event Provider Event Provider

Figure 1. The WebSTAT component-based architecture. WebSTAT is obtained by composing the
domain-independent STAT runtime with a number of language extensions, event providers, attack
scenarios, and response functions.

rameters to be supplied: threshold, alert freq, and
inactivity timeout. The first parameter specifies the
number of occurrences of the event that need to appear in
the event stream before an alert is raised. The second pa-
rameter indicates the frequency at which intermediate alerts
are to be produced after the threshold has been overcome
and before the attack is terminated. The attack is consid-
ered terminated when the attacker is inactive for the time
specified by the inactivity timeout parameter.

The web crawler, pattern matching, and repeated failed
access scenarios presented in the following sections are
examples of this generic counting scenario. The state-
transition diagram of the counting scenario is shown in Fig-
ure 3. The reader should recall from section 3 that transi-
tions can be nonconsuming, consuming, or unwinding. In a
state-transition diagram the three types of transition are rep-
resented graphically using single headed, double-headed, or
dashed-line arrows, respectively, and the initial state of a
scenario is represented as state S0.

The STAT framework also provides a number of generic
response modules that scenarios can use to generate alerts.
By default, WebSTAT uses the IDMEF response module,
which generates alerts in IDMEF format [5]. However,
WebSTAT can be extended dynamically with other response
modules. Examples of possible response modules include
the resetting of TCP connections and the dynamic reconfig-
uration of web servers in response to a detected attack.

4.1 Malicious Web Crawler Scenario

Web servers use a special file, robots.txt, to indicate
what the acceptable behavior for robots (spiders/crawlers)
visiting the site is. The web crawler scenario checks
if robots indexing the contents of the web site hosted
by the server adhere to the instructions specified in the
robots.txt file. An alarm is raised if any web crawler
violates the specified instructions. For this scenario to func-
tion, WebSTAT requires the User-Agent field to be logged;
therefore, the server must be configured to log the requests
in the Extended Log Format (ELF).

The robots.txt file is formatted according to the
Robots Exclusion Protocol [13]. This file consists of a
set of records in the form <Field>: <Value>. The
record starts with one or more User-agent lines, spec-
ifying which robots the record applies to, followed by
Disallow and Allow instructions to that robot. For ex-
ample, consider the following records:

User-agent: *
Disallow: /cyberworld/map/
User-agent: cybermapper
Disallow:

This example specifies that no robots should visit any
URL starting with “/cyberworld/map/”, except for the
robot called cybermapper. All robots must obey the first
record in /robots.txt that contains a User-agent

5

S0 Event
occurred

Threshold:
start

alert_freq
timer

Attack
complete

Report:
restart

alert_freq
timer

Attacked

Inactivity
 timeout

Event and threshold != 0:
 count = 1,
 start inactivity timer

Event and count == threshold:
 count += 1,
 restart inactivity timer

Event and count < threshold:
 count += 1,
 restart inactivity timer

Inactivity
 timeout

alert_freq
 timeout

Event:
 count += 1,
 restart inactivity
 timer

Event and threshold == 0:
 count += 1,
 start inactivity timer

Inactivity
 timeout

RESPONSE
Start of attack

RESPONSE
Attack in progress

Event:
 count +=1,
 restart inactivity timer

Inactivity
 timeout

RESPONSE
End of attack

alert_freq
 timeout

Event:
 count += 1,
 restart inactivity timer

Figure 3. State-transition diagram for the “counting scenario” attack pattern.

field whose value contains the name of the robot as a sub-
string. If no such record exists, they should obey the first
record with a User-agent field with a “*” value, if
present. If no record satisfies either condition, or no records
are present, then the access is unlimited.

The malicious web crawler attack scenario reads the ro-
bots.txt file and, for each request, uses the request’s
URL and User-Agent header field to check whether the
crawler is allowed to access the requested URL. If not, a
compromised state is reached and a response function is in-
voked.

Because the malicious web crawler scenario is an in-
stance of the generic counting scenario attack template (Fig-
ure 3), it requires parameters to be specified for the number
of invalid robot accesses that are to be considered an attack,
the frequency alerts are to be generated during an attack,
and the length of the inactivity timeout.

4.2 Pattern Matching Scenario

WebSTAT can detect attacks embedded in URLs. For
example, the presence of the substring /default.ida in
a request is used to detect an attempted propagation of the
Code Red worm. WebSTAT uses pattern matching to detect
and report these malicious requests. Pattern matching sce-
narios take a list of regular expressions as a parameter; each
item in the list can match one or more attacks. The regular
expressions in the list are used to match against the current
event’s request (and headers, if the ELF is used). A com-
promised state is reached when one of these regular expres-
sions matches a request or header. WebSTAT uses the Stan-
dard C regular expression library, which implements IEEE
Std 1003.2-1992 (“POSIX.2”) regular expressions. Cur-

rently, WebSTAT uses 66 regular expressions that represent
attacks. New attacks can be detected by simply adding a
new regular expression, which can be accomplished dynam-
ically (i.e., without stopping WebSTAT’s execution). Fur-
thermore, one can group signatures and load multiple pat-
tern matching scenarios, one per group, to match a request
against every regular expression for that group. With this
feature, the administrator can set threshold and timeout val-
ues for different groups depending upon the severity of the
attack. To improve the performance of the system, regu-
lar expressions are compiled during the initialization of the
scenario. The state-transition diagram for these scenarios is
identical to the counting scenario shown in Figure 3.

In addition to supplying the parameters common to all
counting scenarios, the pattern-matching scenario takes a
string regex parameter, which specifies a list of regu-
lar expressions in an XML-based format as shown below.

<REGEX>
<expression name="CodeRed">

.*default\.ida
</expression>
<expression name="phf">

.+phf.+\%0a
</expression>

[...]

</REGEX>

4.3 Repeated Failed Access Scenario

The repeated failed access scenario checks if there are
multiple client errors, including failed authentication at-

6

tempts, from a particular client or subnet. This type of activ-
ity is a strong indication that a malicious entity is attempting
to probe the website to gain information for future attacks.
An internal counter records the number of times a failed
request originated from a certain subnet. If this counter
exceeds the event threshold parameter, an alarm is raised.
This scenario is another instance of the generic counting
scenario.

4.4 Cookie Stealing Scenario

Cookies are a state management mechanism for HTTP
(defined in RFC 2965) that is often used by web applica-
tion developers to implement session tracking. The cookie
stealing scenario detects if a cookie used as a session ID is
improperly utilized by multiple users. This is often a mani-
festation of a malicious user attempting to hijack the session
of a legitimate user to gain unauthorized access to protected
web resources.

The scenario begins by recording the issuance or initial
use of a session cookie by a remote client by mapping the
cookie to an IP address. In addition, an inactivity timer is
simultaneously set. Subsequent use of the session cookie
by the same client results in a reset of the timer, while a
cookie expiration or session timeout results in the removal
of the mapping for that cookie. If, however, a client uses
the valid session cookie of another client, then an attack
is assumed to be underway and an alarm is raised. The
cookie stealing scenario takes two parameters: timeout
and cookie name. The first parameter specifies a time-
out that corresponds to the session timeout in seconds for
the protected web application, while the second parameter
specifies the name of the cookie used for session tracking by
the protected web application. An additional requirement is
that the web server has been configured to enable cookie
logging. The state-transition diagram for this scenario is
shown in Figure 4.

s0 Cookie
in use

Cookie used by
different IPNew cookie issued

or used

Cookie used by
same IP

Session timeout
or cookie expiration

Cookie
stolen

Figure 4. State-transition diagram for the
cookie stealing scenario.

4.5 Buffer Overflow Scenario

Buffer overflows have historically been a popular attack
against web servers. Aside from missing boundary checks
within the web server itself, vulnerabilities within system
libraries as well as third-party modules can allow remote at-
tackers to gain illicit access to a host with the privileges of
the web server process. The presence of binary data in a re-
quest or an extremely long request are strong indications of
an attempt to exploit a buffer overflow. WebSTAT includes
a scenario to detect these conditions. The buffer overflow
scenario requires one parameter, length, which defines a
request length threshold that must be exceeded for an alert
to be raised. The state-transition diagram for this scenario
is shown in Figure 5.

Figure 5. State-transition diagram to detect
buffer overflow attacks.

Note that if a buffer overflow exploits a vulnerability in
the web server code, it is possible that a log entry would
never be created and the attack would go undetected.

4.6 Combining Network and Application-Level
Buffer Overflow Detection

The STAT framework makes cross-domain intrusion de-
tection scenarios possible by providing a comprehensive set
of extension and provider modules to describe and exam-
ine various event sources. With multiple event providers
loaded from different domains, attack scenarios can exam-
ine events and model attacks from several distinct points of
view. All a scenario writer needs to do in order to leverage
the capabilities provided by these modules is to import the
requisite STATL language extensions, as shown in Figure 6.

By exploiting WebSTAT’s ability to operate on differ-
ent event streams, it was possible to improve the effective-
ness of buffer overflow detection. More precisely, an im-
proved buffer overflow attack scenario was developed. The
scenario examines both web server access logs and the ac-
tual client requests as they traverse the network. This is ac-
complished by using a network-based event provider. The
provider reads the TCP/IP streams between clients and a

7

use apache;
use tcpip;

scenario multi_domain_scenario
{
[...]

}

Figure 6. Multi-domain scenario example.

web server from the network. The network packets are ana-
lyzed, looking for evidence of binary data. If binary data
is found at the network-level, the scenario watches for a
matching entry in the server logs. If none is found within
a specified timeout period, then the scenario assumes that
the attack has been successful and the web server process
is now executing the code sent by the attacker. The state-
transition diagram for this scenario is shown in Figure 7.

Figure 7. State-transition diagram for multi-
domain detection of buffer overflows.

This scenario effectively detects the recent Apache
chunked-encoding exploit, which typically does not leave
an entry in the server logs.

4.7 Document Root Escape Attack

Cross-domain analysis is not limited to web server logs
and network traffic, as in the previous scenario. For exam-
ple, the root escape scenario examines events from the web
server log and correlates them with operating system-level
audit records to detect file system access violations. More
precisely, the scenario detects if a client gained illicit ac-
cess to a file outside a web server’s document root. Figure 8
shows the state-transition diagram for the scenario.

Figure 8. State-transition diagram for the doc-
ument root escape scenario.

5 Performance Evaluation

An evaluation of the WebSTAT system was conducted to
quantify the performance overhead WebSTAT would incur
in a production web server. The experimental testbed used
during this evaluation consisted of a single system acting as
a web server loaded by multiple client systems. The web
server was a Pentium IV 1.8 GHz machine with 1 GB of
RDRAM running Apache 2.0.40 on a stock RedHat 8.0 in-
stallation. A network of Pentium IV 1.8 GHz machines with
1 GB of RDRAM each running the WebStone 2.5 bench-
mark on stock RedHat 8.0 installations acted as clients. All
systems used Intel EtherExpress 10/100 Ethernet cards run-
ning in 100BaseT full-duplex mode, and were connected
with a Cisco Catalyst 3500 XL switch.

The evaluation measured average throughput and re-
sponse times under a typical real-world workload for both a
host running standalone Apache and a host running Apache
monitored by WebSTAT. WebStone was configured to per-
form five iterations of runs of 10 minutes each, varying the
number of clients from 100 to 500 in increments of 50. The
benchmark was configured to target an augmented mirror
of the UC Santa Barbara Computer Science web server1,
which contained a mixture of static and dynamic pages. The
client traffic included requests for static and dynamic pages
as well as various attacks. Client requests were weighted to
approximate typical observed access patterns. Apache was
left in its default configuration with the exception of modifi-
cations to the server pool to increase the maximum number
of possible concurrent client requests. Finally, WebSTAT
was configured for online detection with all attack scenar-
ios enabled.

Figure 9 displays the minimum, average, and maximum
throughput for standalone Apache and Apache monitored
by WebSTAT. From the graph, one can see that both sys-
tems under test performed near the theoretical limits of the
testbed network hardware. In this case, Apache is clearly
I/O-bound. WebSTAT, however, is primarily CPU-bound;

1http://www.cs.ucsb.edu/

8

 91

 91.2

 91.4

 91.6

 91.8

 92

 92.2

 92.4

 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
b/

s)

Clients

Apache
Apache + WebSTAT

Figure 9. Minimum, average, and maximum
throughput.

most of its time is spent performing regular expression
matching against client requests, as detailed in Section 4.2.
This CPU overhead explains the slight impact on average
throughput shown in Figure 9. However, the performance
degradation is limited to less than 0.5% in the average case.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 100 150 200 250 300 350 400 450 500

R
es

po
ns

e
T

im
e

(s
)

Clients

Apache
Apache + WebSTAT

Figure 10. Minimum, average, and maximum
response times.

Figure 10 displays the minimum, average, and maxi-
mum response times for standalone Apache and Apache
monitored by WebSTAT. Readily apparent is the fact that
Apache’s response times increase linearly with the number
of concurrent client requests. Equally apparent is the fact
that WebSTAT has virtually no impact upon Apache’s re-
sponse times.

In this evaluation, the collected data demonstrates that
WebSTAT incurs a small performance overhead in average
web server throughput. Nevertheless, the drop in perfor-
mance may well be acceptable given the advanced detection
capabilities WebSTAT provides. Careful site-specific tun-
ing, which was not applied in this evaluation, would also al-
low web server administrators to further reduce WebSTAT’s
impact on web server performance.

6 Conclusions and Future Work

This paper presented an approach for stateful intrusion
detection, called WebSTAT. The approach is implemented
by extending the STAT framework to create a sensor that
performs detection of web-based attacks. WebSTAT is
novel in that it provides a sophisticated language for de-
scribing multi-step attacks in terms of states and transitions,
and these descriptions are automatically compiled into dy-
namically linked libraries, which has a number of advan-
tages in terms of flexibility and extensibility. WebSTAT also
operates on multiple event streams and is able to correlate
both network-level and operating system-level events with
entries contained in server logs. This supports more effec-
tive detection of web-based attacks and generates a reduced
number of false positives.

The WebSTAT system has been evaluated in terms of
its ability to detect attacks and the performance impact of
the detection process on deployed web servers. The results
achieved show that stateful intrusion detection can be per-
formed on high performance servers in real-time.

Future plans are to further extend the system to perform
more integrated analysis of web server logs and events col-
lected from other domains such as network traffic streams or
operating system-level event logs, as demonstrated in Sec-
tion 4.6. More detailed performance experiments will also
be run.

The current implementation of WebSTAT can be
retrieved from http://www.cs.ucsb.edu/˜rsg/
STAT/software.

Acknowledgements

This research was supported by the Army Research Of-
fice, under agreement DAAD19-01-1-0484. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
annotation thereon.

The views and conclusions contained herein are those
of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of the Army Research Office, or the U.S.
Government.

References

[1] M. Almgren, H. Debar, and M. Dacier. A lightweight
tool for detecting web server attacks. In Proceedings
of the ISOC Symposium on Network and Distributed
Systems Security, San Diego, CA, February 2000.

[2] M. Almgren and U. Lindqvist. Application-Integrated
Data Collection for Security Monitoring. In Pro-

9

ceedings of Recent Advances in Intrusion Detec-
tion (RAID), LNCS, pages 22–36, Davis,CA, October
2001. Springer.

[3] CERT/CC. “Code Red Worm” Exploiting Buffer
Overflow In IIS Indexing Service DLL. Advisory CA-
2001-19, July 2001.

[4] CERT/CC. Apache/mod ssl Worm. Advisory CA-
2002-27, October 2002.

[5] D. Curry and H. Debar. Intrusion Detection
Message Exchange Format: Extensible Markup
Language (XML) Document Type Definition.
draft-ietf-idwg-idmef-xml-07.txt, June
2002.

[6] S.T. Eckmann, G. Vigna, and R.A. Kemmerer.
STATL: An Attack Language for State-based Intrusion
Detection. Journal of Computer Security, 10(1/2):71–
104, 2002.

[7] R. Fielding. wwwstat: HTTPd Logfile Analysis
Software. http://ftp.ics.uci.edu/pub/
websoft/wwwstat/, November 1996.

[8] Paul Helman and Gunar Liepins. Statistical Foun-
dations of Audit Trail Analysis for the Detection of
Computer Misuse. In IEEE Transactions on Software
Engineering, volume Vol 19, No. 9, pages 886–901,
1993.

[9] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State
Transition Analysis: A Rule-Based Intrusion Detec-
tion System. IEEE Transactions on Software Engi-
neering, 21(3):181–199, March 1995.

[10] H. S. Javitz and A. Valdes. The NIDES Statistical
Component Description and Justification. Technical
report, SRI International, Menlo Park, CA, March
1994.

[11] D. Klein. Defending Against the Wily Surfer: Web-
based Attacks and Defenses. In Proceedings of the
USENIX Workshop on Intrusion Detection and Net-
work Monitoring, Santa Clara, CA, April 1999.

[12] C. Ko, M. Ruschitzka, and K. Levitt. Execution Mon-
itoring of Security-Critical Programs in Distributed
Systems: A Specification-based Approach. In Pro-
ceedings of the 1997 IEEE Symposium on Security and
Privacy, pages 175–187, May 1997.

[13] M. Koster. A Method for Web Robots Control. Inter-
net Draft, draft-koster-robots-00.txt, December 1996.

[14] U. Lindqvist and P.A. Porras. Detecting Computer
and Network Misuse with the Production-Based Ex-
pert System Toolset (P-BEST). In IEEE Symposium
on Security and Privacy, pages 146–161, Oakland,
California, May 1999.

[15] T.H. Ptacek and T.N. Newsham. Insertion, Evasion
and Denial of Service: Eluding Network Intrusion De-
tection. Technical report, Secure Networks, January
1998.

[16] M. Roesch. Snort - Lightweight Intrusion Detection
for Networks. In Proceedings of the USENIX LISA
’99 Conference, November 1999.

[17] Sun Microsystems, Inc. Installing, Administering, and
Using the Basic Security Module. 2550 Garcia Ave.,
Mountain View, CA 94043, December 1991.

[18] Tcpdump and Libpcap Documentation. http://
www.tcpdump.org/, June 2002.

[19] Security Tracker. Vulnerability statistics april 2001-
march 2002. http://www.securitytracker.
com/learn/statistics.html, April 2002.

[20] A. Valdes and K. Skinner. An Approach to Sensor
Correlation. In Proceedings of RAID 2000, Tolouse,
France, October 2000.

[21] G. Vigna, S. Eckmann, and R. Kemmerer. The STAT
Tool Suite. In Proceedings of DISCEX 2000, Hilton
Head, South Carolina, January 2000. IEEE Computer
Society Press.

[22] G. Vigna, R.A. Kemmerer, and P. Blix. Designing a
Web of Highly-Configurable Intrusion Detection Sen-
sors. In W. Lee, L. Mè, and A. Wespi, editors, Pro-
ceedings of the 4th International Symposiun on Re-
cent Advances in Intrusion Detection (RAID 2001),
volume 2212 of LNCS, pages 69–84, Davis, CA, Oc-
tober 2001. Springer-Verlag.

[23] G. Vigna, F. Valeur, and R.A. Kemmerer. Design-
ing and Implementing a Family of Intrusion Detection
Systems. In Proceedings of the 9th European Software
Engineering Conference, Helsinki, Finland, Septem-
ber 2003.

[24] D. Wagner and D. Dean. Intrusion Detection via Static
Analysis. In Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, May 2001. IEEE
Press.

[25] C. Warrender, S. Forrest, and B.A. Pearlmutter. De-
tecting intrusions using system calls: Alternative data
models. In IEEE Symposium on Security and Privacy,
pages 133–145, 1999.

10

