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Abstract†

Current database trigger systems have extremely
limited scalability. This paper proposes a way to develop
a truly scalable trigger system.  Scalability to large
numbers of triggers is achieved with a trigger cache to
use main memory effectively, and a memory-conserving
selection predicate index based on the use of unique
expression formats called expression signatures.  A key
observation is that if a very large number of triggers are
created, many will have the same structure, except for the
appearance of different constant values.  When a trigger
is created, tuples are added to special relations created
for expression signatures to hold the trigger’s constants.
These tables can be augmented with a database index or
main-memory index structure to serve as a predicate
index.  The design presented also uses a number of types
of concurrency to achieve scalability, including token
(tuple)-level, condition-level, rule action-level, and data-
level concurrency.

1. Introduction
Trigger features in commercial database products are

quite popular with application developers since they allow
integrity constraint checking, alerting, and other
operations to be performed uniformly across all
applications. Unfortunately, effective use of triggers is
hampered by the fact that current trigger systems in
commercial database products do not scale.  Numerous
database products only allow one trigger for each type of
update event (insert, delete and update) on each table.
More advanced commercial trigger systems have effective
limits of a few hundred triggers per table.

Application designers could effectively use large
numbers of triggers (thousands or even millions) in a
single database if it were feasible.  The advent of the

                                                          
† This research was supported by the Defense Advanced
Research Projects Agency, NCR Teradata Corporation, and
Informix Corporation.

Internet and the World Wide Web makes it even more
important that it be possible to support large numbers of
triggers.  A web interface could allow users to
interactively create triggers over the Internet.  This type of
architecture could lead to large numbers of triggers
created in a single database.

This paper presents strategies for developing a highly
scalable trigger system.  The concepts introduced here are
being implemented in a system we are developing called
TriggerMan, which consists of an extension module for an
object-relational DBMS (a DataBlade for Informix with
Universal Data Option, hereafter simply called Informix
[Info99]), plus some additional programs to be described
later.  The approach we propose for implementing a
scalable trigger system uses asynchronous trigger
processing and a sophisticated predicate index.  This can
give good response time for updates, while still allowing
processing of large numbers of potentially expensive
triggers.  The scalability concepts outlined in this paper
could also be used in a trigger system inside a DBMS
server.

A key concept that can be exploited to develop a
scalable trigger system is that if a large number of triggers
are created, it is almost certainly the case that many of
them have almost the same format.  Many triggers may
have identical structure except that one constant has been
substituted for another, for example.  Based on this
observation, a trigger system can identify unique
expression signatures, and group predicates taken from
trigger conditions into equivalence classes based on these
signatures.

The number of distinct expression signatures is fairly
small, small enough that main memory data structures can
be created for all of them.  In what follows, we discuss the
TriggerMan command language and architecture, and then
turn to a discussion of how large numbers of triggers can
be handled effectively using expression signature
equivalence classes and a novel selection predicate
indexing technique.



2. The Tr iggerMan Command Language
Commands in TriggerMan have a keyword-delimited,

SQL-like syntax. TriggerMan supports the notion of a
connection to a local Informix database, a remote
database, or a generic data source program. A connection
description for a database contains information about the
host name where the database resides, the type of database
system running (e.g. Informix, Oracle, Sybase, DB2 etc.),
the name of the database server, a user ID, and a
password.  A single connection is designated as the
default connection. There can be multiple data sources
defined for a single connection.  Data sources normally
correspond to tables, but this is not essential.

Triggers can be defined using this command:

create trigger <triggerName> [in setName]
[optionalFlags]
from fromList
[on eventSpec]
[when condition]
[group by attributeList]
[having groupCondition]
do action

Triggers can be added to a specific trigger set.
Otherwise they belong to a default trigger set.  The from,
on, and when clauses are normally present to specify the
trigger condition.  Optionally, group by and having
clauses, similar to those available in SQL [Date93], can
be used to specify trigger conditions involving aggregates
or temporal functions.  Multiple data sources can be
referenced in the from clause.  This allows multiple-table
triggers to be defined.

An example of a rule, based on an emp table from a
database for which a connection has been defined, is
given below.  This rule sets the salary of Fred to the salary
of Bob:

create trigger updateFred
from emp
on update(emp.salary)
when emp.name = ’Bob’
do execSQL ’update emp set
salary=:NEW.emp.salary where emp.name=
’’Fred’’ ’

This rule illustrates the use of an execSQL TriggerMan
command that allows SQL statements to be run against a
database.  The :NEW notation in the rule action (the do
clause) allows reference to new updated data values, the
new emp.salary value in this case.  Similarly, :OLD allows
access to data values that were current just before an
update.  Values matching the trigger condition are
substituted into the trigger action using macro
substitution.  After substitution, the trigger action is

evaluated.  This procedure binds the rule condition to the
rule action.

An example of a more sophisticated rule (one whose
condition involves joins) is as follows.  Consider the
following schema for part of a real-estate database, which
would be imported by TriggerMan using define data
source commands:

house(hno,address,price,nno,spno)
salesperson(spno,name,phone)
represents(spno,nno)
neighborhood(nno,name,location)

A rule on this schema might be “ if a new house is
added which is in a neighborhood that salesperson Iris
represents then notify her,”  i.e.:

create trigger IrisHouseAlert
on insert to house
from salesperson s, house h, represents r
when s.name = ‘ Iris’  and s.spno=r.spno and
r.nno=h.nno
do raise event
NewHouseInIrisNeighborhood(h.hno, h.address)

This command refers to three tables.  The raise event
command used in the rule action is a special command
that allows rule actions to communicate with the outside
world [Hans98].

3. System Architecture
The TriggerMan architecture is made up of the

following components:
1. the TriggerMan DataBlade which lives inside of

Informix,
2. data sources, which normally correspond to local or

remote tables.  Most commonly, a data source will be
a local table.  In that case, standard Informix triggers
are created automatically by TriggerMan to capture
updates to the table.  We use the one trigger per table
per update event available in Informix to capture
updates and transmit them to TriggerMan by inserting
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Figure 1.  The architecture of the TriggerMan
trigger processor.



them in an update descriptor table.  For remote data
sources, data source applications transmit update
descriptors to TriggerMan through the data source
API (defined below).

3. Tr iggerMan client applications, which create
triggers, drop triggers, register for events, receive
event notifications when triggers fire, etc.,

4. one or more instances of the Tr iggerMan dr iver
program, each of which periodically invokes a special
TmanTest() function in the TriggerMan DataBlade,
allowing trigger condition testing and action
execution to be performed,

5. the Tr iggerMan console, a special application
program that lets a user directly interact with the
system to create triggers, drop triggers, start the
system, shut it down, etc.

The general architecture of the TriggerMan system is
illustrated in Figure 1. Two libraries that come with
TriggerMan allow writing of client applications and data
source programs.  These libraries define the TriggerMan
client application programming interface (API) and the
TriggerMan data source API.  The console program and
other application programs use client API functions to
connect to TriggerMan, issue commands, register for
events, and so forth.  Data source programs can be written
using the data source API.  Updates received from update
capture triggers or data source programs are consumed on
the next call to TmanTest().

As Figure 1 shows, data source programs or triggers
can place update descriptors in a table acting as a queue.
This works in the current implementation.  We plan to
allow updates to be delivered into a main-memory queue
as well in the future.  This will deliver updates faster, but
the safety of persistent update queuing will be lost.
Trigger processing in the current system is asynchronous.
If simple Informix triggers are used to capture updates,
TriggerMan could process triggers synchronously as well.
We plan to add this feature in a later implementation.

TriggerMan is based on an object-relational data
model.  The current implementation supports char,
varchar, integer, and float data types.  Support for user-
defined types is being added.

Tr igger  Condition Testing Algor ithm
TriggerMan uses a discrimination network called an A-

TREAT network [Hans96] a variation of the TREAT
network [Mira97] for trigger condition testing.  In the
future, we plan to implement an optimized type of
discrimination network called a Gator network in
TriggerMan [Hans97b].

This paper focuses primarily on efficient and scalable
selection condition testing and rule action execution.  The
results are applicable to TREAT, Rete [Forg82] and Gator

networks when used for trigger condition testing.  The
results could also be adapted to other trigger systems.

4. General Tr igger  Condition Structure
Trigger conditions have the following general

structure. The from clause refers to one or more data
sources.  The on clause may contain an event condition

for at most one of the data sources referred to in the from
list.  The when clause of a trigger is a Boolean-valued
expression.  For a combination of one or more tuples from
data sources in the from list, the when clause evaluates to
true or false.

A canonical representation of the when clause can be
formed in the following way:

1. Translate it to conjunctive normal form (CNF,
i.e. and-of-ors notation).

2. Each conjunct refers to zero, one, two, or
possibly more data sources.  Group the conjuncts
by the set of data sources they refer to.

If a group of conjuncts refers to one data source, the
logical AND of these conjuncts is a selection predicate.  If
it refers to two data sources, the AND of its conjuncts is a
join predicate.  If it refers to zero conjuncts, it is a trivial
predicate.  If it refers to three or more data sources, we
call it a hyper-join predicate.

These predicates may or may not contain constants.
The general premise of this paper is that very large
numbers of triggers will only be created if predicates in
different triggers contain distinct constant values.  Below,
we will examine how to handle selection and join
predicates that contain constants, so that scalability to
large numbers of triggers can be achieved.

5. Scalable Predicate Indexing Using
Expression Signatures

In what follows, we treat the event (on) condition
separately from the when condition as a convenience.
However, event conditions and when clause conditions
are both logically selection conditions [Hans96] that can
be applied to update descriptors submitted to the system.

A tuple variable is a symbol, defined in the from
clause of a trigger, which corresponds to a usage of a
particular data source in that trigger.  The general form of
a selection predicate is:

 DataSource:  emp
 Event:  insert
 SyntaxTree:

emp.sal

>

CONSTANT

Figure 2.  Example expression signature syntax
tree.



)OR...OROR(AND...AND)OR...OROR( 2112211 1 KKNKKN CCCCCC

where all clauses ijC appearing in the predicate refer to

the same tuple variable.  Furthermore, each such clause is
an atomic expression that does not contain Boolean
operators, other than possibly the NOT operator.  A single
clause may contain constants.

For convenience, we assume that every data source has
a data source ID.  A data source corresponds to a single
table in a remote or local database, or even a single stream
of tuples sent in messages from an application program.
An expression signature for a general selection or join
predicate expression is a triple consisting of a data source
ID, an operation code (insert, delete, update, or
insertOrUpdate), and a generalized expression. If a tuple
variable appearing in the from clause of a trigger does not
have any event specified in the on clause, then the event is
implicitly insert or update for that tuple variable.  The
format of the generalized expression is:

)’OR...OR’OR’(AND...AND)’OR...OR’OR’( 2112211 1 KKNKKN CCCCCC

where clause ijC’ is the same as ijC except that all

constants in ijC are substituted with placeholder symbols.

If the entire expression has m constants, they are
numbered 1 tom from left to right.  If the constant

number ,1, mxx ≤≤ appears in the clause ijC in the

original expression, then it is substituted with placeholder

xCONSTANT  in ijC  in the expression signature.

As a practical matter, most selection predicates will not
contain OR’s, and most will have only a single clause.
Consider this example trigger condition:

on insert to emp
when emp.salary > 80000

In an implementation, the generalized expression in an
expression signature can be a syntax tree with
placeholders at some leaf nodes representing the location
where a constant must appear.  For example, the signature
of the trigger condition just given can be represented as
shown in

Figure 2.  The condition:

on insert to emp
when emp.salary > 50000

has a different constant than the earlier condition, but it
has the same signature. In general, an expression signature
defines an equivalence class of all instantiations of that
expression with different constant values.

If an expression is in the equivalence class defined by
an expression signature, we say the expression matches
the expression signature.

Expression signatures represent the logical structure or
schema of a part of a trigger condition.  We assert that in a
real application of a trigger system like TriggerMan, even
if very large numbers of triggers are defined, only a
relatively small number of unique expression signatures
will ever be observed - perhaps a few hundred or a few

thousand at most.  Based on this observation, it is feasible
to keep a set of data structures in main memory to
represent all the distinct expression signatures appearing
in all triggers.  Since many triggers may have the same
signature but contain different constants, tables will be
created to store these constants, along with information
linking them to their expression signature.  When these
tables are small, low-overhead main-memory lists or
indexes can be used to cache information from them.
When they are large, they can be stored as standard tables
(with an index when appropriate) and queried as needed,
using the SQL query processor, to perform trigger
condition testing.  We will elaborate further on
implementation issues below.

5.1. Processing a Trigger Definition
When a create tr igger  statement is processed, a

number of steps must be performed to update the trigger
system catalogs and main memory data structures, and to
“prime”  the trigger to make it ready to run.  The primary
tables that form the trigger catalogs are these:

trigger_set(tsID, name, comments, creation_date,
isEnabled)

trigger(triggerID, tsID, name, comments, trigger_text,
creation_date, isEnabled, …)

The purpose of the isEnabled field is to indicate
whether a trigger or trigger set is currently enabled and
eligible to fire if matched by some update.  The other
fields are self-explanatory.  A data structure called the
trigger cache is maintained in main memory.  This
contains complete descriptions of a set of recently
accessed triggers, including the trigger ID and name,

predicate index
root

data source
predicate indexes

… …

…

expression
signature list

… … …

Figure 3.  Predicate Index Structure.



references to data sources relevant to the trigger, and the
syntax tree and Gator network skeleton for the trigger.
Given current main memory sizes, thousands of trigger
descriptions can be loaded in the trigger cache
simultaneously.  E.g. if a trigger description takes 4K
bytes (a realistic number), and 64Mbytes are allocated to
the trigger cache, 16,384 trigger descriptions can be
loaded simultaneously.

Another main memory data structure called a predicate
index is maintained.  A diagram of the predicate index is
shown in Figure 3. The predicate index can take an update
descriptor and identify all predicates that match it.

Expression signatures may contain more than one
conjunct.  If a predicate has more than one conjunct, a
single conjunct is identified as the most selective one.
Only this one is indexed directly.  If a token matches a
conjunct, any remaining conjuncts of the predicate are
located and tested against the token.  If the remaining
clauses match, then the token has completely matched the
predicate clause.  See [Hans90] for more details on this
technique.

The root of the predicate index is linked to a set of
data source predicate indexes using a hash table on data
source ID.  Each data source predicate index contains an
expression signature list with one entry for each unique
expression signature that has been used by one or more
triggers as a predicate on that data source.  For each
expression signature that contains one or more constant
placeholders, there will be a constant table. This is an
ordinary database table containing one row for each
expression occurring in some trigger that matches the
expression signature.

When triggers are created, any new expression
signatures detected are added to the following table in the
trigger system catalogs:

expression_signature(sigID, dataSrcID, signatureDesc,
constTableName, constantSetSize,
constantSetOrganization)

The sigID field is a unique ID for a signature.  The
dataSrcID field identifies the data source on which the
signature is defined.  The signatureDesc field is a text
field with a description of the signature.  We will define
the other fields later.

When an expression signature E is encountered at
trigger creation time, it is broken into two parts: the
indexable part, E_I, and the non-indexable part, E_NI, as
follows:

E = E_I AND E_NI
The non-indexable portion may be NULL.  The format of
the constant table for an expression signature containing
K distinct constants in its indexable portion is:

const_tableN(exprID, triggerID, nextNetworkNode,
const1, … constK, restOfPredicate)

Here, N is the identification number of the expression
signature.  The fields of const_tableN have the following
meaning:
1. exprID is the unique ID of a selection predicate E,
2. triggerID is the unique ID number of the trigger

containing E,
3. nextNetworkNode identifies the next A-TREAT

network node of trigger triggerID to pass a token to
after it matches E (an alpha node or a P-node),

4. const1 … constK are constants found in the indexable
portion of E, and

5. restOfPredicate is a description of the non-indexable
part of E.  The value of restOfPredicate is NULL if
the entire predicate is indexable.

If the table is large, and the signature of the indexable
part of the predicate is of the form
attribute1=CONSTANT1 AND …
attributeK=CONSTANTK, the table will have a clustered
index on [const1, … constK] as a composite key.  If the
predicate has a different type of signature based on an
operator other than “=” , it may still be possible to use an
index on the constant fields.  As future work, we propose
to develop ways to index for non-equality operators and
constants whose types are user-defined [Kony98].

Putting a clustered index on the constant attributes will
allow the triggerIDs of triggers relevant to a new update
descriptor matching a particular set of constant values to
be retrieved together quickly without doing random I/O.
Notice that const_tableN is not in third normal form.  This
was done purposely to eliminate the need to perform joins
when querying the information represented in the table.

Referring back to the definition of the
expression_signature table, we can now define the
remaining attributes:
1. constTableName is a string giving the name of the

constant table for an expression signature,
2. constantSetSize is the number of distinct constants

appearing in expressions with a given signature, and
3. constantSetOrganization describes how the set of

constants will be organized in either a main-memory
or disk-based structure to allow efficient trigger
condition testing.  The issue of constant set
organization will be covered more fully later in the
paper.

Given the disk- and memory-based data structures just
described, the steps to process a create tr igger  statement
are:
1. Parse the trigger and validate it (check that it is a

legal statement).
2. Convert the when clause to conjunctive normal form

and group the conjuncts by the distinct sets of tuple
variables they refer to, as described in section 4.

3. Based on the analysis in the previous step, form a
trigger condition graph.  This is an undirected graph



with a node for each tuple variable, and an edge for
each join predicate identified.  The nodes contain a
reference to the selection predicate for that node,
represented as a CNF expression.  The edges each
contain a reference to a CNF expression for the join
condition associated with that edge.  Groups of
conjuncts that refer to zero tuple variables or three or
more tuple variables are attached to a special “catch
all”  list associated with the query graph.  These will
be handled as special cases.  Fortunately, they will
rarely occur.  We will ignore them here to simplify
the discussion.

4. Build the A-TREAT network for the rule.
5. For each selection predicate above an alpha node in

the network, do the following:
Check to see if its signature has been seen before by
comparing its signature to the signatures in the
expression signature list for the data source on which
the predicate is defined (see Figure 3).  If no
predicate with the same signature has been seen
before,
• add the signature of the predicate to the list and

update the expresssion_signature catalog table.
• If the signature has at least one constant

placeholder in it, create a constant table for the
expression signature.

If the predicate has one or more constants in it, add
one row to the constant table for the expression
signature of the predicate.

5.2. Alternative Organization Strategies for
Expression Equivalence Classes

For a particular expression signature that contains at
least one constant placeholder, there may be one or more
expressions in its equivalence class that belong to
different triggers.  This number could be small or large.
To get optimal performance over a wide range of sizes of
the equivalence classes of expressions for a particular
expression signature, alternative indexing strategies are
needed.  Main-memory data structures with low overhead
are needed when the size of an equivalence class is small.
Disk-based structures, including indexed or non-indexed
tables, are needed when the size of an equivalence class is
large.

The following four ways can be considered to organize
the predicates in an expression signature’s equivalence
class:

1. main memory list
2. main memory index
3. non-indexed database table
4. indexed database table

Strategies 3 and 4 must be implemented to make it
feasible to process very large numbers of triggers
containing predicate expressions with the same signature

but different constants -- they are mandatory in a scalable
trigger system.  Strategies 1 and 2 are also required in
order to make the common case (a few thousand triggers
or less) fast.   A cost model that illustrates the tradeoffs is
presented in [Hans98b].  Strategies 1 and 2 have been
implemented in TriggerMan and strategies 3 and 4 are
under construction.

5.3. Common Sub-expression Elimination for
Selection Predicates

An important performance enhancement to reduce the
total time needed to determine which selection predicates
match a token is common sub-expression elimination.
This can be achieved by normalizing the predicate index
structure.  Figure 4 shows an expanded view of the
predicate index given in Figure 3. The constant set of an
expression signature contains one element for each
constant (or tuple of constants [const1, … ,constK])
occurring in some selection predicate that matches the
signature.  Each constant is linked to a triggerID set,
which is a set of the ID numbers of triggers containing a
particular selection predicate.  For example, if there are
rules of the form:

create trigger T_I from R when R.a = 100 do …

for I=1 to N, then there will be an expression signature
R.a=CONSTANT, the constant set for this signature will
contain an entry 100, and the triggerID set for 100 will
contain the ID numbers of T_1 … T_N.
We will implement constant sets and triggerID sets in a
fully normalized form, as shown in Figure 4, when these
sets are stored as either main memory lists or indexes
(organizations 1 and 2).  This normalized main-memory
data structure will be built using the data retrieved from
the constant table for the expression signature.

predicate index rootdata source
predicate indexes

… …

…

expression
signature list… … …

…

…

constant set (set of
unique constants)

…

triggerID set (set of IDs
of different triggers
having same set of
constants)

Figure 4. Expanded View of Normalized
Predicate Index Structure.



5.4. Processing Update Descriptors Using the
Predicate Index

Recall that an update descriptor (token) consists of a
data source ID, an operation code, and an old tuple, new
tuple, or old/new tuple pair.  When a new token arrives,
the system passes it to the root of the predicate index,
which locates its data source predicate index.  For each
expression signature in the data source predicate index, a
specific type of predicate testing data structure (in-
memory list, in-memory lightweight index, non-indexed
database table, or indexed database table) is in use for that
expression signature.  The predicate testing data structure
of each of these expression signatures is searched to find
matches against the current token.

When a matching constant is found, the triggerID set
for the constant contains one or more elements.  Each of
these elements contains zero or more additional selection
predicate clauses.  For each element of the triggerID set
currently being visited, the additional predicate clause(s)
are tested against the token, if there are any.

When a token is found to have matched a complete
selection predicate expression that belongs to a trigger,
that trigger is pinned in the trigger cache.  This pin
operation is analogous to the pin operation in a traditional
buffer pool; it checks to see if the trigger is in memory,
and if it is not, it brings it in from the disk-based trigger
catalog.  The pin operation ensures that the A-TREAT
network and the syntax tree of the trigger are in main-
memory. After the trigger is pinned, ensuring that it’s A-
TREAT network is in main memory, the token is passed
to the node of the network identified by the
nextNetworkNode field of the expression that just
matched the token.

Processing of join and temporal conditions is then
performed if any are present.  Finally, if the trigger
condition is satisfied, the trigger action is executed.

6. Concurrent Token Processing and
Action Execution

An important way to get better scalability is to use
concurrent processing.  On an SMP platform, concurrent
tasks can execute in parallel.  Even on a single processor,
use of concurrency can give better throughput and
response time by making scarce CPU and I/O resources
available to multiple tasks so any eligible task can use
them.  There are a number of different kinds of
concurrency that a trigger system can exploit for improved
scalability:
1. Token-level concurrency: multiple tokens can be

processed in parallel through the selection predicate
index and the join condition-testing network.

2. Condition-level concurrency: multiple selection
conditions can be tested against a single token
concurrently.

3. Rule action concurrency: multiple rule actions that
have been fired can be processed at the same time.

4. Data-level concurrency: a set of data values in an
alpha or beta memory node of an A-TREAT or Gator
network [Hans97] can be processed by a query that
can run in parallel.

For ideal scalability, a trigger system must be able to
capitalize on all four of these types of concurrency. The
current implementation supports token level concurrency
only.  We plan to support the other types of concurrency
in future versions of the system. Such a future version will
make use of a task queue kept in shared memory to store
incoming or internally generated work.  An explicit task
queue must be maintained because it is not possible to
spawn native operating system threads or processes to
carry out tasks due to the process architecture of Informix
[Info99].

The concurrent processing architecture, as illustrated in
Figure 1, will make use of N driver processes.  We define
NUM_CPUS to be the number of real CPUs in the
system, and TMAN_CONCURRECY_LEVEL to be the
fraction of CPUs to devote to concurrent processing in
TriggerMan, which can be in the range (0%,100%].  The
TriggerMan administrator can set the
TMAN_CONCURRENCY_LEVEL parameter.  Its
default value is 100%. N is defined as follows:

N = NUM_CPUS*TMAN_CONCURRENCY_LEVEL
Each driver process will call TriggerMan's TmanTest()

function every T time units. Each driver will also call back
immediately after one execution of TmanTest() if work is
still left to do.  We propose a default value of T equal to
250 milliseconds; determining the best value of T is left
for future work.  TmanTest will do the following:

… expression
signature list

…

…

constant set (set of
unique constants)

…

triggerID set (set of IDs
of different triggers
having same constant
appearing for a
particular signature)

…

…

…
……

(from top part of
predicate index)

1 2

1
2

N

N

…

…

Figure 5.  Illustration of partitioned constant
sets and triggerID sets to facilitate concurrent

processing.



while(total execution time of this invocation of
    TmanTest < THRESHOLD and work is left in the
    task queue)
{
    Get a task from the task queue and execute it.
    Yield the processor so other Informix tasks can use it
    (call the Informix mi_yield routine [Info99]).
}
if task queue is empty

return TASK_QUEUE_EMPTY
return TASKS_REMAINING

The driver program will wait for T time units if the last
call to TmanTest() returns TASK_QUEUE_EMPTY.
Otherwise, the driver program will immediately call
TmanTest() again.  The default value of THRESHOLD
will be 250 milliseconds also, to keep the task switch
overhead between the driver programs and the Informix
processes reasonably low, yet avoid a long user-defined
routine (UDR) execution.  A long execution inside
TriggerMan should be avoided since it could result in
higher probability of faults such as deadlock or running
out of memory.  Keeping the execution time inside
TriggerMan reasonably short also avoids the problem of
excessive lost work if a rollback occurs during trigger
processing.

Tasks can be one of the following:
1. process one token to see which rules it matches
2. run one rule action
3. process a token against a set of conditions
4. process a token to run a set of rule actions triggered

by that token
Task types 1 and 2 are self-explanatory.  Tasks of type

3 and 4 can be generated if conditions and potential
actions (triggerID structures containing the “rest of the
condition” ) in the predicate index are partitioned in
advance so that multiple predicates can be processed in
parallel. An example of when it may be beneficial to
partition predicates in advance is when there are many
rules with the same condition but different actions.  For
example, suppose there are M rules of the form:

create trigger T_K
from R
when R.company = "IBM"
   do raise event notify_user("user K", R.company,
                                    R.sharePrice)

for K=1..M.  If M is a large number, a speedup can be
obtained by partitioning this set of triggers into N sets of
equal size.  This would result in a predicate index
substructure like that illustrated in Figure 5.

Here, the triggerID set would contain references to
triggers T_1 … T_M.  These references would be
partitioned round robin into N subsets of approximately

equal size. Multiple subsets would be processed in
parallel to achieve a speedup.

7. Tr igger  Application Design
The trigger system proposed in this paper is designed

to be highly scalable. However, just because programmers
can create a large number of triggers does not mean that is
always the best approach.  If triggers have extremely
regular structure, it may be best to create a single trigger
and a table of data referenced in the trigger’s from clause
to customize the trigger’s behavior. This is discussed in
more detail in a longer version of this paper [Hans98b].

8. Related Work
There has been a large body of work on active database

systems, but little of it has focussed on predicate indexing
or scalability.  Representative works include HiPAC,
Ariel, the POSTGRES rule system, the Starburst Rule
System, A-RDL, Chimera, RPL, DIPS and Ode
[Hans96,McCa89,Ston90,Wido96].  Most active database
systems follow the event-condition-action (ECA) model
proposed for HiPAC in a straightforward way, testing the
condition of every applicable trigger whenever an update
event occurs.  The cost of this is always at least linear in
the number of triggers associated with the relevant event
since no predicate indexing is normally used.  Moreover,
the cost per trigger can be high since checking the
condition can involve running an expensive query.

 Work by Hanson and Johnson focuses on indexing of
range predicates using the interval skip-list data structure
[Hans96b], but this approach does not scale to very large
numbers of rules since it may use a large amount of main
memory.  Work on the Rete [Forg82] and TREAT
[Mira87] algorithms for efficient implementation of AI
production systems is related to the work presented here,
but the implicit assumption in AI rule system architectures
is that the number of rules is small enough to fit in main
memory.  Additional work has been done in the AI
community on parallel processing of production rule
systems [Acha92], but this does not fully address the issue
of scaling to large numbers of rules.  Issues related to
high-performance parallel rule processing in production
systems are surveyed by Gupta et al. [Gupt89].  They cite
several types of parallelism that can be exploited,
including node, intranode, action, and data parallelism.
These overlap with the types of concurrency we outlined
in section 6.  Work by Hellerstein on performing
selections after joins in query processing [Hell98] is
related to the issue of performing expensive selections
after joins in Gator networks and A-TREAT networks
[Kand98].  Proper placement of selection predicates in
Gator networks can improve trigger system performance,
and thus scalability.



The developers of POSTGRES proposed a marking-
based predicate indexing scheme, where data and index
records are tagged with physical markers to indicate that a
rule might apply to them [Ston87,Ston90].  Predicates that
can’ t be solved using an index result in placement of a
table-level marker.  This scheme has the advantage that
the system can determine which rules apply primarily by
detecting markers on tables, data records, and index
records. Query and update processing algorithms must be
extended in minor ways to accomplish this.

A disadvantage of this scheme is that it complicates
implementation of storage and index structures.
Moreover, when new records are inserted or existing
records are updated, a large number of table-level markers
may be disturbed.  The predicate corresponding to every
one of these disturbed markers must be tested against the
records, which may be quite time-consuming
[Ston87,Ston90].  This phenomenon will occur even for
simple predicates of the form attribute=constant if there is
no index on the attribute.

Research on the RPL system [Delc88a,Delc88b]
addressed the issue of execution of production-rule-style
triggers in a relational DBMS, but its developers did not
use a discrimination network structure.  They instead used
an approach that runs database queries to test rule
conditions as updates occur.  This type of approach has
limited scalability due to the potentially large number of
queries that could be generated if there are many rules.
Work on consistent processing of constraints and triggers
in SQL relational databases [Coch96] has helped lead to
recent enhancements to the SQL3 standard.  However, the
focus of this work is on trigger and constraint semantics.
An implicit assumption in it is that constraints and triggers
will be processed using a query-based approach, which
will not scale up to a large number of triggers and
constraints. We speculate that it may be possible to work
around this assumption.  A predicate index like the one
proposed in this paper potentially could be used.

The DIPS system [Sell88] uses a set of special
relations called COND relations for each condition
element (tuple variable) in a rule.  These COND relations
are queried and updated to perform testing of both
selection and join conditions of rules.  Embedding all
selection predicate testing into a process that must query
database tables is not particularly efficient – it will not
compare favorably to using some sort of main-memory
predicate index.  A main-memory predicate index should
be used to get the best performance for a small-to-medium
number of predicates, which is the common case.
However, DIPS was capable of utilizing parallelism via
the database query processor to test rule conditions, a
feature in common with the system described in this
paper.  The DATEX system addresses the issue of
executing large expert systems when working memory is

kept in a database [Bran93], and is thus related to rule
system scalability.   A contribution of the DATEX system
was an improved way to represent information normally
kept in alpha-memory nodes in TREAT networks.
However, DATEX was focussed on large-scale
production systems, whereas the work presented in this
paper is oriented to handling large numbers of triggers
that operate in conjunction with databases and database
applications, so our work is not directly comparable to
DATEX.  In summary, what sets our work apart from
prior research efforts on database trigger systems and
database-oriented expert systems tools is our focus on
scalability from multiple dimensions.  These include the
capacity to accommodate large numbers of triggers,
handle high rates of data update, and efficiently fire large
numbers of triggers simultaneously.   We achieve
scalability through careful selection predicate index
design, and support for four types of concurrency (token-
level, condition-level, rule-action-level, and data-level).

9. Conclusion
This paper describes an architecture that can be used to

build a truly scalable trigger system.  As of the date of this
writing, this architecture is being implemented as an
Informix DataBlade along with a console program, a
driver program, and data source programs.  The
architecture presented is a significant advance over what
is currently available in database products. It also
generalizes earlier research results on predicate indexing
and improves upon their limited scalability
[Forg82,Mira87,Ston87,Hans90,Hans96].  This
architecture could be implemented in any object-relational
DBMS that supports the ability to execute SQL statements
inside user-defined routines (SQL callbacks).  A variation
of this architecture could also be made to work as an
external application, communicating with the database via
a standard interface (ODBC [Geig95]).

One topic for future research includes developing ways
to handle temporal trigger processing [Hans97,AlFa98] in
a scalable way, so that large numbers of triggers with
temporal conditions can be processed efficiently.  Another
potential future research topic involves ways to support
scalable trigger processing for trigger conditions involving
aggregates.  Finally, a third potential research topic is to
develop a technique to make the implementation of the
main-memory and disk-based structures used to organize
the constant sets illustrated in Figure 4 extensible, so they
will work effectively with new operators and data types.
In the end, the results of this paper and the additional
research outlined here can make highly efficient, scalable,
and extensible trigger processing a reality.
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