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The need to search for complex and recurring patterns in database sequences is shared by many
applications. In this paper, we investigate the design and optimization of a query language capable
of expressing and supporting efficiently the search for complex sequential patterns in database
systems. Thus, we first introduce SQL-TS, an extension of SQL to express these patterns, and then
we study how to optimize the queries for this language. We take the optimal text search algorithm of
Knuth, Morris and Pratt, and generalize it to handle complex queries on sequences. Our algorithm
exploits the interdependencies between the elements of a pattern to minimize repeated passes over
the same data. Experimental results on typical sequence queries, such as double bottom queries,
confirm that substantial speedups are achieved by our new optimization techniques.
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1. INTRODUCTION

Many applications require processing and analyzing sequential data to de-
tect pattern and trends of interest. Examples include the analysis of stock
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market prices [Edwards and Magee 1997], meteorological events [Mesrobian
et al. 1994], and the identification of patterns of purchases by customers over
time [Agrawal and Srikant 1995; Berry and Linoff 1997]. The patterns of inter-
est range from very simple ones, such as finding three consecutive sunny days,
to the more complex patterns used in data mining applications [Agrawal and
Srikant 1995; Faloutsos et al. 1994; Informix Software 1998].

The importance of these applications have motivated work to extend
database query languages with the ability of searching for and manipulating se-
quential patterns. Informix [Informix Software 1998] was the first among com-
mercial DBMSs to provide special libraries for time-series, that they named
datablades; these libraries consist of functions that can be called in SQL
queries. While other database vendors were quick to embrace it, this procedural-
extension approach lacks expressive power and amenability to query optimiza-
tion. Indeed, while the individual datablade functions are highly optimized for
their specific tasks, there is no optimization between these functions and the
rest of the query.

To solve these problems, the SEQ and PREDATOR systems introduce a spe-
cial sublanguage, called SEQUIN for queries on sequences [Seshadri et al. 1994,
1995; Seshadri 1998]. SEQUIN works on sequences in combination with SQL
working on standard relations; query blocks from the two languages can be
nested inside each other, with the help of directives for converting data be-
tween the blocks. SEQUIN’s special algebra makes the optimization of sequence
queries possible, but optimization between sequence queries and set queries is
not supported; also its expressive power is still too limited for many application
areas. To address these problems, SRQL [Ramakrishnan et al. 1998] augments
relational algebra with a sequential model based on sorted relations. Thus se-
quences are expressed in the same framework as sets, enabling more efficient
optimization of queries that involve both [Ramakrishnan et al. 1998]. SRQL
also extends SQL with some constructs for querying sequences.

SQL/LPP is a system that adds time-series extensions to SQL [Perng and
Parker 1999]. SQL/LPP models time-series as attributed queues (queues aug-
mented with attributes that are used to hold aggregate values and are updated
upon modifications to the queue). Each time-series is partitioned into segments
that are stored in the database. The SQL/LPP optimizer uses pattern-length
analysis to prune the search space and deduce properties of composite pat-
terns from properties of the simple patterns. Here too, the pattern language is
largely decoupled from SQL, bringing problems similar to those of SEQ. More-
over, SQL/LPP doesn’t detect recursive patterns, and only supports a limited set
of aggregate functions. While, it is possible to build more complex aggregates
combining these basic functions, new aggregate functions cannot be introduced
from scratch.

There has also been a significant amount of work on extending SQL trig-
gers to detect composite events in Active Databases [Gehani et al. 1992; Gatziu
and Dittrich 1993; Motakis and Zaniolo 1997]. The languages used in these
systems support some of the key functions needed for sequence analysis, in-
cluding a marriage of regular expressions with SQL, and temporal aggregates.
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However, the implementation and optimization techniques needed to satisfy
the special (update and transaction) requirements of active databases are not
present in sequence queries, which therefore provide greater opportunities for
query optimization, which are discussed next.

In this article, we explore optimization techniques inspired by string-search
algorithms, since finding sequential patterns in databases is somewhat sim-
ilar to finding phrases in text. The naive approach, which advances the
search by one position and restart from the beginning of the pattern af-
ter each failure, has time complexity O(m × n), where m is the length of
the text and n the length of the pattern. The Karp–Rabin algorithm [Karp
and Rabin 1987] has a worst time complexity of O(n × m) and an expected
running time of O(n + m); the algorithm works by hashing the values of
possible substrings of size m, and its efficiency depends on the alphabet
size. The Boyer–Moore pattern matcher [Boyer and Moore 1977] works best
when the pattern is long and the alphabet is large. The worst case perfor-
mance of this pattern matcher is O(n × m), and its best case performance is
O(n/m). The algorithms discussed so far assume a finite alphabet size. The
Knuth–Morris–Pratt (KMP) algorithm discussed next does not suffer from this
limitation.

The KMP algorithm [Knuth et al. 1997] creates a prefix function from the
pattern to define transition functions that expedite the search. The prefix func-
tion is built in O(m) time, and the algorithm has a worst case time complex-
ity of O(n+m), independent from the alphabet size. Exhaustive experiments
[Wright et al. 1998] show that, in general, KMP has the best performance. Be-
cause of its good performance, and its independence from the alphabet size,
KMP provides a natural basis for dealing with the more general problem of
optimizing database queries on sequences. This is a major generalization that
presents difficult challenges: rather than searching for strings of letters (usu-
ally from a finite alphabet), we have now to search for sequences of structured
tuples qualified by arbitrary expressions of propositional predicates involving
arithmetic and aggregates.

The article is organized as follows. In the next section, we introduce the
SQL-TS query language, and in Section 3 we introduce the query optimization
problem as an extension of the text searching problem. Our new algorithm for
query optimization is introduced in Section 4, and then extended to handle
stars and aggregates in Section 6. The performance of the new approach is
studied in Section 6. Generalizations of the algorithm for disjunctive patterns
are described in Section 7.

2. THE SQL-TS LANGUAGE

Our Simple Query Language for Time Series (SQL-TS) adds to SQL simple
constructs for specifying complex sequential patterns. For instance, say that
we have the following table of closing prices for stocks:

CREATE TABLE quote(name Varchar(8), price Integer, date Date)
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NAME PRICE DATE

. . . . . . . . .

INTC $60 1/25/99
INTC $63.5 1/26/99
INTC $62 1/27/99
. . . . . . . . .

IBM $81 1/25/99
IBM $80.50 1/26/99
IBM $84 1/27/99
. . . . . . . . .

Fig. 1. Effects of SEQUENCE BY and CLUSTER BY on data.

Now, to find stocks that went up by 15% or more one day, and then down by
20% or more the next day, we can write the SQL-TS query of Example 2.1:

Example 2.1. Using the FROM clause to define patterns

SELECT X.name
FROM quote

CLUSTER BY name
SEQUENCE BY date
AS (X, Y, Z)

WHERE Y.price > 1.15 * X.price
AND Z.price < 0.80 * Y.price

Thus, SQL-TS is basically identical to SQL, but for the following additions to
the FROM clause (see appendix A for the specification of the syntax of these
extensions).

—A CLUSTER BY clause specifies that data for the different stocks are processed
separately (i.e., as if they arrived in separate data streams.) The semantics
of this construct is basically same as the PARTITIONED BY construct used in
SQL:1999 windows [Zemke et al. 1999; Alur et al. 2002]. This semantics has
also been in recently proposed SQL extensions for data streams [Babcock
et al. 2002].

—A SEQUENCE BY date clause specifies that the data must be traversed by as-
cending date. Figure 1 shows how the SEQUENCE BY and CLUSTER BY statements
affect the input. Rows are grouped by their CLUSTER BY attribute(s) (not nec-
essarily ordered), and data in each group are sorted by their SEQUENCE BY

attributes(s).
The SEQUENCE BY attributes(s) is similar to the ORDERED BY construct used
in SQL:1999 [Zemke et al. 1999; Alur et al. 2002]. Similar constructs
were also used in SRQL, which supports GROUP BY and SEQUENCE BY clauses
[Ramakrishnan et al. 1998].

—The AS clause, which in SQL is mostly used to assign aliases to the table
names, is here used to specify a sequence of tuple variables from the specified
table. By (X, Y, Z) we mean three tuples that immediately follow each other.
Tuple variables from this sequence can be used in the WHERE clause to specify
the conditions and in the SELECT clause to specify the output.

ACM Transactions on Database Systems, Vol. 29, No. 2, June 2004.



286 • R. Sadri et al.

Expressing the same query using SQL would require three joins and would be
more complex, less intuitive, and much harder to optimize.

For a second example, consider the log of the web pages clicked by a user
during a session:

Sessions(SessNo, ClickTime, PageNo, PageType)

A user entering the home page of a given site starts a new session that con-
sists of a sequence of pages clicked; for each session number, SessNo, the log
shows the sequence of pages visited—where a page is described by its times-
tamp, ClickTime, number, PageNo and type PageType (e.g., a content page, a prod-
uct description page, or a page used to purchase the item).

The ideal scenario for advertisers is when users (i) see the advertisement
page for some item in a content page, (ii) jump to the product-description page
with details on the item and its price, and finally (iii) click the ‘purchase this
item’ page. This advertisers’ dream pattern can expressed by the following
SQL-TS query, where ‘a’, ‘d’, and ‘p’, respectively, denote an ad page, an item
description page, and a purchase page:

Example 2.2. Using the FROM clause to define patterns

SELECT Y.PageNo, Z.ClickTime
FROM Sessions

CLUSTER BY SessNO
SEQUENCE BY ClickTime
AS (X, Y, Z)

WHERE X.PageType=‘a’
AND Y.PageType=‘d’
AND Z.PageType=‘p’

Thus, the CLUSTER BY clause specifies that data for each SessNO are processed as
separate streams; instead, the SEQUENCE BY clause specifies that the tuples for
each SessNO are ordered by ascending clickTime. Finally, the pattern AS (X, Y, Z)

specifies that, for each SessNO, we seek a sequence of the three tuples X, Y, Z

(with no intervening tuple allowed) that satisfy the conditions stated in the
WHERE clause.

Observe that in the SELECT clause, we return information from both the Y

tuple and the Z tuple. This information is returned immediately, as soon as the
pattern is recognized; thus it generates another stream that can be cascaded
into another SQL-TS statement for processing.

The next example illustrates how SQL-TS benefits from its ability of using
standard SQL queries in combination with queries on sequences. Assume that
we have a stream containing the bids of ongoing auctions, as follows:

auctn id : id for specific item auctioned
amount : amount of bid
time : timestamp

Say that our objective is to purchase the auctioned item for a low price. Then, we
wait till the last 15 minutes before the closing, and we place an offer as soon as
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the stream of bids is converging toward a certain price. We detect convergence
by a succession of three bids that raise the last bid by less than 2%. Such
convergence conditions can be expressed as follows:

SELECT T.auctn_id, T.timestamp, T.amount
FROM bids CLUSTER BY auctn_id

SEQUENCE BY time
AS (X,Y,Z,T)

WHERE Y.amount < 1.02 * X.amount
AND Y.amount > .98 * Z.amount
AND T.amount < 1.02 * Z.amount

This query specifies that the Y.amount must be above X.amount by 2% or less,
and the same condition must hold between Z and Y. To assure that we are within
15 minutes from closing, we use a standard SQL query on the table where the
auctions are described:

auction(auctn_id, item_id, min_bid, deadline,...)

Our query becomes:

Example 2.3. Three successive bids with a 2% range in the 15 minutes
before closing

SELECT T.auctn_id, T.timestamp, T.amount

FROM auction AS A,

bids CLUSTER BY auctn_id

SEQUENCE BY time

AS (X,Y,Z,T)

WHERE A.auctn_id = T.auctn_id

AND T.time + 15 Minute < A.deadline

AND Y.amount < 1.02 * X.amount

AND Y.amount > .98 * Z.amount

AND T.amount < 1.02 * Z.amount

The WHERE conditions of this query specify various predicates that must be sat-
isfied by the attributes of four tuples X, Y, Z, T in a sequence. The evaluation of
the applicable predicates on these four variables, however, is not delayed un-
til all four tuples are read; instead each predicate is evaluated as soon all its
variables in the predicate are known—that is, as soon as the predicate becomes
fully instantiated.

For instance, the predicate Y.amount < 1.02∗X.amount is fully instantiated at
Y, since we already know all the values in X when the tuple Y is read. However,
the same predicate is not fully instantiated at X, since, when we read X, we do
not yet know the values in Y. Therefore, when matching the input to the pattern
in the previous example, the first input tuple is read and assigned to X without
any condition checked; but, as soon as the next input tuple is assigned to Y, we
immediately check whether Y.amount < 1.02∗X.amount is satisfied. If this check
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fails, we restart from the beginning, otherwise we proceed and read the next
tuple for the attribute values of Z.

In SQL-TS, input tuples are viewed as containing the additional field
previous that refers to the previous tuple in the sequence. For instance,
the condition Y.amount < 1.02 ∗ X.amount could have also been written as
Y.amount < 1.02 ∗ Y.previous.amount. (The SQL3 syntax Y.previous → amount
is also supported.)

2.1 Repeating Patterns and Aggregates

A key feature of SQL-TS is its ability to express recurring patterns by using a
star operator. Take the following example:

Example 2.4. Find the maximal periods in which the price of a stock fell
more than 50%, and return the stock name and these periods

SELECT X.name, X.date AS start_date,
Z.previous.date AS end_date

FROM quote
CLUSTER BY name
SEQUENCE BY date
AS (X, *Y, Z)

WHERE Y.price < Y.previous.price
AND Z.previous.price < 0.5 * X.price

Here the star construct ∗Y is used to specify a sequence of one or more Y’s of
decreasing price, as per the condition Y.price < Y.previous.price. In general, a
star such as ∗Y denotes a maximal sequence of one or more (not zero or more!)
tuples that satisfy all the applicable conditions. Thus, a star pattern such as
∗Y fails only when the predicates that become fully instantiated at Y fail on the
first input. However, if such predicates succeed on the first n ≥ 1 tuples and
fail on tuple n + 1, then ∗Y succeed and completes on the nth tuple, and the
n+ 1 tuple is tested against the element in the pattern immediately following
∗Y (i.e., Z in Example 2.4).

Thus, in our Example 2.4, we begin with an arbitrary tuple X, and then, if
the next tuple Y, satisfies the condition Y.price < Y.previous.price = X.Price
we begin ∗Y. Then, we exit the star on the last decreasing price. Thus, Z
is the first tuple in the sequence where the price has not decreased. Thus,
Z.previous.price < 0.5 ∗ X.price can now be used to detect a down sequence
causing the stock to lose half of its value. Constructs similar to the star have
been tested very effective in previously query languages [Motakis and Zaniolo
1997], and their semantics can be formalized using recursive Datalog pro-
grams [Sadri 2001].

Aggregates can be used in conjunction with stars. For instance, to determine
the number of pages the user has visited before clicking a product description
page (denoted by ‘d’), we simply write:

Example 2.5. Number of pages visited before the product description page
is clicked, provided that this count is below 20
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SELECT SessNo, count(*A)
FROM Sessions

CLUSTER BY SessNO
SEQUENCE BY ClickTime
AS (*A, B)

WHERE A.PageType <> ‘d’
AND B.PageType = ‘d’
AND count(*A) < 20

Thus, ∗A identifies a maximal sequence of clicks to pages other than ‘prod-
uct’ pages. Then, count(∗A) tallies up those pages and, after checking that the
count is less than 20, returns SessNo and the associated count to the user. The
maximality of stars construct is important to avoid ambiguity and the possible
explosion of matches. For instance, if we were to change the first condition in
the query of our Example 2.5 to, say, A.PageType = ‘d’, we obtain a query that is
never satisfied, since the star consumes every ’d’ value, leaving none to satisfy
the next condition: AND B.PageType = ‘d’. For instance, say that we specify a
pattern (*X, *Y) and the following conditions in the where clause: X<=5 AND
Y>=5. Then in the sequence 4, 5, 5, 7, *X will match the first 3 values, and only
the fourth value (i.e., 7) will be left for *Y). A user who wants to match *X to the
first value and the next three values to *Y, will have to change the conditions
to X<5 AND Y>=5. SQL-TS supports a rich set of aggregates, as needed for time
series analysis [Berry and Linoff 1997]; aggregates supported includes rollups,
running aggregates, moving-window aggregates, online aggregates, and user-
defined aggregates inherited from the AXL/ATLaS system [Wang and Zaniolo
2000]. Aggregates can only be applied to sequences defined by stars, and come
in two very distinct flavors:

(1) final aggregates applicable only after the star computation has completed,
and

(2) continuous aggregates that apply during the star computation.

For instance, count(∗A) in Example 2.5 is a final aggregate: a sequence of pages
is accepted, until a ‘p’ page terminates the sequence. At that point, the condi-
tion count(∗A) < 20 is evaluated, and if satisfied the sequence is accepted and
SessNo and count(∗A) for that session are returned, otherwise the sequence is
rejected.

Example 2.6 instead illustrates the use of continuous aggregates—that is,
those that return the current value of the aggregates during the computation,
as per online aggregates [Hellerstein et al. 1997]. For instance, the query in
Example 2.6 uses continuous aggregates to detect sessions (identified by their
SessNo) in which users have accumulated too many clicks, or spent too much
time, without purchasing anything. The aggregate ccount is the online version
of count, that is, a continuous count that returns a new value for each new
input. Thus, the condition ccount(X) < 100 is satisfied for the first 99 elements
in the sequence and, upon failing on the 100th element, it brings the star se-
quence to completion. In general, continuous aggregates can be returned at
various points during the computation of the sequence, as online aggregates
do [Hellerstein et al. 1997]; thus, they can also be used in the conditions that
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determine whether the current tuple must be added to the star sequence being
recognized.

The two different kinds of aggregates are syntactically distinguished by the
fact that, the argument of a final aggregate is prefixed by the star; while there
is no star in the argument of continuous aggregates.

Another continuous aggregate used in the next query is first(X); this is a
built-in aggregate that always returns the first value passed to it (thus, in
Example 2.6, memorizes the first value of ClickTime value in the sequence *X.)

Example 2.6. Excessive clicks or time without a purchase

SELECT Y.SessNo
FROM Sessions

CLUSTER BY SessNO
SEQUENCE BY ClickTime
AS (*X, Y)

WHERE X.PageType<>‘p’
AND ccount(X) < 100
AND first(X.ClickTime) + 20 Minute >

X.ClickTime AND Y.PageType<>‘p’

Therefore, the recognition of *X begins and continues while (i) there is no
purchase, (ii) the length of *X is less than 100 clicks, and (iii) the time elapsed
is less than 20 minutes. Once any of these conditions fails, the sequence *X

reaches completion. At the next click (assuming that this is not a ‘p’ page)
SessNo is returned. (This could, e.g., trigger a time-out message to the remote
users, requesting them to login again to continue the session.) Therefore, we
use the WHERE clause to specify conditions on both the values of attributes and
those of aggregates. This is a simplification of traditional SQL (that would
instead require HAVING for conditions on aggregates). This simplification is very
beneficial for the users, and it has been adopted in more recent query languages
such as XQuery [Boag et al. 2003].

The simplification is made possible by the lack of ambiguity associated with
the sequential processing of sequences of tuples. The processing is as follows:
for each new tuple (i) the current values of attributes and continuous aggre-
gates (i.e., those without the star, such as ccount(X)) are evaluated and all the
applicable conditions in the WHERE clause are tested, and (ii) if said conditions
evaluate to true, then the computation of the star continues with the next
tuple. If the current tuple fails to satisfy said conditions clause, then the final
aggregates such as count(*X) are computed and their values are used to test
the applicable conditions in the where clause. If these conditions are satisfied,
then the computation continues with the next tuple and the next element in the
pattern; otherwise the current input fails, and the search is moved to a later
input.

In general, therefore, we treat conditions on starred aggregates like condi-
tions in the HAVING clause of standard SQL. Thus, for Example 2.5, the state-
ment WHERE count(*A) < 20 is treated like HAVING count(A) < 20.

Finally, the meaning of an aggregate such as avg(*A) would become unde-
fined if *A were to contain zero or more elements (instead of one or more ele-
ments). Therefore, SQL-TS design attempts to achieves both users’ convenience
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and rigorous semantics. A formal logic-based semantics for the language is pre-
sented in Sadri [2001].

2.2 User-Controllable Options

The system provides the user with optional constructs to control the input
and the output. The user can specify whether the input is sorted in ascending
or descending order, and whether null values will be listed at the beginning
or at the end, using the statements described in the Appendix. When these
specifications are omitted, the system uses ascending-order and nulls-at-the-
end as defaults.

For the output, the user can write SELECT ALL, or SELECT DISJOINT, to
specify whetehr that overlapping subsequence are, or are not, acceptable.
Thus, SELECT DISJOINT specifies that when a sequence starting at j and
ending at k > j is found to satisfy the query, the input tuples between j and
k are ignored, and the search resumes from point k + 1. This is also the policy
followed by the system when no explicit specification is given. Instead, with
SELECT ALL success has no effect on successive matches. The actual syntax for
these constructs is specified in the Appendix.

3. SEARCH OPTIMIZATION

Since SQL-TS is a superset of SQL, all the well-known techniques for query op-
timization remain available, but in addition to those, we find new optimization
opportunities using techniques akin to those used for text searching. For in-
stance, take the query of Example 2.2, which searches for the sequence of three
particular constant values: the text searching algorithms by Knuth, Morris and
Pratt (KMP), discussed next, provides a solution of proven optimality for this
query [Knuth et al. 1997; Wright et al. 1998].

3.1 Searching for Simple Text Strings

The KMP algorithm takes a sequence pattern of length m, P = p1 · · · pm, and a
text sequence of length n, T = t1 · · · tn, and finds all occurrences of P in T . Using
an example from Knuth et al. [1997], let abcabcacab be our search pattern, and
babcbabcabcaabcabcabcacabc be our text sequence. The algorithm starts from
the left and compares successive characters until the first mismatch occurs.
At each step, the ith element in the text is compared with the j th element in
the pattern (i.e., ti is compared with pj ). We keep increasing i and j until a
mismatch occurs.

j , i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ti a b c b a b c a b c a a b c a b c
pj a b c a b c a c a b

⇑
For the example at hand, the arrow denotes the point where the first mis-

match occurs. At this point, a naive algorithm would reset j to 1 and i to 2,
and restart the search by comparing p1 to t2, and then proceed with the next
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Fig. 2. The meaning of next( j ).

input character. But instead, the KMP algorithm avoids backtracking by us-
ing the knowledge acquired from the fact that the first three characters in the
text have been successfully matched with those in the pattern. Indeed, since
p1 6= p2, p1 6= p3, and p1 p2 p3 = t1t2t3 we can conclude that t2 and t3 can’t be
equal to p1, and we can thus jump to t4. Then, the KMP algorithm resumes by
comparing p1 with t4; since the comparison fails, we increment i and compare
t5 with p1:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ti a b c b a b c a b c a a b c a b c
j 1 2 3 4 5 6 7 8 9 10

pj a b c a b c a c a b
⇑

Now, we have the mismatch when j = 8 and i = 12. Here we know that
p1 · · · p4 = p4 · · · p7 and p4 . . . p7 = t8 · · · t11, p1 6= p2, and p1 6= p3; thus, we
conclude that we can move pj four characters to the right, and resume by
comparing p5 to t12. Therefore, by exploiting the relationship between elements
of the pattern, we can continue our search without moving back in the text (i.e.,
without changing the value of i). As shown in Knuth et al. [1997], the KMP
algorithm never requires backtracking on the text. Moreover, the index on the
pattern can be reset to a new value next( j ), where next( j ) only depends on the
current value, and is independent from the text. For a pattern of size m, next( j )
can be stored on an array of size m. (Thus, this array can be computed once as
part the query compilation, and then used repeatedly to search the database,
and its time-varying content.)

The array next( j ) can be computed as follows:

(1) Find all integers k, 0 < k < j , for which pk 6= pj and such that for every
positive integer s < k, ps = pj−k+s (i.e., p1 = pj−k+1 ∧ · · · ∧ pk−1 = pj−1).

(2) If no such k exists, then next( j ) = 0 else next( j ) is the largest of these k’s
(yielding the least value of j − k + 1).

For instance, for the example at hand, we find the following array: next =
[0, 0, 0, 0, 0, 0, 0, 4, 0, 0]. The definition of next is clarified by Figure 2. The upper
line shows the pattern, and the lower line shows the pattern shifted by k; the
thick segments show where the two are identical. When no shift exists by which
the shifted pattern can match the original one, we have next( j ) = 0, and the
pattern is shifted to the right till its first element is at position i, the current
position in the text. In the KMP algorithm, this is the only situation in which
the cursor on the input is advanced following a failure. (Of course, the input
cursor is always advanced after success.)
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Algorithm 3.1. The KMP Algorithm

j = 1; i = 1;
while j ≤ m ∧ i ≤ n do {

while j > 0 ∧ ti 6= pj do
j = next[ j ];

i = i + 1; j = j + 1; }
if i > n then failure

else success;

The KMP algorithm is shown above. An efficient algorithm for computing the
array next is given in Knuth et al. [1997]. The complexity of the complete algo-
rithm, including both the calculation of the next for the pattern and the search
of pattern over text, is O(m + n), where m is the size of the pattern and n is
the size of the text [Knuth et al. 1997]. When success occurs, the input text
ti−m+1 · · · ti matches the pattern.

The KMP algorithm is only applicable when the qualifications in the query
are equalities with constants such as those of Example 2.2. Therefore, in this
article, we extend the KMP algorithm to handle the conditions that are found in
general queries—in particular inequalities between terms involving variables
such as those in the next example.

Example 3.2. For IBM stock prices, find all instances where we have the
pattern of two successive drops followed by two successive increases, and the
drops take the price to a value between 40 and 50, and the first increase doesn’t
move the price beyond 52.

SELECT X.date AS start_date, X.price
U.date AS end_date, U.price

FROM quote
CLUSTER BY name
SEQUENCE BY date
AS (X, Y, Z, T, U)

WHERE X.name=’IBM’
AND Y.price < X.price
AND Z.price < Y.price
AND 40 < Z.price < 50
AND Z.price < T.price
AND T.price < 52
AND T.price < U.price

4. GENERAL PREDICATES

The original KMP algorithm can be used to optimize simple queries, such as that
of Example 2.2, in which conditions in the WHERE clause are equality predicates
as follows (t denotes a generic tuple variable):

p1(t) = (t.price = 10)
p2(t) = (t.price = 11)
p3(t) = (t.price = 15)
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However, for the powerful sequence queries of SQL-TS we also need to
support:

(1) General Predicates. In particular we need to support systems of equalities
and inequalities such as those of Example 3.2, where we have the following
predicates:

p1(t) = (t.price < t.previous.price)
p2(t) = (t.price < t.previous.price)

∧ (40 < t.price < 50)
p3(t) = (t.price > t.previous.price)

∧ (t.price < 52)
p4(t) = (t.price > t.previous.price)

(2) Repeating Pattern Expressions. The KMP algorithm assumes that the pat-
tern consists of a fixed number of elements. To support queries such as
that of Examples 2.4–2.6, we need to optimize searches involving recurring
patterns expressed by the star.

(3) Aggregates. Patterns can be specified using a variety of aggregates, includ-
ing windows-based, temporal, and user-defined aggregates.

4.1 Optimized Pattern Search

In this section, we introduce the Optimized Pattern Search (OPS) algorithm,
which is an extension the KMP algorithm. The OPS algorithm is directly ap-
plicable to the optimization of SQL-TS queries, since it handles the much more
general conditions that occur in time series applications, including repeating
patterns that can be expressed by the star construct and aggregate conditions
on such repeating patterns.

Say that we are searching the input stream for a sequential pattern, and
a mismatch occurs at the j th position of the pattern. Then, we can use the
following two pieces of information to optimize our next steps in the search:

(1) All conditions for elements 1 through j − 1 in the search pattern were
satisfied by the corresponding items in the input sequence, and

(2) The condition for the j th element in the search pattern was not satisfied
by its corresponding input element.

Therefore, much as in the KMP algorithm, we can capture the logical rela-
tionships between the elements of the pattern, and then infer which shifts in
the pattern can possibly succeed; also, for a given shift, we can decide which
conditions need not be checked (since their validity can be inferred from the
two kinds of information described above).

Therefore, we assume that the pattern has been satisfied for all positions
before j and failed at position j , and we want to compute the following two
items:

—shift( j ): this determines how far the pattern should be advanced in the input,
and
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—next( j ): this determines from which element in the pattern the checking of
conditions should be resumed after the shift.

Observe that the KMP algorithm only used the next( j ) information. Indeed,
for KMP, the search pattern is never shifted in the text (except for the case
where next( j ) = 0 and the pattern is shifted by j ). The richer set of possi-
bilities that can occur in OPS demand the use of explicit shift( j ) information.
Furthermore, the computation for next and shift is now significantly more com-
plex and requires the derivation of several three-valued logic matrices.

4.2 Implications Between Elements

The OPS algorithm begins by capturing all the logical relations among pairs of
the pattern elements using a positive precondition logic matrix θ , and a negative
precondition logic matrix φ. These matrices are of size mxm, where m is the
length of the search pattern. The θjk and φjk elements of these matrices are only
defined for j ≥ k; thus we have lower-triangular matrices of size m. We define
θjk and φjk as follows:

θjk =


1 if pj ⇒ pk ∧ pj 6≡ F
0 if pj ⇒ ¬pk

U otherwise

φjk =


1 if ¬pj ⇒ pk

∅ if ¬pj ⇒ ¬pk ∧ pj 6≡ T
U otherwise.

We have added the terms pj 6≡ F in definition of θ , and pj 6≡ T in definition
of φ, to make sure that the left side of the implication relationships are not
equivalent to false, because in that case the value of the corresponding element
in the matrix could be both 0 and 1. By excluding those cases, we have removed
the ambiguity. Logic matrices θ and φ contain all the possible pairwise logi-
cal relations between pattern elements. For instance, Example 4.1 shows the
computation of the matrices for Example 3.2.

Example 4.1. Computing the matrices θ and φ for Example 3.2

p2 ⇒ p1 therefore θ21 = 1
p3 ⇒ ¬p1 therefore θ31 = 0
p3 ⇒ ¬p2 therefore θ32 = 0
p4 ⇒ ¬p2 therefore θ42 = 0
p4 ⇒ ¬p1 therefore θ41 = 0
¬p4 ⇒ ¬p3 therefore φ43 = 0

Therefore, we have

θ =


1
1 1
0 0 1
0 0 U 1
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Fig. 3. Shifting the pattern k positions to the right.

φ =


0
U 0
U U 0
U U 0 0

 .
From matrices φ and θ , we can now derive another triangular matrix S that

describes the logical relationships between whole patterns. The Sjk entries in
the matrix, which are only defined for j > k, are computed as follows:

Sjk = θk+1,1 ∧ θk+2,2 ∧ · · · ∧ θ j−1, j−k−1 ∧ φ j , j−k .

Thus, say that the pattern was satisfied up to, and excluding, element j ;
then, Sjk = 0 means that the pattern cannot be satisfied if shifted k positions.
Moreover, Sjk = 1 (Sjk = U ) means that the pattern is certainly (possibly)
satisfied after a shift of k. Figure 3 illustrates the situation. In calculating
matrix S, we use standard 3-valued logic, where ¬U = U , U ∧ 1 = U , and
U ∧ 0 = 0. For the example at hand we have:

Example 4.2. Computing the matrix S for Example 4.1

S2,1 = φ2,1 = U
S3,1 = θ2,1 ∧ φ3,2 = 1 ∧U = U
S3,2 = φ3,1 = U
S4,1 = θ2,1 ∧ θ3,2 ∧ φ4,3 = 0
S4,2 = θ3,1 ∧ φ4,2 = 0
S4,3 = φ4,1 = U

S =

U
U U
0 0 U

 .
We can now compute shift( j ), which is the least shift to the right for which the

overlapping subpatterns do not contradict each other (Figure 4). Thus, shift( j )
is the column number for the leftmost nonzero entry in row j of S. When all
these entries are equal to zero, then a failure will occur for any shift up to j .
In this case, we set shift( j ) = j ; thus, the pattern is shifted to the right till
its first position coincides with the position immediately after the cursor in the

ACM Transactions on Database Systems, Vol. 29, No. 2, June 2004.



Expressing and Optimizing Sequence Queries in Database Systems • 297

Fig. 4. Next and Shift definitions for OPS.

text. More formally:

shift( j ) =
{

j if ∀k < j , Sjk = 0
min({k | Sjk 6= 0}) otherwise.

Thus, shift( j ) tells us how much the pattern can be advanced on the input be-
fore there is any chance of success. We can now compute next( j ) which denotes
the element in the pattern from which checking against the input should be re-
sumed (for elements before next( j ) the result is already known to be true). There
are basically three cases. The first case is when shift( j ) = j , and thus the first
element in the pattern must be checked next against the current element in the
input. The second case is when shift( j ) < j and Sj ,shift( j ) = 1; In this case, we
only need to begin our checking from the element in the pattern that is aligned
with the first input element after current input position—thus, next( j ) =
j − shift( j )+ 1. The third case occurs when neither of the previous cases hold;
then the first pattern element should be applied to the input element i − j +
shift( j )+1; but if θshift( j )+1,1 = 1, then the comparison becomes unnecessary (and
similar conditions might hold for the elements that follow). Thus, we set next( j )
to the leftmost element in the pattern that must be tested against the input.
Figure 4 shows how this works. Now we can formally define next as follows:

(1) if shift( j ) = j , then next( j ) = 0, else
(2) if Sj ,shift( j ) = 1, then next( j ) = j − shift( j )+ 1, else
(3) next( j ) =min({t | 1 ≤ t < j − shift( j ) ∧ θshift( j )+t,t = U } ∪
{ j − shift( j )|φ j , j−shift( j ) = U })

For the example at hand, we have:

Example 4.3. Compute shift and next for Example 4.1

shift(1) = 1
shift(2) = 1 since S21 6= 0
shift(3) = 1 since S31 6= 0
shift(4) = 3 since S41 = 0 ∧ S42 = 0 ∧ S43 6= 0

next(1) = 0 since shift(1) = 1
next(2) = 1 since φ21 6= 1
next(3) = 2 since θ21 = 1 ∧ φ32 6= 1
next(4) = 1 since φ41 6= 1

The calculation of arrays shift and next is done as part of query compilation.
This is discussed in Section 4.3.
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We can use the values stored in arrays next and shift to optimize the pattern
search at run time. Consider a predicate pattern p1 p2 · · · pm. Now, pj (ti) is equal
to one, when the ith element in the input sequence satisfies a pattern element
pj ; otherwise, it is zero.

Algorithm 4.4. The OPS Algorithm
j = 1; i = 1;
while j ≤ m ∧ i ≤ n do {

while j > 0 ∧ ¬pj (ti) do {
i = i − j + shift( j )+next( j );
j = next( j ); }

i = i + 1; j = j + 1; }
if i > n then failure

else success;

Here too, as in the KMP algorithm, success denotes that ti−m+1 . . . ti satisfies the
pattern. However, we see the following generalizations with respect to KMP:

—The equality predicate ti = pj is replaced by pj (ti) that tests if pj holds for
the ith element in the input.

—When there is a mismatch, we modify both j and i, which, respectively, index
the input and the pattern. The new value for j is next( j ), and the new value
for i is i − j + shift( j )+ next( j ).

For instance, we used the pattern in the query of Example 3.2 to search the
following sequence:

55 50 45 57 54 50 47 49 45 42 55 57 59 60 57.

Figure 5 compares the evolution of the values of j and i for the naive algo-
rithm and the OPS algorithm. Clearly, for the OPS algorithm, the backtracking
episodes are less frequent and less deep, and therefore the length of the search
path is significantly shorter.

4.3 Calculating θ and φ

As described in the previous section, the OPS algorithm is based on the two
arrays shift and next, which are computed from logic arrays θ and φ. Here we
discuss efficient algorithms for computing these logic arrays.

Elements of φ and θ are calculated in accordance with the semantics of the
pattern elements. Satisfiability and implication results in databases [Guo et al.
1996a; Ullman 1989; Klug 1988; Rosenkrantz and Hunt 1970; Sun and Yu
1994; Sun et al. 1989] are relevant to the computation of θ and φ for a class
of patterns that involve inequalities in a totally ordered domain (such as real
numbers). Ullman [1989] has given an algorithm for solving the implication
problem between two queries S and T . Ullman’s algorithm works for queries
which are conjunctions of terms of the form X op Y , where op ∈ {<,≤,=, 6=,
≥,>}, and has complexity of O(|S|3+|T |), where |S| and |T |, respectively, denote
the number of inequalities in S and T .

Klug [1988] has studied the implication problem in a broader range of queries
that are conjunction of terms of the form X op C and X op Y . Rosenkrantz and
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Fig. 5. Comparison between path curve of the naive search (top chart) and OPS (bottom chart).

Hunt [1970] provided an algorithm complexity of complexity |S|3 for solving
satisfiability problem; the expression S to be tested for satisfiability is the
conjunction of terms of the form X op C, X op Y , and X op Y + C.

In our implementation, we compute the matrices φ and θ using the algo-
rithms by Guo, Sun and Weiss (GSW) [Guo et al. 1996a] discussed next.

4.4 The GSW Algorithm

The GSW algorithm computes implication and satisfiability of conjunctions of
inequalities of the form X op C, X op Y , and X op Y + C, where X and
Y are variables, C is constant, and op ∈ {=, 6=,≤,≥,<,>}. Implication and
satisfiability are, respectively, used to infer the 1 entries and the 0 entries of
our θ and φ matrices. The complexity of GSW algorithm is O(|S| ×n2+ |T |) for
testing implication (for the 1 entries in our matrices) and O(|S|+n3) for testing
satisfiability (for the 0 entries); n is the number of variables in S and |S|, and
|T | denote the number of inequalities in S and T . Given the limited number
of variables and inequalities used in queries, these compilation costs are quite
reasonable. GSW starts with applying the following transformations:

(1) (X ≥ Y + C) ≡ (Y ≤ X − C)
(2) (X < Y + C) ≡ (X ≤ Y + C) ∧ (X 6= Y + C)
(3) (X > Y + C) ≡ (Y ≤ X − C) ∧ (X 6= Y + C)
(4) (X = Y + C) ≡ (Y ≤ X − C) ∧ (X ≤ Y + C)
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Fig. 6. Directed weighted graph for determining the satisfiability of a set of inequalities.

(5) (X < C) ≡ (X ≤ C) ∧ (X 6= C)
(6) (X > C) ≡ (X ≥ C) ∧ (X 6= C)
(7) (X = C) ≡ (X ≤ C) ∧ (X ≥ C).

After these transformations, for all the inequalities of the form X op Y +C, we
have op ∈ {≤, 6=}, and for all the inequalities of the form X op C, op ∈ {≤, 6=,≥}
(X op Y is a special form of X op Y + C where C = 0).

4.5 Satisfiability

For determining the satisfiability of a conjunctive query S, a directed weighted
graph Gs = (Vs, Es) is built where Vs is the set of variables in S, and there is a
directed edge from X to Y with weight C in Es, if and only if (X < Y +C) ∈ S.
Inequalities of the form (X < C) are transformed to the form (X < V0 + C)
by introducing dummy variable V0. Thus, the following results are proven in
Guo et al. [1996a]: If there is a negative weighted cycle—a cycle that sum of
the weights of its edges is negative, then S is unsatisfiable. If all the cycles are
positive weighted, then S is satisfiable. For the case that there are zero weighted
cycles, the necessary and sufficient condition for satisfiability is that for any two
variables X and Y on the same cycle, if the path from X to Y has a cost C, then
(X 6= Y + C) ∈ S. As shown in Guo et al. [1996a], this algorithm has the time
complexity of O(|S| + n3) where |S| is the number of inequalities in S and n
is the number of variables (size of Vs). The following example clarifies how the
algorithm works:

Example 4.5. Assume that we want to find out if θjk is zero or not where
the two pattern elements pj and pk are as follows:

pj = X < Y + 4 ∧ Y < Z
pk = Z < X + 2 ∧ X < 6 ∧ Z > 7

To see if pj ∧ pk is satisfiable or not, we first build a graph for pj ∧ pk as in
Figure 6.

There are two cycles in the graph. Cycle XYZX, has weight of 6 and cycle
XV0ZX has weight of 1. Since there are no negative weighted cycles, pj ∧ pk is
satisfiable and value of θjk is not zero.
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4.6 Implication

The implication problem takes two queries S and T and determines if S im-
plies T . S and T are assumed to be conjunctions of inequalities of the form
X op Y +C. For the inequalities of type X op C, a dummy variable V0 is de-
fined that can take only value of zero and the inequality is transformed to
X op V0 + C. As proven in Guo et al. [1996a], the application of this transfor-
mation does not change the answer to the implication problem. The algorithm
starts by introducing the closure of S, that is, a complete set that contains all
the inequalities implied by S. Then, T is implied by S Iff T is a subset of the clo-
sure of S. The notion of modulo closure of S, denoted Sclosure, is then introduced
to address the problem that the number of inequalities implied by S could be
boundless. Sclosure contains only non redundant inequalities that belong to the
closure of S. For example if Y < X + C1 is in the closure of S, then for every
C2 > C1, the inequality Y < X + C2 is redundant. Sclosure can be computed by
applying the following set of axioms to S [Guo et al. 1996a]:

A1. X ≤ X + 0;
A2. X 6= Y + C implies Y 6= X − C where Y and X are distinct variables;
A3. X ≤ Y + C and Y ≤ V + C′ implies X ≤ V + C + C′;
A4. X ≤ W + C1, W ≤ Y + C2, X ≤ Z + C3, Z ≤ Y + C4, W 6= C + Z , and

C = C3−C1 = C2−C4 imply X 6= Y +C1+C2 where X and Y are distinct
variables. Also Z and W are distinct variables.

As proven in Guo et al. [1996a], the size of Sclosure is finite, and calculating
it has a time complexity of O(|S| × n2). Furthermore, we have the following
property [Guo et al. 1996a]:

PROPOSITION 4.6. S implies T iff S is unsatisfiable or the following two prop-
erties hold:

(1) for every (X ≤ Y + C) ∈ T, there exist (X ≤ Y + C0) ∈ Sclosure such that
C0 < C, and

(2) for every (X 6= Y + C) ∈ T, either
— (X 6= Y + C) ∈ Sclosure, or
—there exist (X ≤ Y + C1) ∈ Sclosure such that C1 < C, or
—there exist (Y ≤ X + C2) ∈ Sclosure such that C2 < −C.

This step takes O(|T |) [Guo et al. 1996a]; therefore, the complexity of whole
algorithm is O(|S| × n2 + |T |).

While the GSW algorithm is sufficient to handle the examples listed so far,
a minor extension is needed to handle the next query—Example 6.1. In this
query, inequalities have the form X op C∗Y . Then, we introduce a new variable
Z = X /Y and use Z op C, given that the domain of Y is positive numbers (stock
prices).

In a later work, Guo et al. [1996b] found tighter bounds for these prob-
lems when the domain of variables are assumed to be the real numbers. They
also showed that the satisfaction and implication problems become NP-hard
when the problems must be solved in the domain of integers. However, if the
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inequality predicate is not allowed, the problems are polynomially bound in the
integer domain as well.

5. PATTERNS WITH STARS AND AGGREGATES

An important advantage of the OPS algorithm is that it can be easily general-
ized to handle recurrent input patterns which, in SQL-TS, are expressed using
the star. For example if pj is

ti.price < ti−1.price

then ∗pj matches sequences of records with decreasing prices.
The calculation of logic matrices θ and φ remains unchanged in the presence

of star patterns; thus, the formulas given in Section 4.2 will still be used. How-
ever, the calculation of the arrays next and shift must be generalized for star
patterns as described next.

At runtime we maintain an array of counters (one per pattern element) to
keep track of the cumulative number of input objects that have matched the
pattern sequence so far. Take the following SQL-TS example:

Example 5.1. Find patterns consisting of a period of rising prices, followed
by a period of falling prices, followed another period of rising prices.

SELECT X.name, FIRST(X).date AS sdate,
LAST(Z).date AS edate

FROM quote
CLUSTER BY name
SEQUENCE BY date
AS ( *X, *Y, *Z)

WHERE X.price > X.previous.price
AND Y.price < Y.previous.price
AND Z.price > Z.previous.price

Therefore, the star predicates that must be satisfied are as follows:

p1(X ) = (X.price > X.previous.price)
p2(Y ) = (Y.price < Y.previous.price)
p3(Z ) = (Z.price > Z.previous.price)

5.1 Run Time Support for Stars

A counter must be used for each element in the pattern. Let us represent the
counter for the j th element of the pattern by count j .

For instance, say that the previous query is applied to an input stream with
the following sequence for t.price:

20 21 23 24 22 20 18 15 14 18 21.

Then after matching the query pattern with the input, the counters contain
the following values:

count1 = 4 since the first four elements satisfy p1
count2 = 9 since the following five elements satisfy p2
count3 = 11 since two elements after that satisfy p3.
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We update and use these counters at run time. Then, to support star patterns,
the OPS algorithm is modified as follows:

Algorithm 5.2. The OPS Algorithm for Patterns with Stars:

If the current input element satisfies the pattern then move to the next
input, and

(1) if the current pattern element is not a star element then move to the
next one, otherwise;

(2) update the current count.

Otherwise (i.e., when the current input element does not satisfy the pattern):

(1) If this is a star element, whose predicate has already been satisfied by
the previous input element, move to the next pattern element and the
next input.

(2) If this is not a star element, or is a star predicate tested for the first
time, then:

—reset j (the index in the pattern) to next( j ), and
—reset i (the index in the input) as follows:

i := i − count( j − 1)+ count(shift( j )+ next( j )− 1).

To complete the OPS Algorithm, we must now specify the computation of
shift( j ) and next( j ) in the presence of stars.

5.2 Finding next and shift for the Star Case

Consider the following graph based on the matrix θ (excluding the main
diagonal)

θ21
↓ ↘
θ31 → θ32
↓ ↘ ↓ ↘
θ41 → θ42 → θ43
↓ ↘ ↓ ↘

.

The entry θjk in our matrix correlates pattern predicates pj with pk , k < j ,
when these are evaluated on the same input element. Therefore, we can picture
the simultaneous processing of the input on the original pattern, and on the
same pattern shifted back by j −k. Thus, the arcs between nodes in our matrix
above show the combined transitions in the original pattern and in the shifted
pattern. In particular, consider θkj where neither pk nor pj are star predicates;
then after success in pj and pk , we transition to pj+1 in the original pattern,
and to pk+1 in the shifted pattern: this transition is represented by an arc
θkj → θk+1, j+1. However, if pj is not as star predicate, while pk is, then the
success of both will move pk to pk+1, but leave pj unchanged: this is represented
by the arc θkj → θk+1, j . In general, it is clear that only some of the arcs listed in
the matrix above represent valid transitions and should be considered, the set
of valid transitions also depends on the values of θ . In particular, since all the
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predicates in the pattern must be satisfied by the shifted input, every θkj = 0
entry must removed with all its incoming and departing arcs: we only retain
entries that are either 1 or U .

Considering all possible situations, and assuming that all the neighbors are
nonzero entries, we conclude that only the following transitions are needed
when building the graph:

(1) If both elements j and k of the pattern sequence are star predicates and
θjk = U , then we have three outgoing arcs from θjk: one to θ j+1,k , one to
θ j+1,k+1 and one to θ j ,k+1. Pictorially,

U → θ j ,k+1
↓ ↘

θ j+1,k θ j+1,k+1

.

(2) If both element j and element k of the pattern are stars and θjk = 1, we have
two outgoing arcs from θjk: one to θ j+1,k+1 and the other to θ j+1,k . Pictorially,

1 θ j ,k+1
↓ ↘

θ j+1,k θ j+1,k+1

.

Observe that there is no arc to θ j ,k+1. This is because θ j ,k = 1, and, therefore,
all input tuples that satisfy pj must also satisfy pk .

(3) If both elements j and k of the pattern are nonstar predicates, then we
have only one arc from θjk to θ j+1,k+1. Pictorially,

θjk θ j ,k+1
↘

θ j+1,k θ j+1,k+1

.

(4) If element j of the pattern is a star predicate, but element k is not, then we
have two arcs from θjk: one to θ j+1,k+1 and the other to θ j ,k+1,

θjk → θ j ,k+1
↘

θ j+1,k θ j+1,k+1

.

(5) If element k of the pattern is a star predicate but element j is not, then we
have two arcs from θjk: one to θ j+1,k+1 and the other to θ j+1,k . Thus we have:

θjk θ j ,k+1
↓ ↘

θ j+1,k θ j+1,k+1

.

These rules assume that the end nodes of the arcs have value U or 1; but
when such nodes have value 0, the incoming arcs will be dropped.

The directed graph produced by this construction will be called the Implica-
tion Graph for pattern sequence P , and is denoted as G P . For each value of j ,
this graph must be further modified with entries from φ to account for the fact
that j th element of the pattern failed on the input.

Therefore, we replace the j th row of G P (i.e., the row that starts with θ j ,1)
with the j th row of matrix φ, and remove all rows and arcs after j . In addition,
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we recompute the arcs from row j − 1 to row j according to the new values
of elements in row j . Thus, if element k is star, there are up to two arcs from
θ j−1,k to row j : one to φjk and one to φ j ,k+1. If element k is not an star, then
there will be only an arc from θ j−1,k to row j that goes to φjk. Furthermore, all
the original G P entries in rows up to and including j − 1 remain unchanged,
and so are all arcs leading to entries in these rows.

Again we assume that the end nodes of the arcs are either U or 1; but when
such nodes are 0 the incoming arcs will be dropped. The resulting graph will
be called the Implication Graph for pattern element j , denoted G j

P ; this graph
will be used to compute shift( j ) and next( j ).

For instance, in Example 5.3 below, we want to find occurrences of the fol-
lowing pattern in IBM’s stock price: a period of increasing prices leading to a
price between 30 and 40, followed by a period of decreasing price, followed by
another period of increasing price leading to a price between 35 and 40, fol-
lowed by a decreasing period leading to a price below 30. The query written in
SQL-TS is:

Example 5.3. Looking for an M-shaped pattern with specific high & low
points

SELECT X.NEXT.date, X.NEXT.price,
S.previous.date, S.previous.price

FROM quote
CLUSTER BY name,
SEQUENCE BY date
AS (*X, Y, *Z, *T, U, *V, S)

WHERE
X.name=’IBM’
AND X.price > X.previous.price
AND 30 < Y.price
AND Y.price < 40
AND Z.price < Z.previous.price
AND T.price > T.previous.price
AND 35 < U.price
AND U.price < 40
AND V.price < V.previous.price
AND S.price < 30

Therefore, our pattern predicates (on an input tuple t) are:

p1(t) = (t.price > t.previous.price)
p2(t) = (30 < t.price < 40)
p3(t) = (t.price < t.previous.price)
p4(t) = (t.price > t.previous.price)
p5(t) = (35 < t.price < 40)
p6(t) = (t.price < t.previous.price)
p7(t) = (t.price < 30).
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Observe that p1, p3, p4, and p6 are star predicates, and the others are not.
Our matrices φ and θ are:

θ =



1
U 1
0 U 1
1 U 0 1
U 1 U U 1
0 U 1 0 U 1
U 0 U U 0 U 1


.

φ =



0
U 0
U U 0
0 U U 0
U U U U 0
U U 0 U U 0
U U U U U U 0


.

Since p1, p3, p4, and p6 are star predicates, and p2 and p5 are not, we can
connect the elements of θ (after excluding the main diagonal) as follows:

G P =



−

U −
↘

0 U −

1 U 0 −
↓ ↘ ↘
U 1 U U −
↘ ↘ ↓ ↘

0 U → 1 0 U −
↘ ↓ ↘ ↘

U 0 U U 0 U −



.

Say now that we want to build G6
P . We replace row 6 of G P with row 6 of φ

and update the paths from the 5th row to the 6th row according to new value.
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Then, we have the following graph:

G6
P =



−

U −
↘

0 U −

1 U 0 −
↓ ↘ ↘
U 1 U U −
↓ ↘ ↘ ↓ ↘
U U 0 U U −



.

Consider now the node θ41 in this graph. Observe that there are several paths
consisting of either 1 nodes or U nodes that take us to nodes in the last row of
the matrix. Therefore, the input shifted by 4 can succeeds along any of these
paths. However, there is no path to the last row starting from node θ31: thus, 3
is not a possible shift. Also there is not path to the last row starting from θ21
and θ11; thus shifts of size 2 and 1 can never succeed. Therefore, we conclude
that shift(6) = 3.

Computation of shift( j ) and next( j ) from G j
P . We compute shift( j ) from the

set of nodes in the first column of G j
P that are sources of paths leading to the

last row of G j
P , as follows:

Definition 5.4. For a given pattern P , we define the set:

N j
P = { n | ∃ m such that G j

P contains a path from θn,1 to φ j ,m}.

Then,

—If the set N is not empty, shift( j ) is one less than the least value in I : shift( j ) =
min(I )− 1,

—otherwise (i.e., when the set N is empty) we set:

if φ j 1 6= 0, then shift( j ) = j − 1, else shift( j ) = j .

Now we can define next. Note that there might be more than one path found
in the definition of shift, but next must return a unique value to be used in
restarting the search. Therefore, let us say that a node in our G j

P graph is de-
terministic if there is exactly one arc leaving this node, and the end-node of
this arc has value 1 (thus a deterministic node cannot take us to an U node or
to several 1 nodes). Thus, we start from θshift( j )+1,1 and if this is not determin-
istic, we set next( j ) = 1. Otherwise, we move to the unique successor of this
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deterministic node and repeat the test. When the first nondeterministic node
is found in this process, next( j ) is set to the value of its column. If the search
takes us to the last row in G j

P , that means that none of the input elements
previously visited needs to be tested again: thus next( j ) = j − shift( j ).

For the example at hand, there is a nonzero path from node θ41 to node φ61,
thus shift(6) = 3. We now consider θ41 = 1 and see that this is not a deterministic
node, since there is more than one arc leaving the node. Thus, we conclude that
next(6) = 1.

Complexity of Calculating Next and Shift. The G P graph built in the last
section has at most m(m − 1)/2 nodes and each node has a constant number
of (maximum 3) outgoing edges. Thus at the worst case, traversing the graph
in depth first search manner for finding shift( j ) will have the complexity of
O( j 2), and the worst-case complexity for finding all the shift values will be
O(m3). Note that the first j − 2 levels of graph G j−1

P are the same as the
first j − 2 levels of graph G j

P , therefore we can use the results of previous
traversal for j − 1 in the current traversal for j . Say that we store the values
of indexes of the paths from the first column to row j − 2 in G j

P ; then, the
computation of shift( j ) reduces to computing from which nodes in row j −2 we
can reach row j . This is a constant-cost computation since the branching factor
for each node is at most 3. Thus, the complexity of computing shift( j ) reduces
to O(m2).

5.3 Aggregates in the Star

There are two kinds of aggregates associated with the star. The first kind is
the continuous aggregates that return a new value for each new input tuple as
ccount(X) of Example 2.6. The second is the final aggregates that are computed
at the end of the star sequence, such as count(∗A) that in Example 2.5. The
different syntax, whereby a starred variable is used for the second case, clearly
denotes that the aggregate value for this second case is only available for the
whole sequence, rather than for each individual value.

The standard OPS algorithm can be used to optimize the search for patterns
specified via conditions on aggregates; this can be done by simply including new
virtual attributes in the tuples being searched—one new attribute for each ag-
gregate. Thus, for the query in Example 2.6, we add the distinguished columns
ccount and first to X, to support the two aggregates ccount(X) and first(X). At
runtime, the values of attributes ccount and first are updated by their respec-
tive aggregate functions, for each new input in the star sequence. At compile
time, however, the OPS algorithm treats them in the optimization process as
any other attribute. Thus, the query of Example 2.6 is executed and optimized
as follows:

SELECT Y.SessNo

FROM Sessions

CLUSTER BY SessNO

SEQUENCE BY ClickTime

AS (*X, Y)
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WHERE A.PageType <>‘p’

AND X.ccount < 100

AND X.first + 20 Minute >

X.ClickTime AND Y.PageType<>‘p’

Final aggregates are also treated via the addition of new virtual attributes to
the tuples being scanned; however the conditions involving these aggregates are
tested in the pattern element following the star in which they were computed
(if the star was the last element in the pattern a new dummy element is added
to enable this test). Thus, the query in Example 2.5 is compiled as follows:

SELECT SessNo, B.count

FROM Sessions

CLUSTER BY SessNO

SEQUENCE BY ClickTime

AS (*A, B)

WHERE A.PageType <> ‘d’

AND B.PageType = ‘d’

AND B.count < 20

Thus, the original condition count(∗A) < 20 is implemented by the condition
B.count < 20, which checks at point B if the value left in count by ∗A is in fact
less than 20.

In summary, our general approach to compilation and execution uses a finite-
state model, whereby there are as many states as there are variables in the
search pattern. Therefore, the conditions in the WHERE clause are partitioned
accordingly: the j th group in the partition contains all the clauses that actu-
ally use the j th variable, and to not use any later variable. For instance, in
Example 2.5 there are two states each with its own conditions: the first is for
variable A and the other for variable *B. In Example 3.2, there are five vari-
ables (but in our discussion we ignored the first one that plays no role in the
implications).

6. EXPERIMENTAL RESULTS

In order to verify the applicability of our algorithm in real life application,
we wrote an emulation in Matlab to measure the possible speedup when
searching some popular patterns in stock market data. The speedups obtained
range from the modest one obtained for the simple search pattern of Figure 5,
to speedups of more than two orders of magnitude obtained on the complex
patterns found in actual applications. For instance, a common search in stock
market data analysis is for the so-called “double-bottom pattern”, that is, for
the situation where the price of a stock has two consecutive local minima.
In our experiment, we searched for “relaxed double-bottoms” in the recorded
closing value of the DJIA (Dow Jones Industrial Average) index for the last 25
years. By a relaxed double bottom, we mean a local maximum surrounded by
two local minima, where we only consider the increases or decreases which are
more than 2%. In other words, if the price moves less than 2%, we consider it
as if it hasn’t changed (Figure 7).
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Fig. 7. The relaxed double bottom pattern.

Example 6.1. Relaxed Double Bottom

SELECT X.NEXT.date, X.NEXT.price,
S.previous.date, S.previous.price

FROM djia
SEQUENCE BY date
AS (X,*Y, *Z, *T, *U, *V, *W, *R, S)

WHERE X.price >= 0.98 * X.previous.price
AND Y.price < 0.98 * Y.previous.price
AND 0.98*Z.previous.price < Z.price
AND Z.price < 1.02*Z.previous.price
AND T.price > 1.02 * T.previous.price
AND 0.98*U.previous.price < U.price
AND U.price < 1.02*U.previous.price
AND V.price < 0.98 * V.previous.price
AND 0.98*W.previous.price < W.price
AND W.price < 1.02*W.previous.price
AND R.price > 1.02*R.previous.price
AND S.price <= 1.02*S.previous.price

Example 6.1 expresses the relaxed double bottom pattern in SQL-TS; ∗Z, ∗U,
and ∗W represent the areas where changes are less than 2% and the curve is
considered approximately flat (Figure 7). This query, optimized using the OPS
algorithm, executes 93 times faster than the naive execution on the DJIA’s data
for the last 25 years. Figure 8 shows there are 12 matches found in the input.
The graph in the bottom of Figure 8 shows one of these patterns that occurred
around June 1990. We ran several queries with more complex search patterns,
and measured speedups up to 800 times over naive search.

7. DISJUNCTIVE PATTERNS AND OTHER EXTENSIONS

The basic optimization approach of OPS is quite robust and can be extended
to deal with different situations—in particular with disjunctive patterns, dis-
cussed next.

7.1 Calculating θ and φ for Disjunctive Predicates

One first situation is that of Example 7.1, where we have a conjunctive pattern
where disjunctive conditions are applied to individual elements in the pattern.
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Fig. 8. Doublebottoms found in the DJIA data are shown by boxes. The bottom picture is zoomed
for the area pointed by arrow in the top picture and shows one of the matches.

We will next discuss how to solve the problem of determining the φ and θ

matrices for this situations. Assume we have the pattern P = p1, p2, p3, . . . , pm,
where, for some 1 ≤ i ≤ m, the predicate pi is disjunctive. To calculate the
implication and satisfiability relations between predicate pj and predicate pk
where 1 ≤ k < j , we must consider two (nonmutually exclusive) situations.
The first situation is when pj = pja ∨ pjb, and we want to compute θjk, that is,
the logical value of pj ⇒ pk . If pja ⇒ pk and pjb ⇒ pk are both true, pj ⇒ pk
is true and the value of θjk is 1. In a similar way, if pja ⇒ ¬pk and pjb ⇒ ¬pk ,
then θjk is 0. In the remaining cases, the information available is not enough
and we need to set the value of θjk to U .

The second situation is when pk = pka ∨ pkb and we need to calculate the
truth value of pk ⇒ pj . In this case, if either pj ⇒ pka or pj ⇒ pkb have a
truth value of 1, then pj ⇒ pk is true and the value of θjk = 1. Also, since
¬pk = ¬(pka ∨ pkb) = ¬pka ∧ ¬pkb, if pj ⇒ ¬pka and pj ⇒ ¬pkb are both true,
then we can conclude that pj ⇒ ¬pk is true and θjk is 0.
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Table I. Logic Matrix Elements for Disjunction of Pattern Elements

θjb,k = 1 ∧ θjk = 1 θjb,k = 1
pj = pja ∨ pjb θja,k = 0 ∧ θjb,k = 0 θjk = 0

else θjk = U
φja,k = 1 ∨ φjb,k = 1 φjk = 1
φja,k = 0 ∨ φjb,k = 0 φjk = 0
φja,k = U ∧ φjb,k = U φjk = U
θ j ,ka = 1 ∨ θ j ,kb = 1 θjk = 1

pk = pka ∨ pkb θ j ,ka = 0 ∧ θ j ,kb = 0 θjk = 0
else θjk = U

φ j ,ka = 1 ∨ φ j ,kb = 1 φjk = 1
φ j ,ka = 0 ∨ φ j ,kb = 0 φjk = 0

else φjk = U

The same arguments can be used for calculating φ. For calculating φjk where
k < j , we want to see if value of ¬pj ⇒ pk is always true or not. Since ¬pj =
¬(pja ∨ pjb) = ¬pja∧¬pjb , if ¬pja ⇒ ¬pk or ¬pjb ⇒ ¬pk , then we can conclude
that φjk is 1.

Table I summarizes different possibilities for θ and φ. In this table, by θja,k
(θjb,k) we mean value of θjk if we would replace pj with pja (pjb). The same no-
tational conventions are used for φ. When we calculate θjk, and both pj and
pk are disjunctions, we can first decompose the predicate and use the tech-
nique just described for calculating θ , and then combine the results. Obviously,
we can use the same technique for calculating φ. Furthermore, the technique
is easily generalized to the situation of disjunctions of more than two terms.
As an example of disjunctive elements, let’s consider the following SQL-TS
query:

Example 7.1. Query with Disjunctions

SELECT X.NEXT.date, X.NEXT.price,
S.previous.date, S.previous.price

FROM djia
SEQUENCE BY date
AS (X,*Y, Z, *T,U )

WHERE X.price > 0.98 * X.previous.price
AND Y.price < 0.98 * Y.previous.price
AND (0.98*Z.previous.price < Z.price OR Z.price > 50)
AND T.price > 1.02 * T.previous.price
AND (0.98*U.previous.price < U.price OR U.price > 50)

This can be represented as a pattern sequence P = p1, p2, p3, p4, p5, where:

p1(t) = t.price > 0.98 ∗ t.previous.price
p2(t) = t.price < 0.98 ∗ t.previous.price
p3(t) = t.price > 0.98 ∗ t.previous.price ∨ t.price > 50
p4(t) = t.price < 0.98 ∗ t.previous.price
p5(t) = t.price > 0.98 ∗ t.previous.price ∨ t.price > 50.
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We now have p3 = p3a ∨ p3b and p5 = p5a ∨ p5b where:

p3a(t) = t.price > 0.98 ∗ t.previous.price
p5a(t) = t.price > 0.98 ∗ t.previous.price
p3b(t) = t.price > 50
p5b(t) = t.price > 50.

For instance, to calculate θ32, notice that θ3a,2 (i.e., p3a(t)⇒ p2(t)), θ3b,2 (i.e.,
p3b(t) ⇒ p2(t)) are not equal to 1. Moreover, θ3a,2 = 0 (since p3b(t) ⇒ ¬p2(t)),
but θ3b,2(i.e., p3b(t) ⇒ ¬p2(t)) is not 0. Thus, θ32 = U . In conclusion, we obtain
the following matrix for the query in Example 7.1.

θP =


1
0 1
U U 1
0 0 U 1
U U 1 U 1

 .

7.2 Disjunctive Patterns

We next consider queries as that in Example 7.2 that searches for the disjunc-
tion of two patterns, where the input sequence can satisfy either one pattern
or both. In effect, this query is equivalent to two independent queries, but we
can execute them in one scan of the database.

A naive approach in processing the query of Example 7.2 would consist in
making a first pass through data to satisfy the first pattern followed by a second
pass to satisfy the second pattern. This approach will not be considered since
it is likely to require each page in the secondary store to be retrieved twice.

Example 7.2. Find four consecutive rise in the stock price or four consecu-
tive closing price between 55 and 57 for IBM

SELECT X.NEXT.date, X.NEXT.price,
S.previous.date, S.previous.price

FROM quote
SEQUENCE BY date
AS (X, Y, Z, T)

WHERE X.name=’IBM’
AND ( (X.previous.price < X.price

AND X.price < Y.price
AND Y.price < Z.price
AND Z.price < T.price )

OR ( X.price > 55
AND X.price < 57
AND Y.price > 55
AND Y.price < 57
AND Z.price > 55
AND Z.price < 57
AND T.price > 55
AND T.price < 57)

)
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We next consider two other approaches that do not suffer from this drawback.
These are:

—Multiple Stream model, and
—Single Stream model.

7.2.1 Multiple Data Streams. In this model, cursors on the input and on
the pattern, are kept are kept in a queue for each disjunctive pattern. When the
pattern being tested fails, its values are computed and replace the old values
in the queue. Then, the scheduler looks at the values in the queue and select
a pattern for processing according to some optimization criteria. The queue
can be prioritized based on different criteria for optimization. For instance,
by selecting the pattern which has the least value of i, we can ensure that all
patterns are served fairly and no pattern stays behind. This, in turn, minimizes
the size of data that needs to be kept in temporary memory.

An advantage of this method is its simplicity and amenability to both serial
and parallel processing. It can be implemented as a client-server model where
the server provides the next values for i and j to each client process. Thus, this
method is amenable to parallel execution based on multiple data streams.

7.2.2 Single Data Stream. This model assumes that all the patterns are
tested in parallel against the current element in the input being scanned. The
only patterns excluded are those already known to be false or true. Take the
query in Example 7.2. That query is equivalent with two queries, one that
finds occurrences with four consecutive closing prices between 55 and 57 and
the other that finds four consecutive rise in the price. We calculate θ , φ, shift
and next independently for each pattern, but at the run time we handle both
queries simultaneously. The run-time algorithm can be revised as shown in
Algorithm 7.3.

As the algorithm shows, we keep proceeding until one of the concurrent
patterns fails. At this point we save the current value of i in iO and reset i
and j for the failed pattern and keep searching only for the fail pattern until
i becomes greater than iO (since we know the other pattern doesn’t have to
checked against input up to the point iO ). In this way, we only scan the pattern
once and we need only one buffer to keep recent values of the input.

In Example 7.2, we have one pattern in the FROM clause, and disjunctive
conditions in the FROM clause. The optimization and execution techniques dis-
cussed here, however, apply to more general situations where, for example, we
have multiple SQL-TS queries with distinct FROM and WHERE—provided that the
queries use the same CLUSTER BY and SEQUENCE BY clauses. In general, simi-
lar techniques might be applicable to the optimization of a set of continuous
queries in a data streaming environment [Babcock et al. 2002]. The situation
of disjunction in predicates discussed in the previous section can also be re-
duced to this, by simply normalizing them into disjunctive normal form. This
approach is appealing as long as it does not lead to too many alternative pat-
terns. The study of these extensions and improvements has been left for further
research.
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Algorithm 7.3. The OPS Algorithm for Concurrent Disjunctive Patterns
j1 = 1; j2 = 1; i = 1;
while j1 ≤ m1 ∧ j2 ≤ m2 ∧ i ≤ n do {

while pj1 (ti) ∧ qj2 (ti) do {
j1 = j1 + 1; j2 = j2 + 1; i = i + 1;

}
iO = i;
if ¬pj1 (ti) then {

while i ≤ iO do {
while j > 0 ∧ ¬pj1 (ti) do {

i = i − j1 + next1( j1)+ shift1( j1);
j1 = next1( j1);

}
j1 = j1 + 1; i = i + 1;

}
else { / ∗ ¬pj2 (ti) ∗ /

while i ≤ iO do {
while j > 0 ∧ ¬qj2 (ti) do {

i = i − j2 + next2( j2)+ shift2( j2);
j2 = next2( j2);

}
j2 = j2 + 1; i = i + 1;

}
}

}
if i > n then failure
else success;

7.2.3 More General Predicates. A method for calculating φ and θ for a
more general class of predicates that includes predicates on intervals (open
and closed intervals, single-dimensional and multidimensional ones) is given
in Sadri [2001]. Said method transforms implication and satisfiability problems
into set inclusion problems in the domain of intervals and their complements;
we can then handle the search for patterns in a spatio-temporal database [Sadri
2001].

8. CONCLUSIONS

We have described a novel approach for querying complex sequential patterns
and optimizing these queries. By adding minimal syntactic extensions to SQL,
we introduced SQL-TS, whose power in querying complex sequential patterns
was then demonstrated with several examples. Furthermore, we proposed a
method for optimizing queries that involve complex sequential patterns. Our
method uses the logical interdependencies between the elements of the pattern
to avoid repetitive scans over the input. In addition, we extended our optimiza-
tion method to cover repetitive patterns (star patterns), arbitrary aggregates
(including user-defined ones) and disjunctive patterns. The results of our ex-
periments show substantial speedups for practical applications.

Many interesting research problems not discussed in this paper deserve fur-
ther investigation. One is the problem of extending the applicability of the ap-
proach. For instance, in Sadri [2001] we focused on calculating φ and θ for more
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general classes of predicates; thus techniques were proposed to deal with con-
tainment predicates for intervals (including multidimensional ones), as needed
to the search for patterns in a spatio-temporal database [Sadri 2001]. Another
interesting problem is to extend SQL-TS to deal with noise, scaling, and simi-
larity queries [Rafiei and Mendelzon 2000].

In terms of performance, for instance, many indexing techniques for se-
quences have been proposed recently [Ferragina et al. 2001; Wang and Perng
2003], and their use in conjunction with the optimization techniques here dis-
cussed deserves an in-depth investigation. Also, generalizations similar to those
we have discussed for KMP should be investigated for other pattern search al-
gorithms. Although there is evidence that KMP provides excellent performance
on the average [Wright et al. 1998], other algorithms, such as those by Karp and
Rabin [1987] and Boyer and Moore [1977], can offer performance advantages
in particular situations.

The fast emerging area of data streams [Carney et al. 2002; Arasu et al.
2002; Chandrasekaran et al. 2003] provides many opportunities. The language
extensions featured in SQL-TS provides capabilities for pattern matching and
performing approximate (nonblocking) aggregates that are needed for streams.
However, the execution and optimization strategies must be revisited in the
light of the unique requirements of streams, where, for example, the use of
memory must be optimized along with the cost of processing.

APPENDIX: The Syntax of SQL-TS

The SQL-TS queries consists of the basic select-from-where clauses of SQL,
where the from clause is extended to support the sequence definition.

〈sqlts-query〉 −→ 〈select-clause〉
〈from-clause〉
〈where-clause〉

〈from-clause〉 −→ FROM〈sequence〉, 〈sql-from-list〉
〈sequence〉 −→ 〈sql-table〉|〈sql-table-expression〉

[CLUSTER BY〈expression〉{, 〈expression〉}]
[SEQUENCE BY〈expression〉{, 〈expression〉}

[〈ordering〉] [〈null-ordering〉]]
[AS〈sid〉|(〈sid〉{, 〈sid〉})]

〈sid〉 −→ 〈id〉|∗〈id〉
〈εordering〉 −→ ASC|DESC

〈null-ordering〉 −→ NULLS FIRST|NULLS LAST

Here ‘sql-from-list’ denotes the list of table names, or table expressions sup-
ported in standard SQL. Thus, an SQL-TS can use any number of tables, but
the sequence pattern can only be applied to the first table in the from clause
(this could actually be a derived table constructed via a table expression). Note
that when the SEQUENCE BY and CLUSTER BY clauses are empty, the AS
can work for making aliases.
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