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Abstract

One of the central results of AI research in the 1970's was that to achieve good performance,
AI systems must have large amounts of knowledge. Machine learning techniques have been
developed to automatically acquire knowledge, often in the form of if-then rules (productions).
Unfortunately, this often leads to a utility problem | the \learning" ends up causing an overall
slowdown in the system. This is because the more rules a system has, the longer it takes to
match them against the current situation in order to determine which ones are applicable.

To address this problem, this thesis is aimed at enabling the scaling up of the number of rules
in production systems. We examine a diverse set of testbed systems, each of which learns
at least 100,000 rules. We show that with the best existing match algorithms, the match
cost increases linearly in the number of rules in these systems. This is inadequate for large
learning systems, because it leads to a utility problem. We then examine the causes of this
linear increase, and develop techniques which eliminate the major causes. The end result is an
improved match algorithm, Rete/UL, which is a general extension of the existing state-of-the-
art Rete match algorithm. Rete/UL's performance scales well on a signi�cantly broader class
of systems than existing match algorithms. The use of Rete/UL rather than Rete signi�cantly
reduces or eliminates the utility problem in all the testbed systems.
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Chapter 1

Introduction

One of the central results of AI research in the 1970's was that to achieve good performance,
AI systems must have large amounts of knowledge. \Knowledge is power," the slogan goes.
Humans clearly use vast amounts of knowledge, and if AI is to achieve its long-term goals, AI
systems must also use vast amounts. Since hand-coding large amounts of knowledge into a
system is slow, tedious, and error-prone, machine learning techniques have been developed to
automatically acquire knowledge, often in the form of if-then rules (productions). Unfortunately,
this has often led to a utility problem (Minton, 1988b) | the \learning" has caused an overall
slowdown in the system.

For example, in many systems, learned rules are used to reduce the number of basic steps the
system takes in order to solve problems | by pruning the system's search space, for instance.
But in order to determine at each step which rules are applicable, the system must match them
against its current situation. Using current techniques, the matcher slows down as more and
more rules are acquired, so each step takes longer and longer. This e�ect can outweigh the
reduction in the number of steps taken, so that the net result is a slowdown. This has been
observed in several recent systems (Minton, 1988a; Etzioni, 1990; Tambe et al., 1990; Cohen,
1990).

Of course, the problem of slowdown from increasing match cost is not restricted to systems in
which the purpose of rules is to reduce the number of problem-solving steps. A system acquiring
new rules for any purpose can slow down, if the rules signi�cantly increase the match cost. And
intuitively, one expects that the more productions there are in a system, the higher the total
match cost will be.

The thesis of this research is that we can solve this problem in a broad class of systems
by improving the match algorithm they use. In essence, our aim is to enable the scaling up
of the number of rules in production systems. We advance the state-of-the-art in production
match algorithms, developing an improved match algorithm whose performance scales well on
a signi�cantly broader class of systems than existing algorithms. Furthermore, we demonstrate
that by using this improved match algorithm, we can reduce or avoid the utility problem in a
large class of machine learning systems.

1



2 Chapter 1. Introduction

1.1 Previous Approaches to the Utility Problem

Previous research on the problem of slowdown from increasing match cost has taken two general
approaches. One approach is simply to reduce the number of rules in the system's knowledge
base, via some form of selective learning or forgetting. (Markovitch and Scott, 1993) provides a
general framework, information �lters, for analyzing this approach. Examples include discarding
learned rules if they turn out to slow down the matcher enough to cause an overall system slow-
down (Minton, 1988a), disabling the learning component after some desired or peak performance
level has been reached (Holder, 1992), learning only certain types of rules (e.g., nonrecursive)
that are expected to have low match cost (Etzioni, 1993), and employing statistical approaches
to ensure (with high probability) that only rules that actually improve performance get added
to the knowledge base (Gratch and DeJong, 1992; Greiner and Jurisica, 1992).

Unfortunately, this approach alone is inadequate for the long-term goals of AI, because
with the current state of match technology, it solves the problem by precluding the learning
of vast amounts of knowledge. Whenever a system learns a moderate number of rules, the
match cost increases substantially, eventually reaching a point where it slows down the overall
system. Selective learning approaches by themselves thus prevent more than a moderate number
of rules from ever being acquired. Such approaches can be complemented, however, by other
approaches to reducing match cost. For example, in a system which saves a rule only when its
bene�ts outweigh its costs, using other approaches that reduce match cost (without a�ecting
rules' bene�ts) will change the \break-even" point, allowing a system to save and make use of
more rules.

The second major approach taken by previous research has been to reduce the match cost
of individual rules, taken one at a time. Many techniques have been developed for this. For
instance, (Tambe et al., 1990) prevents the formation of individual expensive rules that have a
combinatorial match cost by restricting the representation a system uses. Prodigy's compression
module (Minton, 1988a) reduces match cost by simplifying the conditions of rules generated
by Prodigy/EBL. Static (Etzioni, 1990) and Dynamic (P�erez and Etzioni, 1992) analyze the
structure of a problem space to build much simpler rules with lower match cost for many of the
same situations as Prodigy/EBL. (Chase et al., 1989) generalizes or specializes the conditions
of search control rules so as to reduce their match cost. A similar approach is taken by (Cohen,
1990), where all but a few of the conditions of search control rules are dropped. (Kim and
Rosenbloom, 1993) incorporates extra \search control conditions" into learned rules in order to
reduce their match cost.

This line of work is helpful for reducing the cost of individual rules, enabling a system to
learn more rules before an overall slowdown results. Unfortunately, an overall slowdown can
still result when a large number of individually cheap rules together exact a high match cost.
As the number of rules in the system increases, the average match cost grows; this is called the
average growth e�ect (Tambe et al., 1990) or the swamping e�ect (Francis and Ram, 1993).

To address this problem, this thesis takes a new approach, complementary to the above two,
examining the relatively unexplored area of reducing the aggregate match cost of a large number
of rules without regard to the cost of each individual rule. Certain domains may a�ord ad-hoc
methods here | for instance, in natural language processing, it may be possible to index learned
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rules according to particular words or lexical categories they involve (Samuelsson and Rayner,
1991; Liu and Soo, 1992) | but no general method has been developed yet.

1.2 Overview of the Thesis

The increase in match cost due to an increase in the number of individually inexpensive produc-
tions is the focus of this thesis. The ultimate objective is to support large learned production
systems, i.e., systems that learn a large number of rules.

An empirical study forms the core of the thesis. We examine a number of large learning
systems and use them as testbeds for the algorithms we develop and study. These systems use
a variety of problem-solving techniques in a variety of domains, and were written by a variety
of people with di�erent research interests. Each system learns at least 100,000 rules. The
systems are implemented using Soar (Laird et al., 1987; Rosenbloom et al., 1991), an integrated
problem-solving and learning architecture. Soar provides a useful vehicle for this research for
three reasons: it provides a mechanism for learning new rules (chunking), it already incorporates
one of the best existing match algorithms (Rete), and it has a large user community to provide
the set of testbed systems.

Our examination of these very large production systems reveals new phenomena and calls
into question some common assumptions based on previous observations of smaller systems.
The best existing match algorithms | Rete (Forgy, 1982) and Treat (Miranker, 1990) | both
slow down linearly in the number of rules in all our testbed systems. Such a linear slowdown
is a serious problem for machine learning systems, as it will lead to a utility problem if enough
rules are learned. Thus, the best available match algorithms do not scale very well with the
number of rules in these systems.

Within the Rete match algorithm, the starting point for our development of an improved
matcher, there are three sources of this linear slowdown. Two of these are pervasive, arising in
many or all of our testbed systems, and are also expected to arise in a broad class of additional
large learning systems.

We develop an improved match algorithm, called Rete/UL, by incorporating into Rete some
changes which avoid these two sources of slowdown. With Rete/UL, a third source of linear
slowdown remains in one testbed, but it is much less severe than the �rst two sources, and does
not arise at all in most of our testbed systems.

We evaluate Rete/UL empirically, by measuring the performance of both Rete/UL and the
basic Rete algorithm on each of our testbed systems and comparing the results. Rete's linear
slowdown as the number of rules increases is eliminated by Rete/UL in all but one of the systems,
and signi�cantly reduced by Rete/UL in that one system. Rete/UL scales well on a signi�cantly
broader class of systems than do Rete and Treat. Moreover, with 100,000 rules in each testbed
system, Rete/UL runs approximately two orders of magnitude faster than Rete.

Finally, we examine the match algorithm's impact on the utility problem. This is again
done empirically, measuring the speedup attained or slowdown incurred by each of our testbed
systems when they learn 100,000 or more rules. The use of Rete/UL rather than the basic Rete
algorithm is shown to signi�cantly reduce or eliminate the utility problem in all these systems.



4 Chapter 1. Introduction

1.3 Delimiting the Scope of the Thesis

To clarify the scope of this thesis, we mention a few related issues here which will not be
addressed in this thesis. First, while the high cost of matching learned rules is a major cause of
the utility problem in many systems, it is not the only possible cause. For example, (Mooney,
1989) shows that the particular way learned macro-rules are used also a�ects their utility. It is
important to avoid any other possible sources of the utility problem in addition to avoiding a
high match cost, but other sources are not the focus of this work.

Second, this thesis does not claim to completely solve the problem of high match cost. In-
deed, this problem may never be completely solved, since matching a single rule is NP-hard in
su�ciently expressive formalisms, and most commonly-used formalisms are su�ciently expres-
sive. Unless P=NP, all match algorithms will have very bad worst-case behavior. Fortunately,
the worst case does not always arise in practice.

Third, this work is aimed at match cost in large systems. Techniques that reduce match
cost in systems with 10,000{100,000 rules may not necessarily be helpful in systems with 10{100
rules, since very small systems may have di�erent characteristics than very large ones. Although
anecdotal evidence so far suggests that our improved match algorithm can be quite helpful in
small systems, di�erent match optimizations may be needed to avoid having the match cost
increase in systems that learn only a small number of rules. Since future AI systems will need
to use large amounts of knowledge, it is important to focus on match cost in large systems.

Fourth, this thesis focuses on scaling up only the number of rules in production systems.
Within the production systems community, some recent work has been aimed at improving the
scalability of match algorithms (Acharya and Tambe, 1992; Miranker et al., 1990). However, this
work focuses on scalability along a di�erent dimension | it is aimed at scaling up the amount
of data the rules manipulate, not the number of rules. Optimizations for both dimensions may
eventually be combined to produce algorithms able to function e�ciently with millions of rules
and millions of data elements, but that is a topic for future research.

Fifth, this thesis will assume that all data is resident in main memory, and will not address
issues of disk storage. Other researchers have investigated how production systems can be
implemented using databases (Sellis et al., 1988) or how production rules can be used in database
management systems (Hanson and Widom, 1993). In these systems, productions and working
memory are stored on disk, rather than in main memory. Current disk access times are simply
too slow to support adequate performance for the large learning systems examined in this thesis.

Sixth, this thesis focuses on match algorithms for sequential machines, not parallel ones. Of
course, one way to address the increasing match cost in systems learning many rules is simply
to use massive parallelism; e.g., if we can a�ord to devote one processor to each rule, we can
avoid any increase in the time spent in matching, as long as we do not run out of processors.
However, it is both interesting from a scienti�c standpoint and useful from a practical standpoint
to investigate how e�ective uniprocessor algorithms can be in these systems. Studies of the
performance of sequential algorithms can also inform the design of e�cient parallel algorithms.

Finally, this thesis deals exclusively with total matching, not partial. (Veloso, 1992) has in-
vestigated e�cient matching of large numbers of learned cases (previously-encountered problems
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and their solutions). This requires �nding a set of partially matched cases in a large knowledge
base, while the current work requires �nding all complete matches. It is unclear to what extent
similar techniques can be useful in both situations, but this is an interesting possibility for future
work.

1.4 Organization of the Thesis

The basic Rete match algorithm, the starting point for this research, is described in Chapter 2.
The description is in tutorial style, using high-level pseudocode to illustrate the major data
structures and procedures Rete uses. Readers who are already experts in production matching
can probably skim or skip this chapter. Chapter 3 describes the systems we use as testbeds, and
then presents empirical observations of the behavior of the basic Rete algorithm as we scale up
the number of rules in each testbed. Among these observations is the fact that Rete slows down
linearly in the number of rules in these systems. Chapters 4 and 5 explore two pervasive causes
of this slowdown and develop techniques to improve the match algorithm so as to avoid them.
Chapter 6 gives some theoretical analysis of match cost and also explains the remaining small
source of linear slowdown in one of our testbed systems. Chapter 7 examines the impact of
the choice of match algorithm on the utility problem, demonstrating that our improved match
algorithm reduces or eliminates the utility problem in all our testbed systems. Finally, Chapter 8
summarizes the results and contributions of the thesis and suggests some interesting directions
for future work.

We discuss related work at appropriate points throughout the thesis. We have already dis-
cussed some other approaches to the utility problem, and some other areas of work on production
systems. Related work on production match algorithms is discussed primarily in Chapter 2 and
Sections 3.4, 3.6, and 5.8. Related work on the utility problem is discussed primarily in Chap-
ter 7.



6 Chapter 1. Introduction



Chapter 2

The Basic Rete Algorithm

Since the Rete match algorithm provides the starting point for much of the work in this thesis,
this chapter describes Rete. Unfortunately, most of the descriptions of Rete in the literature
are not particularly lucid,1 which is perhaps why Rete has acquired \a reputation for extreme
di�culty."(Perlin, 1990b) To remedy this situation, this chapter describes Rete in a tutorial
style, rather than just brie
y reviewing it and referring the reader to the literature for a full
description. We will �rst give an overview of Rete, and then discuss the principle data structures
and procedures commonly used to implement it. High-level pseudocode will be given for many
of the structures and procedures, so that this chapter may serve as a guide to readers who want
to implement Rete (or some variant) in their own systems. Readers who are already familiar
with Rete or who just want to read about the research contributions of this thesis should skim or
skip this chapter. Sections 2.6 and higher discuss advanced aspects of Rete and can be skipped
on �rst reading; most of the rest of the thesis is understandable without them.

Before beginning our discussion of Rete, we �rst review some basic terminology and notation.
Rete (usually pronounced either \REET" or \REE-tee," from the Latin word for \network")
deals with a production memory (PM) and a working memory (WM). Each of these may change
gradually over time. The working memory is a set of items which (in most systems) represent
facts about the system's current situation | the state of the external world and/or the internal
problem-solving state of the system itself. Each item in WM is called a working memory element,
or a WME (pronounced either \wuh-MEE" or \WIH-mee") for short. In a \blocks world"
system, for example, the working memory might consist of the following WMEs (numbered
w1{w9):

w1: (B1 ^on B2) w6: (B2 ^color blue)

w2: (B1 ^on B3) w7: (B3 ^left-of B4)

w3: (B1 ^color red) w8: (B3 ^on table)

w4: (B2 ^on table) w9: (B3 ^color red)

w5: (B2 ^left-of B3)

1The de�nitive description, Forgy's thesis (Forgy, 1979), is one of the better ones, but the much wider-read

Arti�cial Intelligence journal article (Forgy, 1982) tends to swamp the reader in the details of a particular very

low-level machine implementation.

7
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To simplify our description, we will assume that WMEs take the form of triples (three-tuples);
we will write these as (identifier ^attribute value). The names of the parts | \identi-
�er," \attribute," and \value" | have no special signi�cance to the matcher. We sometimes
abbreviate \identi�er" as \id" or \attribute" as \attr." We will refer to the parts as the three
�elds in a WME; e.g., the WME (B1 ^on B2) has B1 in its identi�er �eld. Each �eld contains
exactly one symbol. The only restriction on what symbols are allowed is that they must all
be constants: no variables are allowed in WMEs. Rete does not require this particular repre-
sentation | numerous versions of Rete supporting others have been implemented, and we will
discuss some of these in Section 2.11. We choose this particular form here because:

� It is very simple.

� The restriction to this form of WMEs entails no real loss of representational power, since
other less restricted representations can be straightforwardly and mechanically converted
into this form, as we will see in Section 2.11.

� The testbed systems described later in this thesis use this representation (as do all Soar
systems).

The production memory is a set of productions (i.e., rules). A production is speci�ed as a
set of conditions, collectively called the left-hand side (LHS), and a set of actions, collectively
called the right-hand side (RHS). Productions are usually written in this form:

(name-of-this-production

LHS /* one or more conditions */

-->

RHS /* one or more actions */

)

Match algorithms usually ignore the actions and deal only with the conditions. The match
algorithm serves as a module or subroutine used by the overall system to determine which
productions have all their conditions satis�ed. Some other part of the system then handles
those productions' actions as appropriate. Consequently, this chapter will also focus on the
conditions. Conditions may contain variables, which we write in angle brackets; e.g., <x>. In
our \blocks world" example, the following production might be used to look for two (or more)
blocks stacked to the left of a red block:

(find-stack-of-two-blocks-to-the-left-of-a-red-block

(<x> ^on <y>)

(<y> ^left-of <z>)

(<z> ^color red)

-->

... RHS ...

)
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Changes to production memory
(additions or removals of productions)

Rete

Changes to working memory
(additions or removals of WMEs)

Changes to the set of complete matches

Figure 2.1: The Rete algorithm as a \black box" with inputs and outputs.

A production is said to match the current WM if all its conditions match (i.e., are satis�ed by)
items in the current working memory, with any variables in the conditions bound consistently.
For example, the above production matches the above WM, because its three conditions are
matched by w1, w5, and w9, respectively, with <y> bound to B2 in both the �rst and second
conditions and <z> bound to B3 in both the second and third conditions. The match algorithm's
job is to determine which productions in the system match the current WM, and for each one,
to determine which WMEs match which conditions. Note that since we have assumed WMEs
all take the form of three-tuples, we can also assume that conditions have a similar form | a
condition not in this form would never be satis�ed by any WME, so it would be useless.

As illustrated in Figure 2.1, Rete can be viewed as a \black box." As input, it takes infor-
mation about changes to the current working memory (e.g., \Add this WME: . . . ") or to the
set of productions (e.g., \Add this production: . . . ").2 Each time it is informed of one of these
changes, the match algorithm must output any changes to the set of matching productions (e.g.,
\Production . . . now matches these WMEs: . . . ").

2.1 Overview

We begin with a brief overview of Rete. As illustrated in Figure 2.2, Rete uses a data
ow
network to represent the conditions of the productions. The network has two parts. The alpha
part performs the constant tests on working memory elements (tests for constant symbols such
as red and left-of). Its output is stored in alpha memories (AM), each of which holds the
current set of working memory elements passing all the constant tests of an individual condition.
For example, in the �gure, the alpha memory for the �rst condition, (<x> ^on <y>), holds the

2Not all implementations of Rete support dynamic addition and deletion of productions | some require all

productions to be speci�ed at the start.
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P1 has conditions C1^C2^C3
P2 has conditions C1^C2^C4^C5
P3 has conditions C1^C2^C4^C3

Rete network for three productions:

(dummy top node)

matches for C1

matches for C1^C2

matches for C1^C2^C4

P1 P2 P3

AM for C1

AM for C2

AM for C3

AM for C4

AM for C5

Alpha 
Network

Working
Memory
Elements

Working memory contains:
w1: (B1 ^on B2)
w2: (B1 ^on B3)
w3: (B1 ^color red)
w4: (B2 ^on table)
w5: (B2 ^left-of B3)

w6: (B2 ^color blue)
w7: (B3 ^left-of B4)
w8: (B3 ^on table)
w9: (B3 ^color red)

Rete network for one production with conditions:
C1: (<x> ^on <y>)
C2: (<y> ^left-of <z>)
C3: (<z> ^color red)

beta memory

alpha memory

beta join node

Key:

w1,w2,w4,w8

w5,w7

w3,w9

(dummy top node)

matches for C1

join on values of <y>

join on values of <z>

(dummy join)

w1,w2,w4,w8

w1^w5, w2^w7

w1^w5^w9

left activation
right activation

complete
matches:

matches
for C1^C2

AM for C1

AM for C2

AM for C3

(a) (b)

Figure 2.2: Example network used by Rete, (a) for several productions, and (b) instantiated
network for one production.

WMEs whose attribute �eld contains the symbol on. The implementation of the alpha network
is discussed in Section 2.2. The beta part of the network primarily contains join nodes and beta
memories. (There are a few other types of nodes we will discuss later.) Join nodes perform
the tests for consistency of variable bindings between conditions. Beta memories store partial
instantiations of productions (i.e., combinations of WMEs which match some but not all of the
conditions of a production). These partial instantiations are called tokens.

Strictly speaking, in most versions of Rete, the alpha network performs not only constant
tests but also intra-condition variable binding consistency tests, where one variable occurs more
than once in a single condition; e.g., (<x> ^self <x>). Such tests are rare in Soar, so we
will not discuss them extensively here. Also, note that a \test" can actually be any boolean-
valued function. In Soar, almost all tests are equality tests (checking that one thing is equal
to another), so we concentrate on them here. However, Rete implementations usually support
at least simple relational tests (greater-than, less-than, etc.), and some versions allow arbitrary
user-de�ned tests (Allen, 1982; Forgy, 1984; Cruise et al., 1987; Pasik et al., 1989; Miranker
et al., 1991). In any case, the basic idea is that the alpha network performs all the tests which
involve a single WME, while the beta network performs tests involving two or more WMEs.

An analogy to relational databases may be helpful here. One can think of the current working
memory as a relation, and each production as a query. The constant tests in a condition represent
a select operation over the WM relation. For each di�erent condition ci in the system, there
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is an alpha memory which stores the result r(ci) of that select. Now, let P be a production
with conditions c1; . . . ; ck. The matches for P with the current working memory (if P has any
matches) are given by r(c1) 1 � � � 1 r(ck), where the join operations perform the appropriate
variable binding consistency checks. The join nodes in the beta part of the Rete network
perform these joins, and each beta memory stores the results of one of the intermediate joins
r(c1) 1 � � � 1 r(ci), for some i < k.

Whenever a change is made to working memory, we update these select and join results.
This is done as follows: working memory changes are sent through the alpha network and the
appropriate alpha memories are updated. These updates are then propagated over to the at-
tached join nodes, activating those nodes. If any new partial instantiations are created, they
are added to the appropriate beta memories and then propagated down the beta part of the
network, activating other nodes. Whenever the propagation reaches the bottom of the network,
it indicates that a production's conditions are completely matched. This is commonly imple-
mented by having a special node for each production (called its production node, or p-node for
short) at the bottom of the network. In Figure 2.2 (a), P1, P2, and P3 at the bottom of the net-
work would be p-nodes. Whenever a p-node gets activated, it signals the newly found complete
match (in some system-dependent way).

The bulk of the code for the Rete algorithm consists of procedures for handling the various
node activations. The activation of an alpha memory node is handled by adding a given WME
to the memory, then passing the WME on to the memory's successors (the join nodes attached
to it). Similarly, the activation of a beta memory node is handled by adding a given token to
the memory and passing it on to the node's children (join nodes). In general, an activation of
some node from another node in the beta network is called a left activation, while an activation
of some node from an alpha memory is called a right activation. Thus, a join node can incur
two types of activations: a right activation when a WME is added to its alpha memory (i.e.,
the alpha memory that feeds into it), and a left activation when a token is added to its beta
memory (the beta memory that feeds into it). Right and left join node activations are normally
implemented in two di�erent procedures, but in both cases, the node's other memory is searched
for (already existing) items having variable bindings consistent with the new item; if any are
found, they are passed on to the join node's children.

To activate a given node, then, we use a procedure call. The particular procedure depends
on the type of the node; for example, left activations of beta memory nodes are handled by
one procedure, while a di�erent procedure handles left activations of join nodes. To propagate
the data
ow from a certain node to its successors, we iterate over the successors and call the
appropriate activation procedure for each one. We determine which procedure is appropriate
by looking at the type of the node: we either use a switch or case statement which branches
according to the node type, each branch calling a di�erent procedure, or we make the proce-
dure call through a jumptable indexed by the node type.3 (Some compilers convert a switch

3A jumptable is an array containing the addresses of several di�erent procedures or blocks of code. It might

appear that the structure of the network makes the type of a successor node completely predictable | alpha and

beta memories always followed by join nodes, join nodes always by beta memories | but this is not the case. A

join node may also be followed by a production node. When we discuss negative conditions in Sections 2.7 and

2.8, we will see other types of nodes that can follow join nodes and alpha memories. Beta memories, however,
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statement into a jumptable for e�ciency.)

There are two important features of Rete that make it potentially much faster than a na��ve
match algorithm. The �rst is its use of state-saving. After each change to WM, the state
(results) of the matching process is saved in the alpha and beta memories. After the next
change to WM, many or most of these results are usually unchanged, so Rete avoids a lot of
recomputation by keeping these results around in between successive WM changes. (Rete is
designed for systems where only a small fraction of WMEs change in between successive times
rules need to be matched. Rete's state-saving would not be very bene�cial in systems where
most WMEs change each time.)

The second important feature of Rete is its sharing of nodes between productions with
similar conditions. Di�erent kinds of sharing occur in di�erent parts of the network. There
can be sharing within the alpha network, as discussed below in Section 2.2. At the output of
the alpha network, when two or more productions have a common condition, Rete uses a single
alpha memory for the condition, rather than creating a duplicate memory for each production.
In Figure 2.2 (a), for example, the alpha memory for C3 is shared by productions P1 and P3.
Moreover, in the beta part of the network, when two or more productions have the same �rst
few conditions, the same nodes are used to match those conditions; this avoids duplication of
match e�ort across those productions. In the �gure, all three productions have the same �rst two
conditions, and two productions have the same �rst three conditions. Because of this sharing,
the beta part of the network forms a tree.4

Implementations of Rete can be either interpreted or compiled. In interpreted versions,
the network just described is simply stored as a data structure which the interpreter traverses.
In compiled versions (e.g., (Gupta et al., 1988); also see (Miranker and Lofaso, 1991) for a
good description of a compiled version of a di�erent match algorithm), the network is not
represented explicitly, but is replaced by a set of procedures, usually one or two procedures per
node. For example, where an interpreted version would apply a generic \left-activation-of-join-
node" procedure to a particular join node (by passing the procedure a pointer to that node's
data structure), a compiled version would instead use a special procedure created for just that
particular node. Of course, the compiler creates the special procedure by partially evaluating an
interpreter's generic procedure with respect to the particular node. (This chapter will describe
the generic interpreter procedures.) The advantage of a compiled version is, of course, its faster
speed. Its disadvantages are (1) larger memory requirements (the compiled procedure for a
node usually takes more space than the interpreted data structure) and (2) di�culty of run-
time addition or deletion of productions (modifying compiled code is harder than modifying an
interpreted data structure | although at least one compiled version of Rete has tackled this

can still only be followed by join nodes. Of course, another way to implement this would be to keep several lists

of successors on each node, one list for each possible type of successor, but this would yield only a slight speedup

at the cost of signi�cantly increasing space usage. (Each Rete node is a fairly small data structure, and the large

systems we use in this thesis have millions of nodes, so adding a few extra pointers to each node requires a lot

of extra space.)
4In general, it would form a forest, but we obtain a tree by adding a dummy node to the top of a forest. Some

Rete implementations do not use a dummy top node and instead have the uppermost join nodes take inputs from

two alpha memories. The use of a dummy top node, however, simpli�es the description and can also simplify

the implementation.
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problem (Tambe et al., 1988)).

In the rest of this chapter, we will describe Rete in more detail, giving high-level pseudocode
for its basic data structures and procedures. The pseudocode will be given section by section,
and sometimes a later section will revise pseudocode given earlier, in order to add support for
a feature being discussed in the later section. A complete version of the pseudocode, including
some important improvements introduced in later chapters, appears in Appendix A.

The Rete module of a system has four entry points: add-wme, remove-wme, add-production,
and remove-production.5 We begin by discussing what happens on a call to add-wme: Section 2.2
describes what the alpha network does, Section 2.3 describes what alpha and beta memory nodes
do, and Section 2.4 describes what join nodes do. We discuss remove-wme in Section 2.5, and
add-production and remove-production in Section 2.6. Next, we discuss some more complicated
features of Rete: Section 2.7 shows how to handle negated conditions (conditions which test
for the absence of a WME), and Section 2.8 shows how negated conjunctions (testing for the
absence of a combination of WMEs) can be handled. We then give a few implementation notes
in Section 2.9 and survey some other optimizations that have been developed for Rete over
the years in Section 2.10. Finally, Section 2.11 discusses the generality of the Rete algorithm,
including its applicability to less restricted representations of WMEs.

2.2 Alpha Net Implementation

When a WME is added to working memory, the alpha network performs the necessary constant
(or intra-condition) tests on it and deposits it into (zero or more) appropriate alpha memories.
There are several ways of �nding the appropriate alpha memories.

2.2.1 Data
ow Network

The original and perhaps most straightforward way is to use a simple data
ow network. Fig-
ure 2.3 illustrates such a network for a small production system whose rules use just ten con-
ditions (C1{C10). The network is constructed as follows. For each condition, let T1; . . . ; Tk be
its constant tests, listed in any order (the left-to-right ordering from the source text of the con-
dition is commonly used). Starting at the top node, we build a path of k nodes corresponding
to T1; . . . ; Tk, in that order. These nodes are usually called constant-test nodes or one-input

nodes in the literature. As we build this path, we share (i.e., reuse) existing nodes (for other
conditions) containing identical tests whenever possible. Finally, we make the alpha memory
for this condition be an output of the node for Tk.

Note that this construction pays attention only to the constants in the condition, while
ignoring the variable names. Thus, in Figure 2.3, conditions C2 and C10 share an alpha memory
even though they contain di�erent variable names. Also note that it is possible for a condition
to contain no constant test at all (C9 in the �gure, for example), in which case its alpha memory
is simply a child of the top node in the alpha network.

5Some implementations also have a modify-wme entry point; we discuss this in Section 2.10.
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top node

attr=left-of?attr=on?

value=white?

value=green?

value=blue?value=red?

value=table?

value=maize?

attr=color?

WME additions

C1:  (<x> ^on <y>)
C2:  (<y> ^left-of <z>)
C3:  (<z> ^color red)
C4:  (<a> ^color maize)
C5:  (<b> ^color blue)
C6:  (<c> ^color green)
C7:  (<d> ^color white)
C8:  (<s> ^on table)
C9:  (<y> ^<a> <b>)
C10: (<a> ^left-of <d>)

AM for C2
and for C10

AM for C3 AM for C4 AM for C5 AM for C6 AM for C7

AM for C8

AM for C9

AM for C1

Alpha network for conditions:

Figure 2.3: Example data
ow network used for the alpha network.

Each of these nodes is just a data structure specifying the test to be performed at the node,
the alpha memory (if any) the node's output goes into, and a list of the node's children (other
constant-test nodes):

structure constant-test-node:
�eld-to-test: \identi�er", \attribute", \value", or \no-test"
thing-the-�eld-must-equal: symbol
output-memory: alpha-memory or nil
children: list of constant-test-node

end

(The \no-test" will be used for the top node.) When a WME is added to working memory, we
simply feed it into the top of this data
ow network:

procedure add-wme (w: WME) fdata
ow versiong
constant-test-node-activation (the-top-node-of-the-alpha-network, w)

end
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procedure constant-test-node-activation (node: constant-test-node; w: WME)
if node.�eld-to-test 6= 'no-test' then

v  w.[node.�eld-to-test]
if v 6= node.thing-the-�eld-must-equal then

return ffailed the test, so don't propagate any furtherg
if node.output-memory 6= nil then

alpha-memory-activation (node.output-memory, w) fsee Section 2.3.1g
for each c in node.children do constant-test-node-activation (c, w)

end

The above description assumes that all tests are tests for equality with some constant symbol.
As mentioned earlier, the tests performed by the alpha network can include tests other than
equality. For example, a condition might require a certain �eld in the WME to have a numeric
value greater than seven. To support such tests, we would expand the constant-test-node data
structure to include a speci�cation of what kind of test is to be performed, and modify the
constant-test-node-activation procedure accordingly.

2.2.2 Data
ow Network with Hashing

The above implementation of the alpha network is simple and straightforward. It has one serious
drawback in large systems, however. As the reader may have already guessed from Figure 2.3,
it can lead to a lot of wasted work when the fan-out from a node is large. In the �gure, the
node for attr=color? has �ve children, and their tests are all mutually exclusive. Whenever a
WME passes the attr=color? test, �ve more tests will be performed, one at each child, and
at most one could possibly succeed. Of course, there is no limit to how many of these mutually
exclusive children a node can have, and the number could grow as a system learns new rules
over time. An expert system for interior decoration might learn the names of more and more
speci�c colors; a system learning medicine might learn about more and more diseases. As the
system grows, the amount of \wasted" work performed at points like this in the alpha network
would also grow, so the matcher would become increasingly slow.

The obvious solution to this problem is to replace this large fan-out point in the network with
a special node which uses a hash table (or balanced binary tree) to determine which one path
the activation needs to continue down (Forgy, 1979). In the above example, instead of activating
�ve children, we would look at the contents of the \value" �eld of the WME, and hash directly
to the appropriate child. In fact, the child node can be eliminated, since the hashing e�ectively
performs the same test. Figure 2.4 shows the result of using this hashing technique. Extending
the previous pseudocode to handle these hash tables is straightforward.

2.2.3 Exhaustive Hash Table Lookup

As long as WMEs are required to be three-tuples, there is a simple and elegant way to implement
most of the alpha network using just a few hash table lookups (Acharya, 1992). Assume for the
moment that all the constant tests are equality tests | i.e., that there are no \greater-than,"
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Figure 2.4: Example alpha network with hashing.

\not-equal-to," or other special tests. We can then make the following observation: For any
given WME, there are at most eight alpha memories that WME can go into. This is because
every alpha memory has the form (test-1 ^test-2 test-3), where each of the three tests is
either a test for equality with a speci�c constant symbol, or a \don't care," which we will denote
by \�". If a WME w =(v1 ^v2 v3) goes into an alpha memory a, then a must have one of the
following eight forms:

(* ^* *) (v1 ^* *)

(* ^* v3) (v1 ^* v3)

(* ^v2 *) (v1 ^v2 *)

(* ^v2 v3) (v1 ^v2 v3)

These are the only eight ways to write a condition which (v1 ^v2 v3) will match. Thus, given a
WME w, to determine which alpha memories w should be added to, we need only check whether
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any of these eight possibilities is actually present in the system. (Some might not be present,
since there might not be any alpha memory corresponding to that particular combination of
tests and �'s.) We store pointers to all the system's alpha memories in a hash table, indexed
according to the particular values being tested. Executing the alpha network then becomes a
simple matter of doing eight hash table lookups:

procedure add-wme (w: WME) fexhaustive hash table versiong
let v1, v2, and v3 be the symbols in the three �elds of w
alpha-mem  lookup-in-hash-table (v1,v2,v3)
if alpha-mem 6= \not-found" then alpha-memory-activation (alpha-mem, w)
alpha-mem  lookup-in-hash-table (v1,v2,�)
if alpha-mem 6= \not-found" then alpha-memory-activation (alpha-mem, w)
alpha-mem  lookup-in-hash-table (v1,�,v3)
if alpha-mem 6= \not-found" then alpha-memory-activation (alpha-mem, w)
...
alpha-mem  lookup-in-hash-table (�,�,�)
if alpha-mem 6= \not-found" then alpha-memory-activation (alpha-mem, w)

end

The above algorithm, while elegant, relies on two assumptions: the three-tuple form of
WMEs and the lack of non-equality tests. The �rst assumption can be relaxed somewhat: to
handle WMEs that are r-tuples, we can use 2r hash table lookups. Of course, this only works
well if r is quite small. There are two ways to eliminate the second assumption:

� The result of the hash table lookups, instead of being an alpha memory, can be a small
data
ow network of the form described above in Section 2.2.1. All tests for equality with
a constant are thus handled by hashing, while other tests are handled by constant-test
nodes as before. Essentially, this amounts to taking the data
ow network of Section 2.2.1,
moving all equality tests up to the top half and all other tests down to the bottom half,
and then replacing the top half by eight hash table lookups.

� The non-equality tests can be handled by the beta part of the network instead of the
alpha part. Of course, it is possible for an implementation of Rete to perform some of
the constant (or intra-condition) tests in the beta rather than the alpha network. This
leaves the alpha network almost trivial, and turns out to not increase the complexity of
the beta network much, if at all. However, it reduces the potential for these tests to be
shared when di�erent productions have a common condition. (This is the approach taken
in the implementation used in this thesis.)

With either the data
ow-plus-hashing implementation of Section 2.2.2 or the exhaustive-
hash-table-lookup implementation of Section 2.2.3, the alpha network is very e�cient, running
in approximately constant time per change to working memory.6 The beta part of the network

6If non-equality tests are not used, we have an O(1) bound on time per WM change, from the exhaustive-

hash-table-lookup algorithm (assuming the hash function produces a reasonable distribution of items to hash
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accounts for most of the match cost in Soar systems, and previous studies have shown this to
be true of OPS5 (Forgy, 1981) systems as well (Gupta, 1987). Most of this chapter (and most
of this thesis) will therefore deal with the beta part of the network.

2.3 Memory Node Implementation

We now discuss the implementation of alpha and beta memory nodes. Recall that alpha mem-
ories store sets of WMEs, and beta memories store sets of tokens, each token representing a
sequence of WMEs | speci�cally, a sequence of k WMEs (for some k) satisfying the �rst k
conditions (with consistent variable bindings) of some production.

There are various ways of implementing memory nodes. We can classify implementations
according to two criteria:

� How are the sets (of WMEs or tokens) structured?

� How is a token | a sequence of WMEs | represented?

For the �rst question, the simplest implementation imposes no special structure on the sets |
they are represented simply as lists, without the items being in any particular order. However,
we can often gain e�ciency in the join operations by imposing an indexing structure on the
memories. To see how, consider our earlier example:

(find-stack-of-two-blocks-to-the-left-of-a-red-block

(<x> ^on <y>) /* C1 */

(<y> ^left-of <z>) /* C2 */

(<z> ^color red) /* C3 */

-->

... RHS ...

)

The Rete net for this single production is shown in Figure 2.2 (b) on page 10. When a new WME
(B7 ^color red) is added to working memory, it will be added to the alpha memory for C3,
and then the lowest join node will be right-activated. The join node must check whether there
are any matches for the �rst two conditions which have the right value of <z>. So it searches its
beta memory (i.e., the beta memory that feeds into it) for any tokens which have <z> bound to
B7. Without any indexing, this search requires iterating over all the tokens in the beta memory;
however, it can be done much faster if the tokens in the beta memory are indexed according
to their bindings for <z>. Similarly, whenever a new token is added to the beta memory, the
join node will be left-activated and will have to search its alpha memory for WMEs having the

buckets). If non-equality tests are used pervasively, however, no nice bound can be given, because a single WME

can go into a huge number of alpha memories. For example, if we have conditions (a ^b <7), (a ^b <8),

(a ^b <9), . . . , (a ^b <1,000,000), then a new WME (a ^b 6) must be added to 999,994 di�erent alpha

memories. Fortunately, such pervasive use of non-equality tests does not appear to arise in practice.
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appropriate value of <z>; this search can be sped up by having the alpha memory indexed as
well.

The most common indexing method for memory nodes is a hash table. (Trees are another
possibility, but they do not seem to have been used in many Rete implementations, and (Bara-
chini, 1991) found that hash tables generally outperformed (binary unbalanced) trees.) However,
putting a hash table in every memory node leads to a dilemma: How should the hash table size
be chosen? The number of tokens or WMEs at a node can vary greatly over time. If the hash
table is always small, we will have a lot of hash collisions, reducing the e�ectiveness of hashing.
If the hash table is always large, we will waste a lot of memory at times when there are few or
no tokens or WMEs in the node. We could dynamically resize the hash table as items are added
and removed, but this entails putting a potentially expensive piece of code inside what would
otherwise be a very simple procedure.

The usual solution to this dilemma is to index all tokens from all beta memories in one big
global hash table, and all WMEs from all alpha memories in another big global hash table,
instead of using separate hash tables at each node (Gupta, 1987). The sizes of these global
hash tables are chosen ahead of time to be very large (usually several thousand buckets). The
hash function is a function of both the appropriate variable binding from the token or WME
(e.g., the value of <z> above) and the node itself (e.g., an identi�cation number unique to the
particular memory node containing the token or WME, or the virtual memory address of that
node). The idea is that to minimize collisions, (1) if we �x the memory node and vary the
variable bindings, the hash function results should be spread out evenly among the buckets; and
(2) if we �x the variable bindings but vary the memory node, the results should again be spread
out evenly among the buckets.

As mentioned above, using indexed memories can greatly speed up the matcher by reducing
the time spent computing joins. It does have two disadvantages, though. First, it increases
the time needed to add or remove an item to or from a memory node, since the index must
be updated. Second, it can reduce sharing: sometimes \duplicate" memory nodes have to be
constructed, each one storing the same information but indexing it in a di�erent way. For
example, consider what would happen if we added a second, slightly di�erent, production to the
aforementioned one:

(slightly-modified-version-of-previous-production

(<x> ^on <y>) /* C1 */

(<y> ^left-of <z>) /* C2 */

(<y> ^color red) /* C3, but tests <y> instead of <z> */

-->

... RHS ...

)

For this production, we want the tokens representing matches for the �rst two conditions to be
indexed according to their bindings for <y>, rather than their bindings for <z>. If memory nodes
are not indexed at all, but instead are simple unordered lists, then both productions can share
a single memory node to store matches for the �rst two conditions. With indexing, we need two
memory nodes instead of one (or one node that maintains two di�erent indices). Because of
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these two small costs, indexing may not be worthwhile in some systems, particularly ones where
memories never contain very many items.

In spite of these potential drawbacks, empirical results indicate that in practice, hashed
memories are an improvement over unindexed memories. (Gupta et al., 1988) found that their
use sped up the match algorithm by a factor of 1.2{3.5 in several OPS5 systems, and (Scales,
1986) reports a factor of 1.2{1.3 for Soar systems.

Note that we cannot always �nd a variable whose binding we should index a memory on.
For example, sometimes one condition is completely independent of all the earlier conditions:

(<x> ^on <y>) /* C1 */

(<a> ^left-of <b>) /* C2 */

...

In this example, there is no point in indexing the beta memory preceding the join node for C2,
since C2 doesn't test any variables that are used in C1. In cases like this, we simply use an
unindexed memory node.

Turning now to the second question | How is a token (sequence of WMEs) represented? |
there are two main possibilities. A sequence can be represented either by an array (yielding
array-form tokens) or by a list (yielding list-form tokens). Using an array would seem the obvious
choice, since it o�ers the advantage of direct access to all the elements in the sequence | given
i, we can �nd the ith element in constant time | whereas a list requires a loop over the �rst
i� 1 elements to get to the ith one.

However, array-form tokens can result in a lot of redundant information storage and hence
much more space usage. To see why, note that for every beta memory node storing matches
for the �rst i > 1 conditions in a production, there is another beta memory node | namely,
its grandparent (skipping over the intervening join node) | storing matches for the �rst i � 1
conditions. And if hw1; . . . ; wii is a match for the �rst i conditions, then hw1; . . . ; wi�1i must
be a match for the �rst i� 1 conditions. This means any token in the lower beta memory can
be represented succinctly as a pair hparent ; wii, where parent is (a pointer to) the token in the
upper beta memory representing the �rst i � 1 WMEs. If we use this technique at all beta
memory nodes, then each token e�ectively becomes a linked list, connected by parent pointers,
representing a sequence of WMEs in reverse order, with wi at the head of the list and w1 at
the tail. For uniformity, we make tokens in the uppermost beta memories (which represent
sequences of just one WME) have their parent point to a dummy top token, which represents
the null sequence hi. Note that the set of all tokens now forms a tree, with links pointing from
children to their parents, and with the dummy top token at the root.

With array-form tokens, a token for the �rst i conditions takes O(i) space, whereas with
list-form tokens, every token takes just O(1) space. This can result in substantial space savings,
especially if productions typically have a large number of conditions. If a production with C

conditions has one complete match, array-form tokens will use at least 1 + 2+ . . . +C = O(C2)
space, whereas list-form tokens will only require O(C) space. Of course, using more space implies
using more time to �ll up that space. Every time a beta memory node is activated, it creates
and stores a new token. With array-form tokens, this requires a loop which copies the i � 1
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elements from above, before adding in the new ith element. With list-form tokens, creating a
token does not require this loop.

To summarize, using array-form tokens requires more space than using list-form tokens, and
requires more time to create each token on each beta memory node activation. However, it
a�ords faster access to a given element of the sequence than using list-form tokens does. Access
to arbitrary elements is often required during join node activations, in order to perform variable
binding consistency checks. So we have a tradeo�. Neither representation is clearly better for
all systems. In some systems, using array-form tokens is infeasible for space reasons | e.g.,
if productions have a huge number of conditions. In general, the choice depends on how high
the cost of access to arbitrary elements is with list-form tokens. The more variable binding
consistency checks a system uses, and the farther apart the variables involved are (i.e., the two
variables occur in the very �rst and last conditions in a production, versus occurring in conditions
ci and ci+1), the greater the access cost will be, and the more likely it is that array-form tokens
will be faster.

We now turn to our pseudocode. To keep things as simple as possible, we use list-form tokens
and unindexed memory nodes in this pseudocode; as we go along, we will note places where
this makes a signi�cant di�erence. (The actual implementation used in this thesis uses list-form
tokens and hashed memory nodes.)

2.3.1 Alpha Memory Implementation

A WME simply contains its three �elds:

structure WME:
�elds: array [1..3] of symbol

end

An alpha memory stores a list of the WMEs it contains, plus a list of its successors (join nodes
attached to it):

structure alpha-memory:
items: list of WME
successors: list of rete-node

end

Whenever a new WME is �ltered through the alpha network and reaches an alpha memory, we
simply add it to the list of other WMEs in that memory, and inform each of the attached join
nodes:

procedure alpha-memory-activation (node: alpha-memory, w: WME)
insert w at the head of node.items
for each child in node.successors do right-activation (child, w)

end
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2.3.2 Beta Memory Implementation

With list-form tokens, as noted above, a token is just a pair:

structure token:
parent: token fpoints to the higher token, for items 1...i-1g
wme: WME fgives item ig

end

A beta memory node stores a list of the tokens it contains, plus a list of its children (other
nodes in the beta part of the network). Before we give its data structure, though, recall that
we were going to do our procedure calls for left and right activations through a switch or case
statement or a jumptable indexed according to the type of node being activated. Thus, given
a (pointer to a) node, we need to be able to determine its type. This is straightforward if we
use variant records to represent nodes. (A variant record is a record that can contain any one
of several di�erent sets of �elds.) Each node in the beta part of the net will be represented by
a rete-node structure:

structure rete-node:
type: \beta-memory", \join-node", or \p-node" for other node types we'll see laterg
children: list of rete-node
parent: rete-node fwe'll need this \back-link" laterg
. . . (variant part | other data depending on node type) . . .

end

As we describe each particular type of node from now on, the data structure we give for it will
list only the extra information for that type of node; remember that all nodes in the beta part of
the network also have type, children, and parent �elds. Also, we will simply write left-activation
or right-activation as shorthand for the appropriate switch or case statement or jumptable
usage.

Returning to beta memory nodes now, the only extra data a beta memory node stores is a
list of the tokens it contains:

structure beta-memory:
items: list of token

end

Whenever a beta memory is informed of a new match (consisting of an existing token and some
WME), we build a token, add it to the list in the beta memory, and inform each of the beta
memory's children:
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procedure beta-memory-left-activation (node: beta-memory, t: token, w: WME)
new-token  allocate-memory()
new-token.parent  t
new-token.wme  w
insert new-token at the head of node.items
for each child in node.children do left-activation (child, new-token)

end

2.3.3 P-Node Implementation

We mention the implementation of production nodes (p-nodes) here because it is often similar to
that of memory nodes in some respects. The implementation of p-nodes tends to vary from one
system to another, so our discussion here will be rather general and we will not give pseudocode.
A p-node may store tokens, just as beta memories do; these tokens represent complete matches
for the production's conditions. (In traditional production systems, the set of all tokens at all
p-nodes represents the con
ict set.) On a left activation, a p-node will build a new token, or
some similar representation of the newly found complete match. It then signals the new match
in some appropriate (system-dependent) way.

In general, a p-node also contains a speci�cation of what production it corresponds to | the
name of the production, its right-hand-side actions, etc. A p-node may also contain information
about the names of the variables that occur in the production. Note that variable names
are not mentioned in any of the Rete node data structures we describe in this chapter. This is
intentional | it enables nodes to be shared when two productions have conditions with the same
basic form, but with di�erent variable names. If variable names are recorded somewhere, it is
possible to reconstruct the LHS of a production by looking at (its portion of) the Rete network
together with the variable name information. The ability to reconstruct the LHS eliminates the
need to save an \original copy" of the LHS in case we need to examine the production later.

2.4 Join Node Implementation

As mentioned in the overview, a join node can incur a right activation when a WME is added
to its alpha memory, or a left activation when a token is added to its beta memory. In either
case, the node's other memory is searched for items having variable bindings consistent with the
new item; if any are found, they are passed on to the join node's children.

The data structure for a join node, therefore, must contain pointers to its two memory
nodes (so they can be searched), a speci�cation of any variable binding consistency tests to be
performed, and a list of the node's children. From the data common to all nodes (the rete-node
structure on page 22), we already have the children; also, the parent �eld automatically gives us
a pointer to the join node's beta memory (the beta memory is always its parent). We need two
extra �elds for a join node:



24 Chapter 2. The Basic Rete Algorithm

structure join-node:
amem: alpha-memory fpoints to the alpha memory this node is attached tog
tests: list of test-at-join-node

end

The test-at-join-node structure speci�es the locations of the two �elds whose values must be
equal in order for some variable to be bound consistently:

structure test-at-join-node:
�eld-of-arg1: \identi�er", \attribute", or \value"
condition-number-of-arg2: integer
�eld-of-arg2: \identi�er", \attribute", or \value"

end

Arg1 is one of the three �elds in the WME (in the alpha memory), while arg2 is a �eld from a
WME that matched some earlier condition in the production (i.e., part of the token in the beta
memory). For example, in our example production

(find-stack-of-two-blocks-to-the-left-of-a-red-block

(<x> ^on <y>) /* C1 */

(<y> ^left-of <z>) /* C2 */

(<z> ^color red) /* C3 */

-->

... RHS ...

),

the join node for C3, checking for consistent bindings of <z>, would have �eld-of-arg1 = \iden-
ti�er", condition-number-of-arg2 = 2, and �eld-of-arg2 = \value", since the contents of the id
�eld of the WME from the join node's alpha memory must be equal to the contents of the value
�eld of the WME that matched the second condition.7

Upon a right activation (when a new WME w is added to the alpha memory), we look
through the beta memory and �nd any token(s) t for which all these t-versus-w tests succeed.
Any successful ht; wi combinations are passed on to the join node's children. Similarly, upon
a left activation (when a new token t is added to the beta memory), we look through the
alpha memory and �nd any WME(s) w for which all these t-versus-w tests succeed. Again, any
successful ht; wi combinations are passed on to the node's children:

procedure join-node-right-activation (node: join-node, w: WME)
for each t in node.parent.items do f\parent" is the beta memory nodeg

if perform-join-tests (node.tests, t, w) then
for each child in node.children do left-activation (child, t, w)

end

7Actually, with list-form tokens, it is convenient to have condition-number-of-arg2 specify the relative condition

number, i.e., the number of conditions in between the one containing arg1 and the one containing arg2.
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procedure join-node-left-activation (node: join-node, t: token)
for each w in node.amem.items do

if perform-join-tests (node.tests, t, w) then
for each child in node.children do left-activation (child, t, w)

end

function perform-join-tests (tests: list of test-at-join-node, t: token, w: WME)
returning boolean

for each this-test in tests do
arg1  w.[this-test.�eld-of-arg1]
fWith list-form tokens, the following statement is really a loop8g
wme2  the [this-test.condition-number-of-arg2]'th element in t
arg2  wme2.[this-test.�eld-of-arg2]
if arg1 6= arg2 then return false

return true

end

We note a few things about the above procedures. First, in order to be able to use these
procedures for the uppermost join nodes in the network | the ones that are children of the
dummy top node, as in Figure 2.2 on page 10 | we need to have the dummy top node act as a
beta memory for these join nodes. We always keep a single dummy top token in the dummy top
node, just so there will be one thing to iterate over in the join-node-right-activation procedure.
Second, this pseudocode assumes that all the tests are for equality between two �elds. It is
straightforward to extend the test-at-join-node structure and the perform-join-tests procedure
to support other tests (e.g., tests requiring one �eld to be numerically less than another �eld).
Most, if not all, implementations of Rete support such tests. Finally, this pseudocode assumes
that the alpha and beta memories are not indexed in any way, as discussed above in Section 2.3.
If indexed memories are used, then the activation procedures above would be modi�ed to use the
index rather than simply iterating over all tokens or WMEs in the memory node. For example,
if memories are hashed, the procedures would iterate only over the tokens or WMEs in the
appropriate hash bucket, not over all tokens or WMEs in the memory. This can signi�cantly
speed up the Rete algorithm.

2.4.1 Avoiding Duplicate Tokens

Whenever we add a WME to an alpha memory, we right-activate each join node attached to that
alpha memory. In our discussions so far, one very important detail has been omitted. It turns
out that the order in which the join nodes are right-activated can be crucial, because duplicate

8With list-form tokens, we need to follow the parent pointers on token data structures up a certain number

of levels in order to �nd the condition-number-of-arg2'th element; the number of levels is equal to the number of

the current condition (the one this join node is handling) minus condition-number-of-arg2. For convenience, we

usually replace the condition-number-of-arg2 �eld of the test-at-join-node structure with a number-of-levels-up

�eld.
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tokens (two or more tokens in the same beta memory representing the same sequence of WMEs)
can be generated if the join nodes are activated in the wrong order.

To see how this can happen, consider a production whose LHS starts with the following three
conditions:

(<x> ^self <y>) /* C1 */

(<x> ^color red) /* C2 */

(<y> ^color red) /* C3 */

... /* other conditions */

Suppose working memory initially contains just one WME, matching the �rst condition:

w1: (B1 ^self B1)

Figure 2.5 (a) shows the Rete net for this situation, including the contents of all the memory
nodes. Notice that the lower alpha memory is used for two di�erent conditions in this production,
C2 and C3. Now suppose another WME is added to working memory:

w2: (B1 ^color red)

This WME gets �ltered through the alpha network and the alpha-memory-activation procedure
is called to add w2 to the lower alpha memory. We add w2 to the memory's items list, and we
then have to right-activate two join nodes (the one that joins on the values of <x>, and the one
that joins on the values of <y>). Suppose we right-activate the higher one �rst (the one for
<x>). It searches its beta memory for appropriate tokens, �nds one, and passes this new match
hw1; w2i on to its child (the beta memory containing matches for C1^C2). There it is added
to the memory and passed on to the lower join node. Now this join node searches its alpha
memory for appropriate WMEs | and �nds w2, which was just added to the memory | and
passes this new match hw1; w2; w2i on to its child. This concludes the processing triggered
by the right-activation of the higher join node; this situation is shown in Figure 2.5 (b). We
still have to right-activate the lower join node. When we right-activate it, it searches its beta
memory for appropriate tokens | and �nds hw1; w2i, which was just added to the memory. So
it then passes this \new" match hw1; w2; w2i on to its child, without realizing that this is a
duplicate of the match found just before. The �nal result is shown in Figure 2.5 (c); note that
the bottom beta memory contains two copies of the same token.

One way to deal with this problem would be to have beta memory nodes check for duplicate
tokens. Every time a beta memory was activated, it would check whether the \new" match
was actually a duplicate of some token already in the memory; if so, it would be ignored (i.e.,
discarded). Unfortunately, this would signi�cantly slow down the handling of beta memory
activations.

A better approach which avoids this slowdown is to right-activate the join nodes in a di�erent
order. In the above example, if we right-activate the lower join node �rst, no duplicate tokens
are generated. (The reader is invited to check this; the key is that when the lower join node
is right-activated, its beta memory is still empty.) In general, the solution is to right-activate
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Figure 2.5: Duplicate tokens arising when join nodes are activated from the same alpha memory
in the wrong order: (a) before addition of w2 to the alpha memory; (b) after right activation of
the join on <x> and subsequent processing, but before right activation of the join on <y>; (c)
after right activation of the join on <y>.

descendents before their ancestors; i.e., if we need to right-activate join nodes J1 and J2 from
the same alpha memory, and J1 is a descendent of J2, then we right-activate J1 before right-
activating J2. Our overall procedure for adding a WME to an alpha memory, then, is:

1. Add the WME to the alpha memory's items list.

2. Right-activate the attached join nodes, descendents before ancestors.

The dual approach | right-activate ancestors before descendents, and then add the WME to
the memory's items list | also works. For a full discussion of this issue, see (Lee and Schor,
1992).9

Of course, it would be foolish to traverse the Rete network on every alpha memory activation
just to look for ancestor-descendent relationships among join nodes. Instead, we check these
ahead of time, when the network is built, and make sure that the alpha memory's list of join
nodes is appropriately ordered: if J1 and J2 are on the list and J1 is a descendent of J2, then J1
must come earlier in the list than J2. By enforcing this ordering in advance, we avoid any extra
processing during node activations later, and avoid generating any duplicate tokens.

We will return to this issue in Chapter 4 when we describe right unlinking, an optimization
in which join nodes will be dynamically spliced into and out of the lists on alpha memories. We
will need to ensure that the appropriate ordering is maintained as we do this splicing.

9Note that the discussion in Forgy's thesis (Forgy, 1979, pages 66{68) is incorrect | Forgy's solution works

only if one of the conditions sharing the alpha memory happens to be the �rst condition in the production. As

our example shows, the problem is more general than this.
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2.5 Removals of WMEs

When a WME is removed from working memory, we need to update the items in alpha and
beta memory nodes (and tokens in p-nodes) accordingly, by removing any entries involving that
WME. There are several ways of accomplishing this.

In the original Rete algorithm, removals were handled in essentially the same way as ad-
ditions. We will refer to this method as rematch-based removal. The basic idea is that each
procedure in the interpreter takes an extra argument, called a tag, a 
ag indicating whether the
current operation is an addition or a deletion. Upon being called for a deletion, the procedures
for alpha and beta memory nodes simply delete the indicated WME or token from their mem-
ories instead of adding it. The procedures then call their successors, just as they would for an
addition, only with the tag being delete rather than add. The procedures for join nodes handle
additions and deletions exactly the same | in both cases, they look for items in the opposite
memory with consistent variable bindings and pass any matches (along with the add/delete
tag) on to their children. Because this rematch-based removal method handles deletions with
largely the same interpreter procedures as additions, it is simple and elegant.

Unfortunately, it is also slow, at least relative to other possible methods. With rematch-
based removal, the cost of removing a WME is the same as the cost of adding a WME, since
the same procedures get called and each does roughly the same amount of work. The problem
is that none of the information obtained during the addition of a new WME is utilized during
the later removal of that WME. There are at least three ways of handling removals which make
use of such information.

In scan-based removal, we dispense with redoing variable binding consistency checks in the
join nodes, and instead simply scan their output memories (their child beta memories and/or
p-nodes) looking for any entries involving the item being removed. When a join node is right-
activated for the removal of a WME w, it simply passes w on to its output memory (or memories);
the memory looks through its list of tokens for any tokens whose last element happens to be w,
deletes those tokens, and sends those deletions on to its children. Similarly, when a join node is
left-activated for a removal of a token t, it passes t on to its output memory; the memory looks
through its list of tokens for any whose parent happens to be t, deletes those tokens, and sends
those deletions on to its children. Note that part of this procedure | looking for tokens whose
parent is t | can be done e�ciently only if list-form tokens are used rather than array-form
tokens. (Scales, 1986) obtained a 28% speedup by replacing rematch-based removal with this
scan-based removal technique in Soar; (Barachini, 1991) reports a 10% speedup from replacing
rematch-based removal with a slight variant of this technique (Barachini and Theuretzbacher,
1988).

Probably the fastest way to handle a removal is to have written down ahead of time precisely
which things need to be deleted. This straightforward idea is the basis of both list-based removal
and tree-based removal. The idea is to keep some extra pointers on the data structures for
WMEs and/or tokens so that when a WME is removed, we can �nd all the tokens that need to
be deleted | and only those ones that need to be deleted | just by following pointers.

In list-based removal, proposed by (Scales, 1986), we store on every WME w a list of all
the tokens involving w. Then when w is removed, we simply iterate over this list and delete
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each token on it. The drawbacks to this are the large amount of extra space it uses and the
potentially large amount of extra time it takes to create a token: a new token hw1; . . . ; wii must
be added to the lists on each of the i WMEs. However, if tokens are represented by arrays
rather than lists, then both the space and time would be just a constant factor overhead, since
creating this new token would require creating a new i-element array anyway. Thus, list-based
removal might be acceptable in such implementations. There are no empirical results for list-
based removal reported in the literature, so it is unclear whether it would work well in practice
(or even whether it has ever been implemented).

In tree-based removal, on every WME w, we keep a list of all the tokens for which w is the
last element. On every token t, we keep a list of all the children of t. These pointers to children
allow us to �nd all of t's descendents in lower beta memories and production nodes. (Recall
from Section 2.3 that with list-form tokens, the set of all tokens forms a tree.) Now when w

is removed, we simply traverse a bunch of subtrees (of \root" tokens and their descendents),
deleting everything in them. Of course, all these extra pointers mean more memory usage, plus
extra time spent setting up these pointers ahead of time when WMEs are added or tokens are
created. Empirically, however, the time savings during WME removals more than makes up for
the extra time spent setting up the pointers beforehand. When the author replaced rematch-
based removal with tree-based removal in Soar, it sped up the matcher by a factor of about 1.3;
(Barachini, 1991) estimated a speedup factor of 1.25 for an OPS5-like system.

To implement tree-based removal, we revise the data structure for each WME to have it
include a list of all the alpha memories containing the WME, and a list of all the tokens having
the WME as the last element:

structure WME frevised from version on page 21g
�elds: array [1..3] of symbol
alpha-mems: list of alpha-memory fthe ones containing this WMEg
tokens: list of token fthe ones with wme=this WMEg

end

The data structure for a token is expanded to contain a pointer to the memory node it resides
in (we'll use this in the delete-token-and-descendents procedure below), and a list of its children:

structure token frevised from version on page 22g
parent: token fpoints to the higher token, for items 1...i-1g
wme: WME fgives item ig
node: rete-node fpoints to the memory this token is ing
children: list of token fthe ones with parent=this tokeng

end

We now modify the alpha-memory-activation and beta-memory-left-activation procedures so
they set up these lists ahead of time. Whenever a WME w is added to an alpha memory a, we
add a to w.alpha-mems.
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procedure alpha-memory-activation (node: alpha-memory, w: WME)
frevised from version on page 21g

insert w at the head of node.items
insert node at the head of w.alpha-mems ffor tree-based removalg
for each child in node.successors do right-activation (child, w)

end

Similarly, whenever a new token tok = ht; wi is added to a beta memory, we add tok to
t.children and to w.tokens. We also �ll in the new node �eld on the token. To simplify our
pseudocode, it is convenient to de�ne a \helper" function make-token which builds a new token
and initializes its various �elds as necessary for tree-based removal. Although we write this as
a separate function, it would normally be coded \inline" for e�ciency.10

function make-token (node: rete-node, parent: token, w: wme)
returning token

tok  allocate-memory()
tok.parent  parent
tok.wme  w
tok.node  node ffor tree-based removalg
tok.children = nil ffor tree-based removalg
insert tok at the head of parent.children ffor tree-based removalg
insert tok at the head of w.tokens ffor tree-based removalg
return tok

end

procedure beta-memory-left-activation (node: beta-memory, t: token, w: WME)
frevised from version on page 23g

new-token  make-token (node, t, w)
insert new-token at the head of node.items
for each child in node.children do left-activation (child, new-token)

end

Now, to remove a WME, we just remove it from each alpha memory containing it (these
alpha memories are now conveniently on a list) and call the helper routine delete-token-and-

descendents to delete all the tokens involving it (all the necessary \root" tokens involving it are
also conveniently on a list):

procedure remove-wme (w: WME)
for each am in w.alpha-mems do remove w from the list am.items
while w.tokens 6= nil do

delete-token-and-descendents (the �rst item on w.tokens)
end

10\Inline" means that instead of creating a separate procedure, the body of the function is simply inserted

everywhere the function would be called. This avoids incurring a procedure call overhead.
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Note the use of a \while" loop over w.tokens rather than a \for" loop. A \for" loop would
be unsafe here, because each call to delete-token-and-descendents destructively modi�es the
w.tokens list as it deallocates the memory used for token data structures. A \for" loop would
maintain a pointer into the middle of this list as it ran, and the pointer could become invalid
due to this destructive modi�cation.

The helper routine delete-token-and-descendents removes a token together with its entire tree
of descendents. For simplicity, the pseudocode here is recursive; an actual implementation may
be made slightly faster by using a nonrecursive tree traversal method.

procedure delete-token-and-descendents (tok: token)
while tok.children 6= nil do

delete-token-and-descendents (the �rst item on tok.children)
remove tok from the list tok.node.items
remove tok from the list tok.wme.tokens
remove tok from the list tok.parent.children
deallocate memory for tok

end

2.5.1 On the Implementation of Lists

In many of the data structures here, we have one or more �elds which hold a \list of such-
and-such." For some of these, the representation of the list is very important. Take the list of
tokens in a beta memory, for example, and consider the following line from the delete-token-
and-descendents procedure above:

remove tok from the list tok.node.items

This says to splice tok out of the list containing it. If this list is singly-linked, then splicing out
tok requires iterating over all the earlier tokens in the list in order to �nd the token whose next
�eld should be modi�ed. If the list is doubly-linked instead, then it is straightforward to splice
out tok without using a loop.

In general, most if not all of the lists we use in Rete will be doubly-linked. The next and
previous �elds will, whenever possible, be contained in the data structures representing the items
in the list. For example, since every token is on three lists (a memory node's items list, a WME's
tokens list, and its parent token's children list), the data structure for a token will have six link
�elds: next-in-this-memory, previous-in-this-memory, next-from-this-wme, previous-from-this-
wme, next-from-parent, and previous-from-parent. This may seem like it makes the token data
structure unduly large, but there is no better alternative | every token is on these three lists,
and for e�ciency, each list must be doubly linked, so a minimum of six pointers per token
are required. To keep our pseudocode simple, we will omit these extra link �elds from our
data structure declarations, and will continue to write statements like the one above with the
understanding that this is to be implemented by splicing the item into or out of a doubly-linked
list.
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Sometimes we cannot know in advance how many di�erent lists an item will be on at once.
For example, a given WME w could be in many di�erent alpha memories, hence could be on
many di�erent alpha memory nodes' items lists. So we can't reserve space in w's data structure
for next and previous pointers. Yet for tree-based removal, we need to be able to quickly splice
w out of each of these lists. The obvious solution is to represent each alpha memory's items list
using a doubly-linked set of auxiliary data structures:

structure alpha-memory frevised from version on page 21g
items: list of item-in-alpha-memory
successors: list of rete-node

end

structure item-in-alpha-memory
wme: WME fthe WME that's in the memoryg
amem: alpha-memory fpoints to the alpha memory nodeg
(also: next, previous: pointer to item-in-alpha-memory ffor the doubly-linked listg)

end

Then on each WME, rather than having alpha-mems be a list of the memories containing it,
we instead have a list of the item-in-alpha-memory structures involving it:

structure WME frevised from version on page 29g
�elds: array [1..3] of symbol
alpha-mem-items: list of item-in-alpha-memory fthe ones with wme=this WMEg
tokens: list of token fthe ones with wme=this WMEg

end

Finally, we modify various procedures that access alpha memories' items lists, so they handle
the new format of items lists correctly.

procedure join-node-left-activation (node: join-node, t: token)
frevised from version on page 25g

for each item in node.amem.items do
if perform-join-tests (node.tests, t, item.wme) then

for each child in node.children do left-activation (child, t, item.wme)
end

procedure alpha-memory-activation (node: alpha-memory, w: WME)
frevised from version on page 30g

new-item  allocate-memory()
new-item.wme  w; new-item.amem  node;
insert new-item at the head of node.items
insert new-item at the head of w.alpha-mem-items
for each child in node.successors do right-activation (child, w)

end
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procedure remove-wme (w: WME) frevised from version on page 30g
for each item in w.alpha-mem-items do

remove item from the list item.amem.items
deallocate memory for item

while w.tokens 6= nil do

delete-token-and-descendents (the �rst item on w.tokens)
end

2.6 Adding and Removing Productions

It is sometimes mistakenly claimed that Rete does not allow the run-time addition or deletion
of productions, or that it requires recompilation of the entire network. This misunderstanding
may have arisen from people's experience with certain implementations that did not support
run-time production addition or deletion | OPS5, for instance, only partially supports this,11

and most compiled versions of Rete do not support this at all (though (Tambe et al., 1988) is
an exception). The basic Rete algorithm does not preclude run-time additions and deletions,
though; in fact, it is quite straightforward to modify the network \on the 
y" when productions
are added or deleted.

The basic method for adding a production with conditions c1; . . . ; ck is to start at the top
of the beta network and work our way down, building new memory and join nodes (or �nding
existing ones to share, if possible) for c1; . . . ; ck, in that order. We assume that the ordering of
the conditions is given to us in advance. At a very high level, the procedure looks like this:

M1  dummy-top-node
build/share J1 (a child of M1), the join node for c1
for i = 2 to k do

build/share Mi (a child of Ji�1), a beta memory node
build/share Ji (a child of Mi), the join node for ci

make P (a child of Jk), the production node

This procedure handles only the beta part of the net; we will also need to build or share an
alpha memory for each condition as we go along.

We will use several helper functions to make the main add-production procedure simpler.
The �rst one, build-or-share-beta-memory-node, looks for an existing beta memory node that is
a child of the given parent node. If there is one, it returns it so it can be shared by the new
production; otherwise the function builds a new one and returns it. This pseudocode assumes
that beta memories are not indexed; if indexing is used, the procedure would take an extra
argument specifying which �eld(s) the memory must be indexed on.

11Lisp-based versions of OPS5 allow productions to be added at run-time by using the build RHS action

(Forgy, 1981). However, newly added productions are not matched against existing WMEs, only against WMEs

added thereafter (Schor et al., 1986).
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function build-or-share-beta-memory-node (parent: rete-node)
returning rete-node

for each child in parent.children do flook for an existing node to shareg
if child is a beta memory node then return child

new  allocate-memory()
new.type  \beta-memory"
new.parent  parent; insert new at the head of the list parent.children
new.children  nil

new.items  nil

update-new-node-with-matches-from-above (new) fsee page 38g
return new

end

The update-new-node-with-matches-from-above procedure initializes the memory node to store
tokens for any existing matches for the earlier conditions.

The next helper function is similar, except it handles join nodes rather than beta memory
nodes. The two additional arguments specify the alpha memory to which the join node must
be attached and the variable binding consistency checks it must perform. Note that there is no
need to call update-new-node-with-matches-from-above in this case, because a join node does not
store any tokens, and a newly created join node has no children onto which join results should
be passed.

function build-or-share-join-node (parent: rete-node, am: alpha-memory,
tests: list of test-at-join-node)

returning rete-node
for each child in parent.children do flook for an existing node to shareg

if child is a join node and child.amem=am and child.tests=tests then
return child

new  allocate-memory()
new.type  \join"
new.parent  parent; insert new at the head of the list parent.children
new.children  nil

new.tests  tests; new.amem  am
insert new at the head of the list am.successors
return new

end

Our next helper function, get-join-tests-from-condition, takes a condition and builds a list of
all the variable binding consistency tests that need to be performed by its join node. To do this,
it needs to know what all the earlier conditions are, so it can determine whether a given variable
appeared in them | in which case its occurrence in the current condition means a consistency
test is needed | or whether it is simply a new (not previously seen) variable | in which case
no test is needed. If a variable v has more than one previous occurrence, we still only need
one consistency test for it | join nodes for earlier conditions will ensure that all the previous
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occurrences are equal, so the current join node just has to make sure the current WME has the
same value for it as any one of the previous occurrences. The pseudocode below always chooses
the nearest (i.e., most recent) occurrence for the test, because with list-form tokens, the nearest
occurrence is the cheapest to access. With array-form tokens, this choice does not matter.

function get-join-tests-from-condition (c: condition, earlier-conds: list of condition)
returning list of test-at-join-node

result  nil

for each occurrence of a variable v in a �eld f of c do
if v occurs anywhere in earlier-conds then

let i be the largest i such that the ith condition in earlier-conds contains
a �eld f2 in which v occurs

this-test  allocate-memory()
this-test.�eld-of-arg1  f
this-test.condition-number-of-arg2  i

this-test.�eld-of-arg2  f2
append this-test to result

return result
end

Finally, we have a helper function for creating a new alpha memory for a given condition,
or �nding an existing one to share. The implementation of this function depends on what type
of alpha net implementation is used. If we use a traditional data
ow network, as described in
Section 2.2.1, then we simply start at the top of the alpha network and work our way down,
sharing or building new constant test nodes:

function build-or-share-alpha-memory (c: condition) fdata
ow network versiong
returning alpha-memory

current-node  top-node-of-alpha-network
for each constant test in each �eld of c do

let sym be the symbol tested for, and f be the �eld
current-node  build-or-share-constant-test-node (current-node, f, sym)

if current-node.output-memory 6= nil then return current-node.output-memory
am  allocate-memory()
current-node.output-memory  am
am.successors  nil ; am.items  nil

finitialize am with any current WMEsg
for each WME w in working memory do

if w passes all the constant tests in c then alpha-memory-activation (am, w)
return am

end
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function build-or-share-constant-test-node (parent: constant-test-node, f: �eld,
sym: symbol )

returning constant-test-node
flook for an existing node we can shareg
for each child in parent.children do

if child.�eld-to-test = f and child.thing-the-�eld-must-equal = sym
then return child

fcouldn't �nd a node to share, so build a new oneg
new  allocate-memory()
add new to the list parent.children
new.�eld-to-test  f; new.thing-the-�eld-must-equal  sym
new.output-memory  nil ; new.children  nil

return new
end

The reader can easily extend the above procedure to handle the data
ow-network-plus-
hashing implementation of the alpha network described in Section 2.2.2. For the exhaustive-
hash-table-lookup implementation described in Section 2.2.3, the procedure is much simpler, as
there is no network and all we have to deal with is a hash table:

function build-or-share-alpha-memory (c: condition) fexhaustive table lookup versiong
returning alpha-memory
f�gure out what the memory should look likeg
id-test  nil ; attr-test  nil ; value-test  nil

if a constant test t occurs in the \id" �eld of c then id-test  t

if a constant test t occurs in the \attribute" �eld of c then attr-test  t

if a constant test t occurs in the \value" �eld of c then value-test  t

fis there an existing memory like this?g
am  lookup-in-hash-table (id-test, attr-test, value-test)
if am 6= nil then return am
fno existing memory, so make a new oneg
am  allocate-memory()
add am to the hash table for alpha memories
am.successors  nil ; am.items  nil

finitialize am with any current WMEsg
for each WME w in working memory do

if w passes all the constant tests in c then alpha-memory-activation (am ,w)
return am

end

One �nal note here: whenever we create a new alpha memory, we initialize it by adding
to it any appropriate WMEs in the current working memory. The pseudocode above does this
by iterating over the entire WM and checking each WME. It is often possible to do this much
faster. If there is already another alpha memory that stores a superset of the WMEs the new
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one should, we can iterate just over that other alpha memory's contents, rather than over all
of WM. For instance, if we are creating a new alpha memory for (* ^color red), we could
just check the WMEs in the alpha memory for (* ^color *) (if such an alpha memory can be
found).

We are now ready to give the add-production procedure, which takes a production (actually,
just the conditions of the production | the match algorithm doesn't care what the actions are)
and adds it to the network. It follows the basic procedure given at the beginning of this section,
and uses the helper functions we have just de�ned. The last two lines of the procedure are a
bit vague, because the implementation of production nodes tends to vary from one system to
another. It is important to note that we build the net top-down, and each time we build a
new join node, we insert it at the head of its alpha memory's list of successors; these two facts
guarantee that descendents are on each alpha memory's list before any of their ancestors, just
as we required in Section 2.4.1 in order to avoid duplicate tokens.

procedure add-production (lhs: list of conditions)
let the lhs conditions be denoted by c1; . . . ; ck
current-node  dummy-top-node
earlier-conditions  nil

tests  get-join-tests-from-condition (c1, earlier-conditions)
am  build-or-share-alpha-memory (c1)
current-node  build-or-share-join-node (current-node, am, tests)

for i = 2 to k do

fget the beta memory node Mi g
current-node  build-or-share-beta-memory-node (current-node)
fget the join node Ji for condition ci g
append ci�1 to earlier-conditions
tests = get-join-tests-from-condition (ci, earlier-conditions)
am  build-or-share-alpha-memory (ci)
current-node  build-or-share-join-node (current-node, am, tests)

build a new production node, make it a child of current-node
update-new-node-with-matches-from-above (the new production node)

end

Finally, we give the update-new-node-with-matches-from-above procedure. This is needed
to ensure that newly added productions are immediately matched against the current working
memory. The procedure's job is to ensure that the given new-node's left-activation procedure is
called with all the existing matches for the previous conditions, so that the new-node can take
any appropriate actions (e.g., a beta memory stores the matches as new tokens, and a p-node
signals new complete matches for the production). How update-new-node-with-matches-from-

above achieves this depends on what kind of node the new-node's parent is. If the parent is a
beta memory (or a node for a negated condition, as we will discuss later), this is straightforward,
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since the parent has a list (items) of exactly the matches we want. But if the parent node is a
join node, we want to �nd the matches satisfying the join tests, and these may not be recorded
anywhere. To �nd these matches, we iterate over the WMEs and tokens in the join node's alpha
and beta memories and perform the join tests on each pair. The pseudocode below uses a trick to
do this: while temporarily pretending the new-node is the only child of the join node, it runs the
join node's right-activation procedure for all the WMEs in its alpha memory; any new matches
will automatically be propagated to the new-node. For a variation of this implementation, see
(Tambe et al., 1988); for a general discussion, see (Lee and Schor, 1992).

procedure update-new-node-with-matches-from-above (new-node: rete-node)
parent  new-node.parent
case parent.type of

\beta-memory":
for each tok in parent.items do left-activation (new-node, tok)

\join":
saved-list-of-children  parent.children
parent.children  [new-node] flist consisting of just new-nodeg
for each item in parent.amem.items do

right-activation (parent, item.wme)
parent.children  saved-list-of-children

end

To remove an existing production from the network, we start down at the bottom of the
beta network, at the p-node for that production. The basic idea is to start walking from there
up to the top of the net. At each node, we clean up any tokens it contains, and then get rid of
the node | i.e., remove it from the children or successors lists on its predecessors (its parent
and, for some nodes, its alpha memory as well), and deallocate it. We then move up to the
predecessors. If the alpha memory is not being shared by another production, we deallocate it
too. If the parent is not being shared by another production, then we apply the same procedure
to it | clean up its tokens, etc. | and repeat this until we reach either a node being shared by
some other production, or the top of the beta network.

procedure remove-production (prod: production)
delete-node-and-any-unused-ancestors (the p-node for prod)

end
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procedure delete-node-and-any-unused-ancestors (node: rete-node)
if node is a join node then ffor join nodes, deal with the alpha memoryg

remove node from the list node.amem.successors
if node.amem.successors=nil then delete-alpha-memory (node.amem)

else ffor non-join nodes, clean up any tokens it containsg
while node.items 6= nil do

delete-token-and-descendents (�rst item on node.items)
remove node from the list node.parent.children
if node.parent.children=nil then

delete-node-and-any-unused-ancestors (node.parent)
deallocate memory for node

end

The delete-alpha-memory procedure cleans up and deletes a given alpha memory (together
with any now-unused constant test nodes, if a data
ow implementation is used for the alpha
network). For brevity, we do not give pseudocode for this here; the procedure for this alpha
network cleanup is straightforward and is analogous to the procedure just given for beta network
cleanup.

2.7 Negated Conditions

So far we have been discussing conditions that test for the presence of a WME in working
memory. We now move on to discuss conditions testing for the absence of items in working
memory. In this section, we discuss negated conditions, which test for the absence of a certain
WME; in Section 2.8, we discuss negated conjunctive conditions, which test for the absence of a
certain combination of WMEs.

Consider our earlier example production, only with its last condition negated (indicated by
the \-" sign preceding it):

(<x> ^on <y>) /* C1 */

(<y> ^left-of <z>) /* C2 */

-(<z> ^color red) /* C3 */

This production matches if there is a stack of (at least) two blocks (designated by <x> and <y>)
to the left of some block (designated by <z>) which is not known to be red. To implement this,
we need a node for C3 which will take a match hw1; w2i for the �rst two conditions, and will
propagate it further down the beta network if and only if there is no WME w3 whose id �eld
contains the same thing <z> is bound to in hw1; w2i, whose attribute �eld contains color, and
whose value �eld contains red.

The standard way of doing this is to use a di�erent type of Rete node, called a negative node
or not node, for the negated condition, as illustrated in Figure 2.6. The negative node for a
condition ci stores all the matches (tokens) for the earlier conditions, just as a beta memory node
would; it is linked into the network as a child of the join node for ci�1, just as a beta memory
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negative node
for Ci

AM for Ci

AM for Ci-1
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Figure 2.6: Rete network for a negative condition.

node would be. The negative node is also linked to an alpha memory, just as if ci were a positive
condition. In the example above, the negative node for C3 would be linked to the alpha memory
containing all WMEs of the form (* ^color red). So far, this sounds like the negative node
is just a combination of a beta memory and a join node. The negative node performs a join
between the WMEs in its alpha memory and each token from the earlier conditions, just as
a (positive) join node would; however, instead of propagating the results of the join down the
network, it stores them in a local memory on each token. A token is then propagated down the
network if and only if its local result memory is empty, since this indicates the absence of any
such WME in working memory.12

Note that whereas the beta memories and join nodes for positive conditions are separate
nodes, the memory and join functions for negative conditions are combined in a single node.
This is done simply to save space. For positive conditions, these functions are separated in order
to enable multiple join nodes (for di�erent positive conditions) to share the same beta memory
node. We cannot share the memory portion of a negative node with any other nodes, because
we need to store local join results on each token in the memory, and these local join results can
be di�erent for di�erent (negative) conditions.

To implement all this, we �rst add a join-results �eld to the data structure for a token; this
�eld will store a list of negative-join-result data structures. The need for a list of these structures
rather than just a list of WMEs will become clear when we discuss WME removals shortly. The
extra join-results �eld will not be used for tokens in beta memories.

12The description here applies to Rete versions that use tree-based removal. If rematch-based removal is used,

then we save on each token just a count of the number of join results; the results themselves are not stored

anywhere. Then whenever a WME w is added to or removed from the alpha memory, the negative node is

right-activated and we update the count on any token consistent with w. If the count on a token changes from

zero to one or vice-versa, we pass the change on to the node's children.
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structure token frevised from version on page 29g
parent: token fpoints to the higher token, for items 1...i-1g
wme: WME fgives item ig
node: rete-node fpoints to the node this token is ing
children: list of token fthe ones with parent=this tokeng
join-results: list of negative-join-result fused only on tokens in negative nodesg

end

A negative-join-result just speci�es the ht; wi pair that is the result of the join:

structure negative-join-result
owner: token fthe token in whose local memory this result residesg
wme: WME fthe WME that matches owner g

end

We also add a �eld negative-join-results to the data structure for each WME, to store a list of
all the negative-join-result structures involving the WME. This will be used for handling WME
removals, as we discuss below.

structure WME frevised from version on page 32g
�elds: array [1..3] of symbol
alpha-mem-items: list of item-in-alpha-memory fthe ones with wme=this WMEg
tokens: list of token fthe ones with wme=this WMEg
negative-join-results: list of negative-join-result

end

The data structure for a negative node looks like a combination of those for a beta memory
and a join node:

structure negative-node:
fjust like for a beta memoryg
items: list of token
fjust like for a join nodeg
amem: alpha-memory fpoints to the alpha memory this node is attached tog
tests: list of test-at-join-node

end

Next, we have procedures for left and right activations of negative nodes. On a left activation
(when there is a new match for all the earlier conditions), we build and store a new token, perform
a join for the token, store the join results in the token structure, and pass the token onto any
successor nodes if there were no join results.
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procedure negative-node-left-activation (node: negative-node, t: token, w: WME)
fbuild and store a new token, just like a beta memory would (page 30)g
new-token  make-token (node, t, w)
insert new-token at the head of node.items

fcompute the join resultsg
new-token.join-results  nil

for each item in node.amem.items do
if perform-join-tests (node.tests, new-token, item.wme) then

jr  allocate-memory()
jr.owner  new-token; jr.wme  w
insert jr at the head of the list new-token.join-results
insert jr at the head of the list w.negative-join-results

fIf join results is empty, then inform childreng
if new-token.join-results=nil then

for each child in node.children do left-activation (child, new-token, nil )
end

Note that in the last line of the procedure, when we left-activate the children, we pass nil in
place of the usual WME argument, since no actual WME was matched.13 This means we need
to revise our make-token and delete-token-and-descendents procedures to handle this properly.
(An alternative implementation that avoids the special check in these two procedures is to pass
a special dummy WME for negated conditions instead of nil.)

function make-token (node: rete-node, parent: token, w: wme)
returning token frevised from version on page 30g

tok  allocate-memory()
tok.parent  parent
tok.wme  w
tok.node  node ffor tree-based removalg
tok.children = nil ffor tree-based removalg
insert tok at the head of parent.children ffor tree-based removalg
if w 6= nil then fwe need this check for negative conditionsg

insert tok at the head of w.tokens ffor tree-based removalg
return tok

end

13If we use rematch-based removal, then in the negative-node-left-activation procedure above, we can just \skip

a level" and pass ht;wi on to the children instead of hnew-token;nili. If we use tree-based removal, though, we

can't skip a level like this, since we need to be able to quickly locate the descendents of new-token; skipping a

level would result in new-token always having children=nil.
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procedure delete-token-and-descendents (tok: token)
frevised from version on page 31g

while tok.children 6= nil do

delete-token-and-descendents (the �rst item on tok.children)
remove tok from the list tok.node.items
if tok.wme 6= nil then fwe need this check for negative conditionsg

remove tok from the list tok.wme.tokens
remove tok from the list tok.parent.children
deallocate memory for tok

end

On a right activation of a negative node (when a WME is added to its alpha memory),
we look for any tokens in its memory consistent with the WME; for each such token, we add
this WME to its local result memory. Also, if the number of results changes from zero to
one | indicating that the negated condition was previously true but is now false | then we
call the delete-descendents-of-token helper function to delete any tokens lower in the network
that depend on this token.

procedure negative-node-right-activation (node: negative-node, w: WME)
for each t in node.items do

if perform-join-tests (node.tests, t, w) then
if t.join-results=nil then delete-descendents-of-token (t)
jr  allocate-memory()
jr.owner  t; jr.wme  w
insert jr at the head of the list t.join-results
insert jr at the head of the list w.negative-join-results

end

procedure delete-descendents-of-token (t: token)
while t.children 6= nil do

delete-token-and-descendents (the �rst item on t.children)
end

The procedures given so far handle WME and token additions for negative nodes. We now
discuss how removals are handled. When a WME is removed from working memory, we need
to update the local join results on any tokens in negative nodes accordingly. We can e�ciently
locate all the join results that need to be updated by looking at the WME's negative-join-results
�eld. We delete each such join result; as we are doing this, if the number of results in any token's
local memory changes from one to zero | indicating that the negated condition was previously
false but is now true | then we inform any children of the negative node containing the token.
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procedure remove-wme (w: WME) frevised from version on page 33g
for each item in w.alpha-mem-items do

remove item from the list item.amem.items
deallocate memory for item

while w.tokens 6= nil do

delete-token-and-descendents (the �rst item on w.tokens)
for each jr in w.negative-join-results do

remove jr from the list jr.owner.join-results
if jr.owner.join-results=nil then

for each child in jr.owner.node.children do
left-activation (child, jr.owner, nil )

deallocate memory for jr
end

We also need to modify the delete-token-and-descendents procedure so it can correctly handle
tokens in negative nodes | these require some extra cleanup code to deallocate all the local
join results.

procedure delete-token-and-descendents (tok: token)
frevised from version on page 43g

while tok.children 6= nil do

delete-token-and-descendents (the �rst item on tok.children)
remove tok from the list tok.node.items
if tok.wme 6= nil then remove tok from the list tok.wme.tokens
remove tok from the list tok.parent.children
if tok.node is a negative node then

for each jr in tok.join-results do
remove jr from the list jr.w.negative-join-results
deallocate memory for jr

deallocate memory for tok
end

Finally, we need to extend our add-production and remove-production handling (Section 2.6)
so it can accept negative conditions and create and delete negative nodes. This is straightforward
and will not be presented here, but see Appendix A.

2.8 Conjunctive Negations

In this section, we show how to implement negated conjunctive conditions (NCC's), also called
conjunctive negations, which test for the absence of a certain combination of WMEs. (Con-
junctive negations with only one conjunct are semantically equivalent to the negated conditions
discussed in the previous section.) Although the implementation of Rete used in this thesis
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is not the �rst to support NCC's (Forgy, 1979; Allen, 1982; Schor et al., 1986; Tambe et al.,
1988), to our knowledge no detailed description of their implementation has yet been given in
the literature.

A conjunctive negation is usually written surrounded by set braces preceded by a minus sign:

(<x> ^on <y>) /* C1 */

(<y> ^left-of <z>) /* C2 */

-f (<z> ^color red) /* NCC comprising C3... */

(<z> ^on <w>) g /* ... and C4 */

This production matches if there is a stack of (at least) two blocks (designated by <x> and
<y>) to the left of some block (designated by <z>) which is not both red and on some other
block. Note that the occurrences of <z> inside the NCC refer to the binding of <z> from outside

the NCC (in C2), while <w> is simply a new variable inside the NCC, since it does not occur
anywhere in the (positive) conditions outside the NCC.

We will refer to the conjuncts in an NCC as its subconditions. There are no special restric-
tions about what can be a subcondition; they may be positive or negative conditions, or even
NCC's | conjunctive negations may be nested to any depth. Importantly, the ability to nest
conjunctive negations allows us to support conditions containing arbitrary combinations of 8
and 9 quanti�ers: informally, ordinary (positive) conditions have the semantics 9xP (x), while
8xP (x) may be rewritten using a conjunctive negation as :9x:P (x). For example, a check for
whether every red block has a blue block on top of it can be rewritten as a check that there is no
red block that does not have a blue block on top of it, i.e.,

-f (<x> ^color red)

-f (<y> ^on <x>)

(<y> ^color blue) g g

The basic idea behind the implementation of NCC's is the same as for the negated single
conditions discussed in the previous section. With negated single conditions, for each incoming
token (each match for the earlier conditions) we computed the results of a join as if the condition
were not negated, saved the results in a local memory on the incoming token, and passed the
data
ow on down the network if and only if there were no join results. We use a similar method
for an NCC, except that instead of using a single node to compute the results of a single join, we
use a subnetwork to compute the results of the subconditions inside the NCC. This is illustrated
in Figure 2.7. Underneath the join node for the condition immediately preceding the NCC, we
have a sequence of Rete nodes to handle the sequence of subconditions. The �gure shows this as
just beta memories and join nodes, but in general it could contain negative nodes or nodes for
(nested) NCC's; the �gure omits the alpha memories. We also use a pair of special nodes for the
conjunctive negation. An NCC node is made a child of the join node for the condition preceding
the NCC, and an NCC partner node is made a child of the bottom node in the subnetwork for
the subconditions.14 Note that when we have conjunctive negations, the beta part of the Rete
net is no longer a tree as we stated in the overview. This fact will become important later, in
Section 4.3.

14The reason for using two nodes is as follows. At this point in the network, we need to receive activations
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Figure 2.7: Rete network for a negated conjunctive condition.

Assume for the moment that we always order the preceding join node's children list so that
the NCC node comes before the top node in the subnetwork; we will discuss node ordering issues
shortly. The NCC node is left-activated whenever there is a new match for the earlier conditions;
it stores this match as a new token and initializes the token's local result memory to be empty.
The new token is then passed on to the NCC node's children (since the result memory is empty

from two sources: (1) the join node for the preceding condition, and (2) the bottom of the subnetwork. In both

cases, (using our pseudocode) the activation will be executed via a left-activation (of such-and-such a node type)

procedure call, but we need to handle these two kinds of activations in di�erent ways. The solution we adopt here

is to use a pair of nodes (and a pair of procedures: ncc-node-left-activation and ncc-partner-node-left-activation).

Another possibility is to use a single NCC node that can be either left-activated or right-activated. However, this

means join nodes must have two separate lists of children | one list of children to be left-activated and one list

of children to be right-activated | so that the bottom join node in the subnetwork will right-activate the single

NCC node while the join node preceding the subnetwork will left-activate it. This would require extra space on

every join node. A third possible implementation saves a bit of space by making due with a single node and a

single activation procedure | the �rst thing the procedure does is examine the incoming token and �gure out

\from which direction it came." This can be done, but it makes the code a bit more complex and a bit slower.



2.8. Conjunctive Negations 47

at this point). The NCC partner node serves as a collector of matches for the subconditions;
each time a new match for them is found, the NCC partner node is left-activated. Its job is
to add this new match to the local result memory of the appropriate token in the NCC node.
(Each token in the NCC node must have its own local result memory, since the subconditions'
results will vary depending on the variable bindings from the earlier conditions. For example, in
the production above, di�erent matches hw1; w2i for the �rst two conditions may have di�erent
bindings for <z> and hence may yield di�erent results from the NCC.) How do we �gure out
which token in the NCC node is the appropriate one? Consider the example production above.
A match for the subconditions has the form hw1; w2; w3; w4i, where w1 and w2 match the �rst
two conditions (above the NCC) and w3 and w4 match the two conditions inside the NCC. The
appropriate token in the NCC node is the one representing hw1; w2i. So to �nd the appropriate
token, the NCC partner node just strips o� the last j WMEs from the subconditions' new
match, where j is the number of conjuncts in the NCC, and �nds the token corresponding to
the remaining sequence of WMEs. (This can be done quickly if tokens are represented by linked
lists, as we will see below; it can be more time-consuming if tokens are represented by arrays,
though.) This token's local memory is then updated, and (if necessary) the NCC node's children
are informed.

The astute reader may have noticed a possible e�ciency problem in the above description.
Whenever a new match for the earlier conditions was found, we �rst left-activated the NCC
node, and propagated a new match to its children, possibly resulting in a great deal of activity
in the network below. We then left-activate the top of the subnetwork and let any matches �lter
down to the NCC partner node. If any reach the NCC partner node, this indicates that the
whole condition (the NCC) is false, so we then have to retract everything that just happened
underneath the NCC node. This could result in a lot of wasted e�ort.

The source of the problem is that when the NCC node was activated, it did not \know"
whether any results would emerge from the bottom of the subnetwork. It had to \play it safe"
and assume that none would. (With the simple negative conditions of Section 2.7, we simply
computed the join results for a new token \on demand," by scanning an alpha memory.) To
avoid this possible ine�ciency, we can order the preceding join node's children list so that the
subnetwork gets activated before the NCC node | that way, when the NCC node gets activated,
it can �nd out whether any results emerged from the bottom of the subnetwork just by looking
over at its partner and checking whether any new results are waiting there.

Our pseudocode below assumes that this ordering is used.15 Turning to the pseudocode now,
an NCC node stores a list of tokens and a pointer to its partner node:

structure ncc-node
items: list of token
partner: rete-node fpoints to the corresponding NCC partner nodeg

end
15It is not hard to extend the code so it handles either ordering. The implementation used in this thesis does

this. Note that our approach to handling conjunctive negations in Rete is not the only possible one. Though

some earlier versions of Rete have supported conjunctive negations, this is the �rst implementation we are aware

of that does constrained conjunctive negations | the matching activity in the subnetwork is constrained by the

bindings of variables that occur outside the conjunctive negation.
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We extend our token data structure to include two extra �elds. Ncc-results will be the local
result memory on a token in an NCC node. This is just like the join-results �eld on tokens
in negative nodes, except that instead of each local result being speci�ed by a negative-join-

result structure, here each local result will be speci�ed by a token structure. This is because
the local results here are matches (tokens) emerging from the bottom of the subnetwork, rather
than just WMEs (as was the case with negated single conditions). Since a token can now be a
local result, we have to add an owner �eld to each token, just as we had an owner �eld in the
negative-join-result structure (page 41).16

structure token frevised from version on page 41g
parent: token fpoints to the higher token, for items 1...i-1g
wme: WME fgives item ig
node: rete-node fpoints to the node this token is ing
children: list of token fthe ones with parent=this tokeng
join-results: list of negative-join-result fused only on tokens in negative nodesg
ncc-results: list of token fsimilar to join-results but for NCC nodesg
owner: token
fon tokens in NCC partners: token in whose local memory this result residesg

end

An NCC partner node stores a pointer to the corresponding NCC node, plus a count of the
number of conjuncts in the NCC (this is used for stripping o� the last several WMEs from each
subnetwork match, as discussed above). It also contains a new-result-bu�er, which is used as
a temporary bu�er in between the time the subnetwork is activated with a new match for the
preceding conditions and the time the NCC node is activated with that match. It stores the
results (if there are any) from the subnetwork for that match.

structure ncc-partner-node
ncc-node: rete-node fpoints to the corresponding NCC nodeg
number-of-conjuncts: integer fnumber of conjuncts in the NCCg
new-result-bu�er: list of token

fresults for the match the NCC node hasn't heard aboutg
end

Our ncc-node-left-activation procedure is similar to the negative-node-left-activation proce-
dure (page 42). In both cases, we need to �nd the join results for a new token. For negative
nodes, we compute these join results by scanning the WMEs in an alpha memory and perform-
ing the join tests on them. For NCC nodes, the join results have already been computed by the
subnetwork, so we simply look at the new-result-bu�er in the NCC partner node to �nd them.

16Our token structure is getting rather big now; to save space, we can use a variant record structure for it,

and allocate space for the last three �elds, which are not used on ordinary tokens in beta memories, only when

necessary.
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procedure ncc-node-left-activation (node: ncc-node, t: token, w: WME)
fbuild and store a new token, just like a beta memory would (page 30)g
new-token  make-token (node, t, w)
insert new-token at the head of node.items

fget initial ncc resultsg
new-token.ncc-results  nil

for each result in node.partner.new-result-bu�er do
remove result from node.partner.new-result-bu�er
insert result at the head of new-token.ncc-results
result.owner  new-token

fIf no ncc results, then inform childreng
if new-token.ncc-results=nil then

for each child in node.children do left-activation (child, new-token, nil )
end

To handle an NCC partner node (left) activation, we take the new match from the subnetwork
and build a \result" token to store it. (The pseudocode for this is shown in Figure 2.8.) Next we
try to �nd the appropriate owner token in the NCC node's memory. (There might be one there,
if this is a new subconditions match for an old preceding-conditions match, or there might not
be one there, if this is an initial subconditions match for a new preceding-conditions match.)
If we �nd an appropriate owner token, then we add the new result token to its local memory;
if the number of results in the local memory changes from zero to one | indicating that the
NCC was previously true but is now false | then we call the delete-descendents-of-token helper
function to delete any tokens lower in the network that depend on this owner token. (This is
similar to the negative-node-right-activation procedure on page 43.) On the other hand, if there
isn't an appropriate owner token already in the NCC node's memory, then this new result token
is placed in the new-result-bu�er. (The NCC node will soon be activated and collect any new
results from the bu�er.)

We now modify the delete-token-and-descendents procedure so it can correctly handle tokens
in NCC and NCC partner nodes. (The modi�ed pseudocode is shown in Figure 2.9.) Three
things about such tokens require special handling. First, when a token in an NCC node is deleted,
we need to clean up its local result memory by deleting all the result tokens in it. Second, when
a token in an NCC partner node is deleted, instead of removing it from a node.items list, we
remove it from its owner's ncc-results list. Third, when we do this, if the number of tokens on
the owner's ncc-results list changes from one to zero | indicating that the NCC was previously
false but is now true | then we inform any children of the NCC node.

Finally, we need to extend our add-production and remove-production handling (Section 2.6)
so it can accept NCC's, creating and deleting NCC and NCC partner nodes. This is fairly
straightforward and will not be presented here, but see Appendix A.

Note that (single) negative conditions are just a special case of conjunctive negations in
which there is only one subcondition. They could therefore be implemented using the same
mechanism as NCC's. However, this would take extra space and time, since it uses more nodes
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procedure ncc-partner-node-left-activation (partner: rete-node, t:token, w:WME)
ncc-node  partner.ncc-node
new-result  make-token (partner, t, w) fbuild a result token ht; wig

fTo �nd the appropriate owner token (into whose local memory we should put this

result), �rst �gure out what pair howners-t,owners-wi would represent the owner. To

do this, we start with the ht; wi pair we just received, and walk up the right number

of links to �nd the pair that emerged from the join node for the preceding condition.g
owners-t  t; owners-w  w
for i = 1 to partner.number-of-conjuncts do

owners-w  owners-t.wme; owners-t  owners-t.parent

fLook for this owner in the NCC node's memory. If we �nd it, add new-result to its

local memory, and propagate (deletions) to the NCC node's children.g
if there is already a token owner in ncc-node.items with parent=owners-t

and wme=owners-w then

add new-result to owner.ncc-results; new-result.owner  owner

delete-descendents-of-token (owner)
else

fWe didn't �nd an appropriate owner token already in the NCC node's memory.
This means the subnetwork has been activated for a new match for the preceding
conditions, and this new result emerged from the bottom of the subnetwork, but
the NCC node hasn't been activated for the new match yet. So, we just stu� the
result in our temporary bu�er.g
insert new-result at the head of partner.new-result-bu�er

end

Figure 2.8: Pseudocode for an NCC partner node left activation.

and node activations. Unless single negative conditions are quite rare, special-case handling of
them is worthwhile.

2.9 Miscellaneous Implementation Notes

Having �nished our discussion of the basics of Rete, we now make a few remarks about potentially
important details or \tricks" of the implementation.

2.9.1 Garbage Collection

For a system to maintain good performance even with a hundred thousand or a million produc-
tions, we must avoid ever having to traverse the entire Rete network | such a traversal takes
time directly proportional to the size of the knowledge base, so a system doing this would not
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procedure delete-token-and-descendents (tok: token)
frevised from version on page 44g

while tok.children 6= nil do

delete-token-and-descendents (the �rst item on tok.children)
if tok.node is not an NCC partner node then

remove tok from the list tok.node.items
if tok.wme 6= nil then remove tok from the list tok.wme.tokens
remove tok from the list tok.parent.children
if tok.node is a negative node then

for each jr in tok.join-results do
remove jr from the list jr.w.negative-join-results
deallocate memory for jr

if tok.node is an NCC node then
for each result-tok in tok.ncc-results do

remove result-tok from the list result-tok.wme.tokens
remove result-tok from the list result-tok.parent.children
deallocate memory for result-tok

if tok.node is an NCC partner node then
remove tok from the list tok.owner.ncc-results
if tok.owner.ncc-results = nil then

for each child in tok.node.ncc-node.children do
left-activation (child, tok.owner, nil )

deallocate memory for tok
end

Figure 2.9: Revised pseudocode for deleting a token and its descendents.

be very scalable. Unfortunately, traversing the entire Rete network is precisely what standard
\stop-and-copy" garbage collectors do. This results in garbage collection pauses whose duration
grows as the knowledge base grows, rendering the system unsuitable for any real-time tasks.
To avoid this, we must either use a more sophisticated garbage collector, or handle memory
allocation and deallocation within the Rete net ourselves.17 The latter approach is used in the
pseudocode given in this chapter, and is quite simple and straightforward, since we always know
when things become garbage: tokens become garbage when they are deleted during a WME re-
moval, as described in Section 2.5, and Rete nodes become garbage during a production removal,
as described in Section 2.6.

17For e�ciency, a small number of available space lists (Knuth, 1973a), each containing blocks of a �xed

size (for a particular data structure), should be used. This is much faster than calling malloc() and free()

(Miranker and Lofaso, 1991).
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2.9.2 Merging Beta Memories and Join Nodes

It turns out that in typical systems, most beta memories have just a single child join node.
An implementation of Rete may merge such a pair of nodes into one node. This saves space
because it eliminates an extra set of pointers | parent, child, next, previous, etc. It also saves
time, since now a single procedure call (merged-node-left-activation) replaces a sequence of two
(beta-memory-left-activation and join-node-left-activation).

Note that if a memory node has k > 1 child join nodes, it is still possible to used merged
nodes: k copies of the memory node may be used, one merged with each join node. This has been
done in at least one implementation (for independent reasons) (Gupta et al., 1988). However,
this can increase both the space and time usage. The space increases because for every token
we previously had in the un-merged version, we now have k copies of it. The time usage may
decrease, since what used to take k+1 procedure calls now takes only k, but may also increase,
because of the extra time required to create k � 1 extra tokens.

We thus want to use a merged node only when the memory has just one child. Of course,
the number of children a given beta memory has can vary as productions are added to or
removed from the Rete net. Therefore, we sometimes dynamically split a merged node into
its two separate components as we are adding a new production to the net, or merge the two
components into a single node as we are removing a production from the net. (To our knowledge,
the Rete implementation used in this thesis is the �rst to do this.)

Another possibility is to merge nodes slightly di�erently: if a join node has just a single beta
memory node as its only child, we can merge the two nodes. A similar analysis applies to this
case.

2.9.3 Speeding Up the Addition of Productions

When we add new productions to the network, we always look for existing nodes to share before
we build any new nodes. This search for appropriate existing nodes takes the form of a loop
over all the existing children of a certain node (e.g., see the build-or-share-join-node procedure
on page 34). In large learning systems, this loop may become problematic: there is no limit to
how many children a given node can have, and as a system learns more and more productions,
some Rete nodes may acquire more and more children. If this happens, we will incur more and
more iterations of this loop, and it will take longer and longer to add new productions to the
network.

To avoid this problem, we can use an auxiliary hash table which lets us quickly �nd any
children of a given (parent) node that happen to have certain properties (e.g., being a node
of a certain type, or using a certain alpha memory). Essentially, the hash function takes as
input (a pointer to) the given parent node and a list of the properties of the child node. As
output, we get a bucket in the hash table containing all existing children of the given parent
node having exactly those properties. By using an auxiliary hash table this way, we can replace
the potentially expensive loop over all the children with a simple hash table lookup.
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2.9.4 Resizing Hash Tables

Of course, the discussion in the previous section assumes that the cost of the hash table lookup
does not increase as the number of nodes in the network increases. But if we use a �xed-size hash
table, then we will have more and more hash collisions as the number of nodes (and hence the
number of entries in the hash table) increases. This would increase the cost of hash table lookups,
defeating the whole purpose of using a hash table in the �rst place. A similar argument applies
to any hash tables used as part of the alpha network, as described in Sections 2.2.2 and 2.2.3
Thus, these hash tables must be dynamically resized as items are added to them during the
addition of a new production to the system (e.g., doubling the number of buckets each time the
number of items doubles). Most versions of Lisp take care of this automatically, but in other
languages, we may have to handle it ourselves.

2.10 Other Optimizations for Rete

In this section, we discuss some other ways that have been developed to improve the Rete
algorithm. Three substantially di�erent match algorithms have been developed as alternatives
to Rete: Treat (Miranker, 1990), Match Box (Perlin and Debaud, 1989; Perlin, 1991a), and Tree
(Bouaud, 1993). We postpone our discussion of these until after we have looked at some aspects
of Rete's performance on our large testbed systems, so we can discuss how their performance
would compare. Treat will be discussed in Sections 3.6, 5.8.4, and 5.8.5. Match Box will be
discussed in Section 3.6. Tree will be discussed in Section 5.8.3.

The largest body of work aimed at speeding up production matching has dealt with parallel
implementations of match algorithms, most notably (Gupta, 1987) and (Stolfo and Miranker,
1986); for a good survey of this work, see (Kuo and Moldovan, 1992). Of course, these are just
parallel versions of existing sequential algorithms, so although they achieve faster overall speed,
they do so only with special hardware and are of no use on ordinary sequential machines.

A number of other miscellaneous (potential) improvements to Rete have been developed over
the years. We mention these brie
y here, not because they are directly related to this thesis, but
in order to provide the interested reader with an overview and some pointers to the literature.

� Modify-in-place (Schor et al., 1986) extends the Rete interpreter procedures to handle the
modi�cation of a WME directly. Our pseudocode requires a modi�cation to be handled
indirectly, via a removal of the original WME followed by the addition of the modi�ed
WME.

� Sca�olding (Perlin, 1990a) is useful when the same WMEs are repeatedly added to and
removed from working memory. It works by marking WMEs and tokens as \inactive"
instead of deleting them; when a WME is re-added later, inactive tokens are re-activated
using a procedure similar to our tree-based removal method.

� Another way to implement the alpha network is to use a decision tree (Ghallab, 1981;
Nishiyama, 1991). This works somewhat like the \data
ow-network-with-hashing" version
we discussed in Section 2.2.2, but yields a nice time bound: it is guaranteed to run in time
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linear in the depth of the decision tree. However, it makes run-time addition and deletion
of productions more complicated, and the decision tree can require exponential space in
the worst case.

� In systems using some form of con
ict resolution (McDermott and Forgy, 1978), the
matcher can often be sped up by incorporating knowledge about the particular con
ict
resolution strategy (test) into the matcher (generator). A con
ict resolution strategy is a
way of selecting a single complete production match and using it alone, instead of using
all complete matches. The optimization idea is to change the de�nition of the matcher
module so its job is to �nd just the one complete match that would get selected by the
con
ict resolution strategy, instead of �nding all complete matches. This has been imple-
mented in lazy match (Miranker et al., 1990) and also by (Tzvieli and Cunningham, 1989).
A related idea is to incorporate Prolog-like cuts in the LHS, allowing only one token to
propagate past a cut (Lichtman and Chester, 1989).

� In systems with very large working memories, the cost of individual join operations can
become expensive, due to large cross-products being generated. Collection Rete (Acharya
and Tambe, 1992) is a way of reducing this cost by structuring the contents of beta
memories into a set of collections of tokens rather than a set of individual tokens.

� Another way to reduce the cost of join operations in individual productions is to add
factored arc consistency (Perlin, 1992) to Rete. This adds an arc-consistency algorithm to
Rete in order to \prune o�" many WME/token combinations without checking them one
by one. Although its overhead is so high that it often does not pay o� in practice, it can
help if used judiciously (e.g., only on particularly expensive productions).

� Still another way to avoid expensive join operations is to restrict the contents of working
memory by using unique-attributes (Tambe et al., 1990). The Rete algorithm can then be
specialized to take advantage of certain properties of this restriction, yielding the Uni-Rete
algorithm (Tambe et al., 1992). Uni-Rete is signi�cantly faster than Rete, but is not as
general-purpose, since it requires strict adherence to the unique-attributes restriction.

� In standard Rete, the set of beta network nodes for a production | the beta memories, join
nodes, etc. for it | is linear (conjunctive negations notwithstanding). Researchers have
investigated using nonlinear topologies for the beta network for individual productions
(Schor et al., 1986; Scales, 1986; Gupta, 1987; Ishida, 1988; Tambe et al., 1991), with
mixed results. If we can �nd the best topology for a production, we can often do better
than the standard linear one. Unfortunately, there is no known e�cient algorithm for
�nding the best one, and some nonlinear topologies turn out to be much worse than the
standard linear one. Techniques for e�ciently �nding good topologies remain an area of
current research (Hanson, 1993).



2.11. Discussion 55

2.11 Discussion

Having �nished our discussion of the implementation of the basic Rete algorithm, we now make
a few remarks about its generality. Rete's range of applicability is sometimes underestimated,
perhaps because its best-known uses | in production systems similar to OPS5 | all share
certain features not really required by Rete. As mentioned at the beginning of this chapter,
match algorithms like Rete can be treated as \black boxes" | modules performing a service as
part of larger overall systems. Naturally, the properties and limitations of the overall systems
are not necessarily imposed on them by the match algorithm, but may instead arise from other
considerations.

For instance, currently most systems using Rete are production systems that employ some
method of con
ict resolution. In each cycle, Rete is used to �nd the set of complete production
matches (the con
ict set). A con
ict resolution method is then used to select a single production
to �re; its right-hand-side is executed, modifying the working memory, and then the cycle
repeats. Con
ict resolution has nothing to do with Rete. Indeed, Soar uses Rete but does not
employ any con
ict resolution at all: at each cycle, all matching productions are �red.

A second feature of many systems currently using Rete is that WMEs are represented using
attributes and values. In this chapter we have been using WMEs of the form

(identifier ^attribute value).

However, the Rete implementation described in this chapter can easily be modi�ed to support
other representations. OPS5 and related systems also use attribute-value syntax, but allow a
single WME to have more than one attribute-value pair:

(classname ^attr-1 value-1 ^attr-2 value-2 ... ^attr-n ^value-n)

Many machine learning systems use a simple predicate-with-arguments representation:

(predicate-name arg-1 ... arg-n).

Some implementations allow WMEs to be arbitrary list structures with nested sublists (Forgy,
1979; Allen, 1982), to contain records and arrays (Forgy, 1984), or to be arbitrary data structures
from a high-level programming language (Cruise et al., 1987; Miranker et al., 1991).

Modifying Rete to support these other representations simply involves changing the way
tests (constant tests and variable binding consistency tests) are speci�ed in data structures and
performed by node activation procedures. For example, if WMEs are arbitrary list structures,
then a variable binding consistency test might be something like \the third element of the �rst
WME must equal the second element of the �rst element (a nested sublist) of the second WME."

Of course, these other representations yield no additional representational power beyond
that of id-attribute-value triples, since WMEs and conditions in the other representations can
be mechanically transformed into equivalent (sets of) WMEs and conditions in id-attribute-value
form. For example, the WME

(classname ^attr-1 value-1 ^attr-2 value-2 ... ^attr-n ^value-n)
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can be represented by an equivalent set of id-attribute-value triples all having the same id:

(id-337 ^class classname)

(id-337 ^attr-1 value-1)

(id-337 ^attr-2 value-2)

...

(id-337 ^attr-n value-n)

(The choice of id-337 is arbitrary: we would use a di�erent \gensym" identi�er for each original
WME we transform in this way.) Similarly, the predicate-with-arguments representation can be
transformed into

(id-294 ^predicate predicate-name)

(id-294 ^first-arg arg-1)

...

(id-294 ^nth-arg arg-n)

To transform arbitrary list structures into equivalent sets of id-attribute-value triples, we use a
di�erent identi�er for each cons cell in the list structure, and then use car and cdr attributes
to specify the structure.

Although the choice of notation for WMEs does not a�ect the representational power of the
system, it may a�ect the performance of certain parts of the Rete algorithm. In general, the
above transformations increase the number of WMEs needed to represent a given thing, and
the number of conditions needed to test for it. After we apply these transformations, there will
often be many conditions in a production with the same variable in their id �eld; thus, many
variable binding consistency tests will be required with the id-attribute-value representation
that would not be required in the more complex representations. This means the beta part
of the network will have to do more work. On the other hand, the alpha part of the network
may have to do more work with the more complex representations than with the simple id-
attribute-value representation. In the simple representation, a given WME can go into at most
eight alpha memories, as discussed in Section 2.2.3 (assuming all intra-condition tests are for
equality with constants). In the more complex representations, a WME may go into many
more | e.g., a predicate with r arguments could go into up to 2r+1 alpha memories | so the
alpha network may no longer run as fast as it can with the id-attribute-value representation.
Essentially, transforming the representation can shift work from one part of the network to
another. Performing a careful study of the relative performance of the matcher using each of
these di�erent representations would require obtaining a collection of testbed systems, each
encoded using each of several di�erent representations; that is not the focus of this thesis, but
is an interesting idea for future work.

Finally, although the basic Rete algorithm delivers only complete matches for productions,
it can be extended to deliver the best (or near-best) partial match under some suitable metric
for rating the quality of partial matches. A partial match is a set of WMEs which satisfy some
but not all of the conditions of a production. Finding good partial matches is a requirement for
most case-based reasoning systems, and although some systems have their own special-purpose
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algorithms for this (Veloso, 1992), no fully general algorithm has been developed. To assess the
quality of a partial match, we might assign (in advance) a numeric penalty to each condition;
the quality of a given partial match would then be inversely related to the sum of the penalties
for all the unsatis�ed conditions in the production.

Within the Rete algorithm, a partial match could be represented by a token with certain
elements set to unmatched. (Recall that a token represents a sequence of WMEs; we could
just replace some of them with this special 
ag.) Each token would have an additional �eld,
accumulated-penalty, indicating the total penalty incurred for all its unmatched entries. Join
node activation procedures would be modi�ed to create partial matches: on a left activation,
given a new token t, a join node would signal a new match ht; unmatchedi with an appropriately
increased accumulated-penalty.

At this point, the algorithm would be virtually useless, since it would deliver (to the p-nodes
at the bottom of the network) all partial matches, even hunmatched; . . . ; unmatchedi. To get
only the partial matches of at least a certain quality, we could set a penalty threshold � | the
algorithm would be modi�ed to generate only tokens with accumulated-penalty � � . For this
threshold to be most e�ective, we would want the conditions in each production to be ordered
so that those with high penalties appear near the top of the Rete network, and those with low
penalties appear near the bottom. With this ordering, the threshold would cut o� matching
activity as early as possible (without changing the set of matches reaching the p-nodes | the
ordering has no e�ect on this).

Even better, we can obtain just the partial match with the lowest possible penalty by modi-
fying the order in which tokens are generated and node activations take place. In the standard
Rete algorithm, the data
ow takes place depth-�rst: before the second child of a given node is
activated, the �rst child of the node is activated, and all processing resulting from that activa-
tion is completed. Instead, we would like to perform processing of tokens in order of increasing
penalty. So whenever a token is created, instead of passing it on to the node's children right
away, we could store it in a priority queue sorted according to accumulated-penalty. The basic
loop of the algorithm would be to remove from the queue the token with the smallest penalty,
pass it on to the appropriate nodes, and add any resulting tokens from those nodes to the queue.
A priority queue can be implemented with logarithmic cost, so the extra cost of processing tokens
in this order is, at worst, a factor logarithmic in the total number of tokens generated.

The ideas above are just a sketch and are still untested; to our knowledge, this kind of
partial matching has never been implemented using Rete.18 Developing these ideas further and
implementing them in a real system is beyond the scope of this thesis. However, the above
discussion suggests that some variant of Rete might be useful in case-based reasoning systems

18At least one implementation has supported special \don't-care" symbols in WMEs (Rosenbloom, 1994).

These symbols \match" any constant in any condition. This provides a di�erent form of partial matching.

(Perlin, 1991b, pages 78-79) proposes a partial matching scheme in which Rete generates matches that may

fail up to some �xed number of constraints; this scheme is a �ner-grained version of our use of unmatched, but

generates many extra matches besides the best one. ACORN (Hayes-Roth and Mostow, 1975), a predecessor of

Rete, implemented a limited form of partial matching using \fuzzy" equality tests, where \equality" was de�ned

using a �xed threshold parameter (Mostow, 1994); this approach also yields many extra matches besides the

best one.
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or other systems which need to retrieve close partial matches. This remains an interesting area
for future work.



Chapter 3

Basic Rete: Performance and

Observations

Having described the basic Rete algorithm in the previous chapter, we now examine its perfor-
mance on large learning systems. We �rst describe in Section 3.1 the various learning systems
we will use as testbeds in this thesis. In Section 3.2, we discuss some issues related to the
generators used to create training problems for these systems. We then present empirical results
on the performance of the basic Rete algorithm on these testbed systems in Section 3.3 | in
particular, we show that it slows down linearly in the number of rules in each system. In
Section 3.4, we examine the fundamental cause of this slowdown, namely, the large number of
productions a�ected by changes to working memory. Rete's sharing, one way to alleviate some
of the e�ects of this fundamental cause, is examined in Section 3.5. Finally, Section 3.6 discusses
the implications of our observations for other work on production match algorithms.

3.1 The Testbed Systems

Several large learning systems are used as testbeds for the empirical studies in this thesis. None
of these systems was designed especially for match algorithm performance or for learning a large
number of rules; in fact, many of them were designed before the author embarked on this thesis
research. In this section we describe each system brie
y, to provide the reader with a feel for
the complexity and diversity of the systems. The interested reader should refer to the literature
citations below for more information about any particular one of these systems. Sections 3.1.1
through 3.1.6 describe each of the testbed systems.

Each of the testbed systems is implemented in Soar (Laird et al., 1987; Rosenbloom et al.,
1991), an integrated problem-solving and learning architecture based on formulating every task
using problem spaces. Each basic step in Soar's problem-solving | e.g., the immediate applica-
tion of an operator to a state to generate a new state | is called a decision cycle. The knowledge
necessary to execute a decision cycle is obtained from Soar's knowledge base, which is imple-
mented as a production system whose working memory represents problem spaces, states, and
operators. If this knowledge is insu�cient to reach a decision, an impasse occurs; Soar then uses

59
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another problem space in a subgoal to obtain more knowledge. This process can recurse, leading
to a stack of problem spaces. Soar learns by compiling the results of this subgoal processing into
chunks, productions that immediately produce comparable results under analogous conditions
(Laird et al., 1986). Chunking is a form of explanation-based learning (DeJong and Mooney,
1986; Mitchell et al., 1986; Rosenbloom and Laird, 1986).

The number of productions in a Soar system can be used as a crude measure of its complexity,
somewhat like the number of lines of code in a program written in a conventional programming
language. Perhaps a better measure of the complexity of a Soar system is the number of
problem spaces it uses. This is roughly comparable to the number of procedures or modules in
a conventional program. Encodings of typical AI \toy tasks" in Soar usually involve just two
problem spaces.

Each testbed system starts out with a small to moderate number of rules. These initial (un-
learned) rules are normally just hand-coded Soar productions. In three of the testbed systems,
however, most of the initial rules were generated from source code written in TAQL (Yost and
Newell, 1989; Yost, 1992), a higher-level language which compiles into Soar productions. The
use of TAQL does a�ect the rules these systems learn | they often have extra conditions and
actions that would not be present if the initial rules were hand-coded instead | but these extra
conditions and actions do not appear to have a signi�cant e�ect on the matcher.

For each testbed system, a problem generator was used to create a set of problems in that
system's task domain; the system was then allowed to solve the sequence of problems, learn-
ing new rules as it went along. Each system learned at least 100,000 rules. (This was done
using Rete/UL, the improved match algorithm described later in this thesis. As we will see in
Section 3.3, with the basic Rete match algorithm, these testbed systems all become very slow
as they learn more and more rules, making it infeasible to have many of them solve enough
problems to learn so many rules in a reasonable amount of time.)

Table 3.1 summarizes the testbed systems. For each, it indicates the system's author, the task
domain in which it functions, and the main problem-solving techniques it employs. Table 3.2
summarizes the systems' sizes, showing the number of problem spaces, initial rules, and learned
rules for each one. These seven systems provide a good test suite because:

� They operate in a variety of task domains.

� They use a variety of problem-solving methods.

� They were written by a variety of people.

� They were written with di�erent research interests in mind.

� They are at least moderately complex, not standard AI \toy problems."

� They were not designed especially for this research.
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System Author Domain Problem-solving technique(s)
Assembler Mertz circuit board assembly procedural, recognition
Dispatcher Doorenbos message dispatching search, procedural, memorization
Merle Steier et al. factory scheduling procedural, generate & test
Radar Papageorgiou aircraft classi�cation episodic memory
SCA-Fixed Miller general concept acquis. deliberate rule induction
SCA-Random Miller general concept acquis. deliberate rule induction
Sched Nerb & Krems job-shop scheduling advice-taking

Table 3.1: Domains and basic problem-solving techniques of the testbed systems.

System Problem spaces Initial rules Learned rules
Assembler 6 293 105,015
Dispatcher 20 1,953 113,938
Merle 18 624 105,699
Radar 7 341 105,207
SCA-Fixed 1 48 154,251
SCA-Random 1 48 119,902
Sched 4 418 116,968

Table 3.2: Sizes of the testbed systems.

3.1.1 Assembler

Assembler (Mertz, 1992) is a cognitive model of a person assembling printed circuit boards. It
was developed as part of a research project aimed at improving instructional design for training
people to perform this task (Mertz, 1995). The system is presented with a printed circuit board
with various labeled slots for electronic components; several bins, each containing electronic
parts of a certain type (e.g., ten ohm resistors); and an instruction list indicating what type of
part belongs in each slot. Assembler's approach to the task is basically procedural: it iterates
over parts, slots, and bins, picking up each part from the appropriate bin and inserting it into
the appropriate slot.

The �rst time it assembles a given kind of board, the system spends a great deal of time
iterating over various slots on the board, trying to �nd the appropriate slot for a certain part.
(This may not be the most e�cient possible approach to the task, but Assembler is intended
as a cognitive model, not an optimal-performance system.) It learns several types of rules; the
most important rules are ones that speed up the assembly process on later trials by allowing it to
recognize the appropriate slot quickly. These rules are speci�c to particular slots on particular
boards, so to be able to assemble several di�erent kinds of boards pro�ciently, the system needs
a large number of rules.

Assembler uses six problem spaces and begins with 293 (unlearned) rules. Some of these
rules were hand-coded; others were generated from source code written in TAQL. A problem
generator was used to create 300 di�erent printed circuit boards, each with 50 slots. Both the
arrangement of slots on a board and the assignment of particular parts to particular slots are
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arbitrary and have no e�ect on the system's problem solving. No two boards have a slot in
common; i.e., the symbols used to designate particular slots are di�erent on di�erent boards.
Over the course of assembling each of these boards once, the system learned 105,015 rules.

3.1.2 Dispatcher

Dispatcher (Doorenbos et al., 1992) grew out of a research project aimed at studying how AI
systems could use databases in service of AI tasks. The system acts as a message dispatcher
for a large organization. It makes queries to an external database containing information about
the people in the organization, their properties, and their ability to intercommunicate. Given a
speci�cation of the desired set of message recipients (e.g., \everyone involved in marketing for
project two"), the system must �nd a way to get the message to the right people. This problem is
di�erent from a simple network routing problem because both communication links and desired
recipients are speci�ed in terms of properties of people | for example, a communication link
might be speci�ed by \John can talk to all the marketing people at headquarters." Also, the
data is available only indirectly in a database, which is external to the system rather than part of
it. Whenever Dispatcher needs some piece of information from the database, it must formulate
a query using the SQL database-query language, send the query o� to a database system, and
interpret the database system's response.

Dispatcher has three basic methods of performing its task. First, it can use the database
to try to �nd someone in the organization who can talk to precisely the desired set of message
recipients, and send the message to that person with instructions to forward it to all the desired
recipients. Second, it can use the database to obtain a list of all the desired recipients, then
send a separate copy of the message to each one. Third, it can use a divide-and-conquer
approach, breaking the desired set of recipients down according to geographic region (or some
other property), then recursively use any of the three basic methods on each subset. The
system chooses among these three methods by using best-�rst search with a heuristic evaluation
function. (The solutions Dispatcher �nds are not necessarily optimal.) With any of these
methods, the system eventually reaches a point where it needs to �nd a way to send a message
to some particular person (say Fred). Dispatcher is only able to directly communicate with a
few people in the organization. If it is unable to talk directly to Fred, it uses breadth-�rst search
to �nd a sequence of intermediaries who can forward the message to Fred. The system makes
queries to the database to �nd people who can talk to Fred, then more queries to �nd people
who can talk to each of those people, and so on, until the system reaches someone it can talk
to directly.

There are three main types of rules Dispatcher learns. First, it learns search-control rules that
are used to choose among the three basic methods, avoiding the need to invoke the heuristic
evaluation function to compare alternatives. Second, it learns rules which encapsulate the
solutions to various subproblems | e.g., constructing the proper SQL query to retrieve a certain
type of information from the database, or �nding a sequence of intermediaries who can forward
a message to a particular person. Third, it learns rules which contain memorized database query
results. Whenever Dispatcher has to go out to the database to �nd some piece of information,
it learns a rule (based on the memorization technique introduced in (Rosenbloom and Aasman,
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1990)) that \memorizes" it. The rule can transfer to other problems, so that if the same
information is needed again, the database will not have to be consulted a second time. Although
the system does not manage to memorize the entire database, it sometimes \gets lucky" and
solves a problem without consulting the database at all.

Dispatcher is implemented using twenty problem spaces, eight involved with the dispatching
task and twelve involved with using the external database. It starts with 1,953 initial produc-
tions, most of which are compiled from source code written in TAQL. The database it uses
describes an organization of 61 people; the details of this organization were created by a random
generator, weighted to make the organization modestly realistic, e.g., people in the same region
are more likely to have a communication link between them than people in di�erent regions.
A random problem generator was used to create 6,550 di�erent dispatching problems for the
system. The generator used weighted probabilities to skew the problem distribution in favor
of modestly realistic problems, but the skew was mild enough that many less realistic prob-
lems were also included. Problems were selected from this distribution without replacement,
so that the system never saw exactly the same problem twice. (This also reduces the e�ect of
the skewed problem distribution.) Over the course of solving these 6,550 problems, the system
learned 113,938 rules.

3.1.3 Merle

Merle (Prietula et al., 1993) is an expert system for scheduling tasks for an automobile windshield
factory. It has been used to study learning in the context of a scheduling domain. The system
is given a windshield order, speci�ed by several parameters indicating the particular types of
windshields to be produced and the desired quantity of each type, and the amount of time
available on each machine in the factory. It then iterates over all the available slots in the
schedule; for each one, it uses generate-and-test to try to �nd a task which can �ll that slot. A
task must satisfy various constraints in order to be scheduled in a given time slot.

The rules learned by Merle encapsulate solutions to various subproblems of the overall
scheduling problem | e.g., checking constraints, determining the options available for �lling
a single schedule slot, or doing some simple bookkeeping operations. These rules transfer to
other problems (or, as often happens in Merle, to later occasions within the same problem
during which they were learned) where the same or similar subproblem arises again.

Merle uses eighteen problem spaces, and starts out with 624 hand-coded rules. Over the
course of solving 160 di�erent problems, created by a random problem generator, it learned
105,699 rules. Each problem is speci�ed by thirty-six parameters; these are chosen independently
from uniform (or, in a few cases, mildly skewed) distributions, except for six parameters whose
values are restricted by those of other parameters (e.g., \start time" must be before \stop time").

3.1.4 Radar

Radar (Papageorgiou and Carley, 1993) is a cognitive model developed as part of a research
project on procedures for training decision-making agents. The system examines descriptions
of radar images of planes and learns to classify them as either friendly, neutral, or hostile. The
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images are speci�ed in terms of nine simple features, such as speed, altitude, and size; each
feature has nine possible values. The system learns to correctly classify images by building up
an episodic memory of previously seen images and their true classi�cations. The memory is
indexed using a representation more abstract than the nine-feature one, so that generalization
of individual training examples can occur. When presented with an example radar image, the
system �rst maps the nine feature values into the abstract representation, then uses the most
recent similar episode to classify the image. \Similar" is de�ned as \having the same abstract
representation." If no similar episode is present, the system guesses randomly. The system is
then given feedback, and it updates its episodic memory.

In this system, the purpose of the learning is not to speed up the system, but to increase its
classi�cation accuracy. Part of the system's episodic memory is implemented by learned rules.
(Rules store the actual episodes, while the index of episodes is stored in a table implemented
in some code which is not part of the Soar architecture.) As the system sees more and more
training examples, the coverage of its episodic memory increases, and consequently, so does its
classi�cation accuracy. There is no noise in the training data or feedback.

Radar uses seven problem spaces and starts with 341 initial rules, some hand-coded, some
compiled from source code written in TAQL. It learned 105,207 rules over the course of 7,500
randomly-generated training examples. The examples were selected, with replacement, from
a uniform distribution over the 39 possible image speci�cations. A mathematical formula was
used to determine the correct classi�cation of each training example.

3.1.5 SCA-Fixed and SCA-Random

SCA (Symbolic Concept Acquisition) (Miller and Laird, 1991; Miller, 1993) is a cognitive model
of traditional concept acquisition (i.e., in the style of ID3 (Quinlan, 1986)). While Radar is
hard-coded for a particular domain, SCA is domain-independent. It performs incremental,
noise-tolerant learning, and reproduces a number of regularities in human concept acquisition
found in the psychological literature.

As in most concept acquisition systems, a training example for SCA consists of a list spec-
ifying the values of a number of features, plus an indication of the true classi�cation of the
example (sometimes subject to noise). From such an example, SCA normally learns a single
classi�cation rule. The rule's conditions include a subset of the given feature values, and its
actions include the given true classi�cation. For rules learned early on, the conditions include
only a small subset of the feature values, so these rules yield signi�cant generalization of the
training examples. As the system sees more and more training examples, the rules' conditions
include more and more features, so the rules become increasingly speci�c. To make a prediction
(at test-time), SCA tries to apply more speci�c rules �rst, so that speci�c rules \override" more
general ones.

Although concept acquisition can be a complex task, SCA's algorithm is quite straightforward
to implement. SCA starts out with forty-eight hand-coded rules, and uses a single problem space.
Two versions of SCA were used. SCA-Fixed always focuses its attention on the same subset of
the features of each training example, whereas SCA-Random focuses on a di�erent randomly
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chosen subset on each training example.1 SCA-Fixed models situations where the system has
prior knowledge of the relative importance of di�erent features, while SCA-Random models
situations where the system has no such knowledge. SCA-Random learned 119,902 rules from
120,000 training examples. SCA-Fixed learned 154,251 rules from 200,000 training examples.2

The training examples were created by a random generator. Each example is speci�ed by
values for twelve features; each feature takes one of twelve possible values. The system must learn
to classify each training example into one of twelve classes. The generator works as follows. For
each class, for each feature, it creates a probability distribution over the twelve possible values
of that feature. This distribution is chosen randomly but weighted so certain values have a high
probability and others have a very low probability. Once these distributions have been created
for all classes and features, the generator creates successive training examples by selecting a
class (one of the twelve possible classes is chosen with equal probability) and then, for each of
the twelve features, selecting a value for that feature using the previously created probability
distribution for that class and feature.

3.1.6 Sched

Sched (Nerb et al., 1993) is a computational model of skill acquisition in job-shop scheduling.
Its domain is a simple job shop with two machines. The system is given a list of jobs to be done.
For a given job to be completed, that job must �rst occupy machine one for a certain amount
of time (speci�ed in the list of jobs) and then occupy machine two for some other amount of
time. Each machine can process only one job at a time. The task is to schedule the jobs so as to
minimize the total time to completion. The research focus here is not on obtaining an optimal
schedule | there is a straightforward algorithm for that. Rather, the focus is on modeling the
way human subjects acquire skill while learning to perform this task. (Subjects do not quickly
acquire the aforementioned algorithm.)

The system performs the task by selecting jobs to schedule �rst, second, and so on. Whenever
it is unsure which job to schedule next, it asks for advice from a human supervisor. It then
re
ects on why this advice applies to the current situation (here the system makes an inductive
leap) and memorizes those aspects of the situation deemed relevant, e.g., amounts of time
required by di�erent jobs, or positions of jobs in the schedule. The system then recalls this
memorized knowledge in similar situations later. (This can lead to positive or negative transfer,
depending on whether the inductive leap was correct.) Most of the rules Sched learns are rather
speci�c, because they incorporate particular numeric values in their conditions.

Sched uses four problem spaces and starts with 418 rules. Over the course of solving 3,000
di�erent problems created by a random problem generator, it learned 116,968 rules. Each

1Strictly speaking, the subset depends on the order in which individual features are selected to be the focus

of attention, and on the number of features which receive attention. In both SCA-Fixed and SCA-Random, the

number gradually increases over time | learned rules grow increasingly speci�c. But in SCA-Fixed, the order

of selection of features is held �xed across all training examples, whereas in SCA-Random, a di�erent random

order of selection is used on each training example.
2To demonstrate its feasibility, we also gave SCA-Fixed additional training examples until it learned over one

million rules. With Rete/UL, the system showed no signi�cant increase in match cost.
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problem is speci�ed by ten integer parameters in the range 100{999; these parameters were
sampled independently from uniform distributions.

3.2 Problem Generators

For each testbed system, a random problem generator was used to create enough problems
for the system to solve so that it learned at least 100,000 rules. In each case, the problems
were selected from some probability distribution over a space of possible problems. Although
a thorough study of the e�ects of di�erent problem distributions on the match cost in these
systems is beyond the scope of this thesis, we give a brief analysis here. For our purposes, the
key question is not whether a di�erent problem distribution would a�ect the results we obtain
later in this thesis at all | it would almost certainly alter our quantitative results by at least
some constant factor | but whether a di�erent problem distribution would yield qualitatively
di�erent results.

In general, the problem distributions we use are fairly uniform | the skew, if any, is fairly
mild. The problem distributions a system would encounter in \real life" situations are often
more skewed: the same problems or very similar problems are often encountered repeatedly,
while \outliers" show up only occasionally. What e�ect would such a highly skewed problem
distribution have in these systems?

The problem distribution each of our testbed systems encounters a�ects both the set of
rules it learns and its typical problem-solving behavior, which in turn a�ects the distribution
of WMEs in working memory. These two things | the rules and the distribution of WMEs |
together determine the match cost (given any particular match algorithm). Consider �rst the
set of rules. In the long run, a system facing a problem distribution skewed toward some class
of problems will encounter a subset of the problems encountered by a system facing a uniform
problem distribution | with a uniform distribution, we eventually see everything in the skew
class, plus we see some other problems outside that class. (How long \the long run" is in each of
our testbed systems is an open question; the following analysis should hold to whatever extent
running each system out to 100,000 rules yields a good approximation of \the long run.") Thus,
the rules learned under a skewed distribution are a subset of those learned under a uniform
distribution. This implies that for any given distribution of WMEs in working memory, the
match cost with the rules from a skewed distribution of problems will be no higher than, and
may be lower than, the match cost with the rules from a uniform distribution of problems.

To look at this another way, a highly skewed distribution would tend to lower the rate at
which the systems learn rules. In most Soar systems, if the same problem (or subproblem) is
encountered more than once, a new rule is only learned during the �rst encounter; on subsequent
encounters, that rule is used to solve the problem (or subproblem) directly, and no additional
rule is learned. The more skewed a problem distribution is, the more often identical problems or
subproblems will arise, and hence the less often new rules will be learned. Later in this thesis,
we develop improved matching techniques which allow most of these testbed systems to run for
hours or days, learning 100,000 or more rules, without the match cost increasing signi�cantly.
If our problem distributions were more skewed, the systems would have to encounter more
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training problems before they learned 100,000 rules. Thus, the techniques we develop to allow
these systems to run for hours or days might allow systems facing \real life" distributions to
run for weeks or months.

Now consider the second e�ect of a skewed problem distribution | the e�ect on the distri-
bution of WMEs in working memory. This e�ect is harder to predict than the e�ect on the set
of rules learned. Although we have been unable to conceive of a reason the WME distribution
resulting from some skewed problem distribution would result in qualitatively di�erent match
behavior in these testbed systems, we cannot completely rule out this possibility. A thorough
study would involve examining each testbed system and looking for particular problems which
yield an abnormally high match cost,3 �nding characterizations of classes of such problems, and
studying their e�ects on the matcher. However, such a detailed study is beyond the scope of
this thesis.

In lieu of such a study, though, we note that if there are classes of problems whose WME
distribution yields an abnormally high match cost, they would probably be re
ected to some
degree in the results we obtain using relatively uniform problem distributions. If enough prob-
lems are selected from a uniform distribution, there is a fairly high probability that at least one
selected problem lies in one of the abnormal classes. Its abnormal e�ects would then show up
in the results we obtain from a uniform distribution, although the magnitude of those e�ects
would be reduced by a factor depending on the relative sizes of the skew class and the whole
space of possible problems. For example, if there is a skewed problem distribution that would
lead to a very large, linearly increasing match cost in one of the testbed systems, then with a
uniform problem distribution, this would probably be re
ected as a small, linearly increasing
match cost.

In summary, the relatively uniform problem distributions we use in this thesis a�ect both
the rules each system learns and the distribution of WMEs appearing in working memory. As
far as the rules are concerned, the uniform distributions are likely to exacerbate the problem
of increasing match cost, so these distributions provide a di�cult test for match algorithms:
matching techniques which work well here may work even better with other distributions. As
far as the WME distributions are concerned, the e�ect of uniform problem distributions is
di�cult to predict, but it is unlikely that our use of them causes us to overlook any major
e�ects on match cost.

3.3 Performance of Basic Rete on the Testbed Systems

Figure 3.1 shows the performance of the basic Rete algorithm on the testbed systems. For each
system, it plots the average match cost per change to working memory as a function of the
number of rules in the system.4 It clearly demonstrates that as more and more rules are learned

3Or an abnormally low one, although such \good luck" is not really something to be concerned about.
4The times reported here and elsewhere in this thesis are for Soar version 6.0.6 (except for changes to the

matcher), implemented in C, running on a DECstation 5000/260. Some previous studies of match algorithms have

measured algorithm performance by counting the number of tokens they create (Tambe et al., 1990; Dooren-

bos et al., 1992) or the number of comparisons they require to perform variable binding consistency checks

(Miranker, 1990; Bouaud, 1993). Although these metrics avoid the implementation-dependent nature of CPU
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Figure 3.1: Match cost with the basic Rete algorithm.

in each system, the match cost increases signi�cantly and approximately linearly in the number
of rules. Thus, the standard Rete algorithm does not scale well with the number of learned
rules in any of these systems. In fact, the problem is so severe that it is infeasible to have many
of the systems solve enough problems to learn 100,000 rules, because they simply become too
slow. For the interested reader, Appendix B provides some additional measurements of various
characteristics of these testbeds using the basic Rete algorithm.

time measurements, they ignore the costs of other aspects of the match algorithm. This is acceptable provided

that those costs are insigni�cant, but in our testbed systems, they turn out to be very signi�cant, as we shall

see. Of course, each absolute CPU time measurement we give here is machine- and implementation-dependent.

However, comparisons of CPU times are not machine- or implementation-dependent, since we run the same

implementation, modulo changes we develop for the match algorithm, on the same machine.
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3.3.1 Holding WM Changes Fixed

At this point we cannot be certain that the increase in match cost shown in Figure 3.1 is caused
by the increase in the number of rules, since there is an additional factor changing over time:
the distribution of working memory elements. If a learned rule in
uences the behavior (external
actions or internal problem-solving) of the system, it will almost certainly alter the likelihood
that certain WMEs will be present in working memory. For example, if a learned rule prevents a
\blocks world" system from considering using an \unstack" operator, then that rule's presence
would probably lessen the frequency of occurrence of WMEs representing \unstack" operators.

Thus, there are really two things changing over time: the number of rules and the distri-
bution of WMEs. It might be that the increase in match cost is really due to the changing
distribution of WMEs, not the number of rules. To discount this possibility, we introduce a
di�erent experimental methodology in which the distribution of WMEs is held �xed. For each
system, we use a single sequence of changes to working memory | additions and removals of
WMEs | and hold that sequence �xed, while varying the number of rules. We will continue to
use this methodology for the rest of the experiments dealing with match cost in this thesis. In
Chapter 7, when we examine overall system performance, we will use a di�erent methodology.

How should we choose the working memory change sequence to use for a system? We want
a sequence that is representative | speci�cally, representative of the typical distribution of
WMEs in the system in the long term. For these testbed systems, the distribution of WMEs
at the end of the run (when the system has already learned around 100,000 rules) is expected
to approximate the long-term distribution. The reasons for this are speci�c to Soar.5 For each
system, we obtained a representative sequence by recording the last 100,000 WME additions
and removals in the runs of Section 3.3 above.6 We then fed this �xed sequence of working
memory changes to the matcher repeatedly, each time with a di�erent number of rules in the
system.

Figure 3.2 shows the results of this on the testbed systems.7 As the �gure shows, in each
system, the match cost is still increasing signi�cantly and linearly in the number of rules | as
the number of rules increases from 10,000 to 100,000, the match cost increases by approximately

5It is common for Soar systems to have certain problem spaces that are used frequently at the beginning of

the run, but less and less as the run proceeds. This is because as the run proceeds, the system learns more

and more rules (chunks) which in more and more situations eliminate the need to use that problem space: in

situations where that space previously would have been used, some chunk is used instead. Eventually, the system

may learn enough rules to avoid ever using the space again | the original, deliberate problem-solving in that

problem space has been completely \compiled" into chunks. As a result, WMEs used by such spaces will tend to

occur frequently early on, but infrequently in the long run. Thus, at the beginning of the run, the distribution

of WMEs may be quite di�erent from the long-term distribution, but as the system learns more and more rules,

its current distribution gradually approaches the long-term distribution.
6Recording just the last 100,000 changes yields a sequence that may contain removals of WMEs that were

added before the sequence started. To avoid these nonsensical removals, we prepended corresponding WME

additions to the sequence.
7In contrast to Figure 3.1, Figure 3.2 shows each line all the way out to 100,000 rules. The rules were obtained

by running each system using Rete/UL and saving the learned rules in a �le. To get the data for Figure 3.2 and

several other �gures later in this thesis, the 100,000 rules were reloaded into a system which used the basic Rete

algorithm.
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Figure 3.2: Match time with basic Rete, while holding the distribution of WMEs constant.

an order of magnitude in each system | even though we are holding the distribution of WMEs
constant. We therefore conclude that the increasing match cost is (at least mostly) due to the
increasing number of rules in each system, not the changing distribution of WMEs.

3.4 Number of Productions A�ected by WMEs

The data shown in Figures 3.1 and 3.2 may come as a surprise to readers familiar with research
on parallelism in production systems. This research has suggested that the match cost of a
production system is limited, independent of the number of rules. This stems from several
studies of OPS5 systems in which it was observed that only a few productions were a�ected by
a change to working memory (O
azer, 1984; Gupta et al., 1989). A production is said to be
a�ected by a WME if that WME matches (the constant tests of) one of its conditions | i.e.,
if the WME goes into one of the alpha memories used for that production. The a�ect set of
a WME is the set of productions a�ected by it. Quite small a�ect sets, containing just 20{30
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productions on average, were observed in systems ranging from �100 to �1000 productions.

That only a few productions are a�ected by a WME is important because it means the match
e�ort in the beta part of the Rete network is limited to just the nodes used to represent those
few productions. This is a consequence of Rete's data
ow operation | the only beta nodes
that get activated during Rete's handling of a WME change are nodes used to represent a�ected
productions.8 In essence, if only a few productions are a�ected by a WME, then as far as the
match cost with the basic Rete algorithm is concerned, it is as if those few productions are
the only productions in the system. The activity in the beta network is limited to the a�ected
productions, and the alpha network can be implemented to run in approximately constant time
per change to working memory (see Section 2.2). So based on the small a�ect sets observed in
previous studies, one might conclude that Rete's performance ought to be roughly independent
of the number of rules in the system.

However, these earlier studies were done on relatively small (�100 to �1000 productions),
hand-coded, non-learning systems only. To our knowledge, this thesis is the �rst study of the
behavior of Rete on large rule sets generated by a machine learning algorithm. As we shall see,
Rete's behavior looks quite di�erent on these systems.

On small, hand-coded, non-learning systems, the a�ect set is never very large, and usually
only 20{30 productions. This result does not hold for any of our large testbed systems. Figure 3.3
shows the average number of productions a�ected per change to working memory for each of
the systems, plotted as a function of the number of productions. (The sequence of changes
to working memory is held constant, as described in Section 3.3.1.) In all the systems, the
average size of the a�ect set increases fairly linearly with the total number of productions in the
system. With 100,000 productions in each system, the a�ect sets contain on the order of 10,000
productions on average. Appendix C shows the distribution of sizes.

It is important for readers familiar with previous research on production systems to keep this
phenomenon in mind while reading the rest of this thesis. The occurrence of large a�ect sets is the
fundamental phenomenon that sets these large learning systems apart from the smaller systems
that have been previously studied. This has important consequences for match algorithm design
and performance, as we shall see. Previous research on match algorithms has been aimed at
addressing the e�ciency problems caused by other phenomena, but not this phenomenon.

Given the importance of this phenomenon, three questions must be answered. Why do the
a�ect sets become so large in these systems? Why do they tend to remain small in the previously

8In more detail, let us ask what nodes in the beta part of the network will be activated during Rete's handling

of a WME change. (We'll consider a WME addition here; the argument for a WME removal is similar.) For each

alpha memory the WME goes into, each of its successor join nodes will be activated. We'll refer to these join

nodes as primary nodes. These primary nodes are used to represent (particular conditions of) productions which

use that alpha memory; hence, they are used to represent a�ected productions (from the de�nition of \a�ected"

above). Now, from each of those primary join nodes, data
ow may propagate down the network, activating other

secondary nodes. Recall from Chapter 2 that the beta part of the network forms a tree, and each production

is represented by a path from the root (top node) to a leaf (production node). Since each secondary node is

a descendent of some primary node, any production the secondary node represents is also represented by that

primary node, which means it must be an a�ected production. Since these (primary and secondary) are the only

two ways nodes can be activated as a result of this WME addition, we conclude that the match e�ort in the beta

part of the Rete network is limited to just the nodes used to represent a�ected productions.



72 Chapter 3. Basic Rete: Performance and Observations

•

•

•

•

•

•

•

•

•

•

•

Number of productions in system

M
ea

n 
nu

m
be

r 
of

 p
ro

du
ct

io
ns

 a
ffe

ct
ed

 b
y 

a 
W

M
E

0 20000 40000 60000 80000 100000 120000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

•
•

•
•

•
•

•
•

•
••

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Assembler

Dispatcher

Merle

Radar

SCA-Fixed

SCA-Random

Sched

Figure 3.3: Average number of productions a�ected by each WME.

studied OPS5 systems? And are other large learning systems (besides these testbeds) likely to
exhibit large a�ect sets as well, or are they more likely to resemble the OPS5 systems? We will
take up each of these questions in turn.

Why are so many productions a�ected by individual WMEs in these systems? This is best
explained by looking at an example rule from one of them. Figure 3.4 shows one of the rules
learned by the SCA-Fixed system. (This is a printout from the system, edited slightly for
clarity.) The rule can be roughly translated into English as, \If you are trying to predict the
classi�cation of an object, and your description of the object has six features, and the value
of feature �ve is ten, and the value of feature three is six, ..., and the value of feature four is
eight, then predict that the object is in class number seven." The rules learned by SCA-Fixed
all have this same basic form. They di�er in the number of features present on the object |
(<s> ^count 6) in the �gure | and in the particular features and values they test | the last
twelve conditions in the �gure.

Now, consider what happens when the system learns a large number of rules of this form. A
WME (G37 ^problem-space P29) will a�ect every learned rule, since every one has a condition
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(chunk-4253

(<g> ^problem-space <p>) ; if the problem space used for the current goal ...

(<p> ^name predict) ; ... is named ``predict''

(<g> ^state <s>) ; and the current state ...

(<s> ^task predict) ; ... says the task is to make a prediction

(<s> ^count 6) ; and there are six features in the ...

(<s> ^object <o>) ; ... description of the object being examined

(<o> ^description <d>)

(<d> ^f5 <f5>) ; and feature #5 has value 10

(<f5> ^value 10)

(<d> ^f3 <f3>) ; and feature #3 has value 6

(<f3> ^value 6)

(<d> ^f1 <f1>) ; and feature #1 has value 1

(<f1> ^value 1)

(<d> ^f0 <f0>) ; and feature #0 has value 1

(<f0> ^value 1)

(<d> ^f2 <f2>) ; and feature #2 has value 0

(<f2> ^value 0)

(<d> ^f4 <f4>) ; and feature #4 has value 8

(<f4> ^value 8)

-->

[ then predict that the object is in class 7 ]

Figure 3.4: Example rule learned by the SCA-Fixed system.

(<g> ^problem-space <p>). So the number of rules a�ected by this WME will increase in
direct proportion to the number of rules in the system. A WME (S3 ^count 6) will a�ect all
the rules that look for six features in the description of the object. In SCA-Fixed, every rule
tests between one and twelve features, so on average this WME would a�ect one twelfth of the
rules,9 so again the number of rules a�ected will increase in direct proportion to the number
of rules in the system. A WME (D4 ^f3 I4) will a�ect all the rules which pay attention to
feature number three; again, this will increase in direct proportion to the number of rules in the
system.

The preceding example was taken from SCA-Fixed. Similar (though sometimes less pro-
nounced) e�ects arise in the other testbed systems. The learned rules in each system contain
conditions testing WMEs indicating the general problem-solving context (e.g., the current goal,
problem space, state, or operator), so WMEs specifying this context a�ect most of the rules.
The rules also test various speci�c facts about the particular problem instance being worked
on, or the current internal problem-solving situation, like the features and their values in the

9For the sake of argument, we ignore the possibility that some numbers of features may be more likely than

others.
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SCA-Fixed example above.10 For some of these particular facts, the number of rules testing
that fact increases linearly in the total number of rules in the system. Some facts are not tested
by very many rules, and some WMEs still a�ect only a handful of rules, but WMEs with large
a�ect sets occur often enough to drive the average quite high. Consequently, the average number
of productions a�ected by WMEs increases linearly in the total number of rules in the system.

We now turn to the question of why large a�ect sets were not observed in previous studies
of OPS5 systems. The obvious hypothesis | the relatively small number of rules in those
systems | is incorrect. This hypothesis would predict that the average number of a�ected rules
in each of these OPS5 systems would be proportional to the total number of rules it has. But
this is not the case: the same small a�ect set size (20{30 rules) is observed in systems ranging
from a few hundred to a few thousand total rules.

A more likely reason the a�ect sets remain small in these OPS5 systems has to do with the
way people write programs (Gupta, 1987, pages 56{57). People often hierarchically decompose
large problems into smaller subproblems, then write a few rules to solve each lowest-level sub-
problem. In fact, two major books on OPS5 system development describe this approach in detail
(Brownston et al., 1985, pages 197{203) and encourage its use in OPS5 systems (Cooper and
Wogrin, 1988, Chapter 5). Each lowest-level subproblem is implemented by a small set of rules,
called a rule cluster or context. Certain working memory elements, called control WMEs or con-
text WMEs, are used to indicate which subproblem is currently being worked on. For example,
suppose check-constraint is the (user-supplied) name of one lowest-level subproblem. Then a
WME (current-subproblem ^name check-constraint) would indicate that this subproblem
is being worked on. In the rule cluster for this subproblem, each rule would have a condition
(usually the �rst condition) testing for the presence of this control WME in working memory.
The other conditions in the rules in that cluster would test certain relevant facts in working
memory.

The use of this programming technique tends to keep a�ect sets small.11 When it is used,
there are two basic types of WMEs in working memory: control WMEs and facts. Each control
WME (e.g., (current-subproblem ^name check-constraint)) only a�ects the rules in the
corresponding rule cluster; since there are only a small number of rules per cluster, each control
WME a�ects only a small number of rules. Moreover, each fact in working memory tends to be
relevant to only one lowest-level subproblem, or perhaps a handful of them, so again we only
have a small number of rules a�ected by it.

Finally, we turn to the question of whether other large learning systems (besides these testbed
systems) are likely to exhibit large a�ect sets, or whether they are more likely to resemble
the aforementioned OPS5 systems. Our analysis here is, of course, rather speculative, since
we cannot predict with certainty what characteristics future large learning systems will have.

10We need not make a precise distinction here between conditions testing \the general problem-solving context"

and ones testing \facts about the particular problem instance." For purposes of understanding why the a�ect sets

are so large, this is a useful way of viewing conditions, but the match algorithm makes no such distinction | it

has no knowledge of the domain-level semantics of the conditions and WMEs.
11This has been noted by (Stolfo et al., 1991), which then advocates using production rule languages other

than OPS5 so as to obtain larger a�ect sets. The use of such languages would make the optimizations for Rete

introduced in this thesis, designed especially for systems with large a�ect sets, even more important.
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Nevertheless, we suggest that many are likely to have large a�ect sets.

It is certainly possible that future machine learning systems could be designed to create and
maintain small rule clusters just as human programmers do. Such systems would have to learn
new domains in hierarchical fashion, decomposing large problems into smaller ones, deciding
which ones were small enough to be solvable with a small number of rules, and building a new
rule cluster for each lowest-level subproblem. Additionally, when such systems acquire a large
amount of new knowledge about an existing lowest-level subproblem, instead of adding a large
number of new rules to the existing cluster, they would have to \split" the existing cluster,
revising existing rules as necessary to further decompose the subproblem before adding the new
rules. However, this is clearly beyond the current state of the art in machine learning. Rather
than placing these constraints on future learning techniques, an alternative approach is simply
to improve the match algorithm so that small rule clusters are not necessary for e�ciency.

Not only are current machine learning systems not designed to keep a�ect sets small, but
some of them have features that directly lead to large a�ect sets. First, general-purpose search-
oriented problem solvers such as Soar and Prodigy (Minton et al., 1989) often represent their
current problem-solving context using a group of general WMEs designating the current goal,
current state or search node, and current (selected or candidate) operator(s). Because they
are so general, these WMEs tend to a�ect a large number of rules. For example, one of these
WMEs might designate which search node is the current one, but all details of that node are
represented in other WMEs. Of course, which search node is current tends to be relevant to
many rules. If all the information about the current node were \compressed" or \
attened" into
one WME, that WME would tend to a�ect fewer rules; however, this form of representation
makes it di�cult to represent complex objects and relationships between them.

Second, knowledge compilation mechanisms often tend to increase the sizes of a�ect sets.
Such mechanisms may generate rules that act as \macros," solving many subproblems at once.
This tends to increase the number of rules in the system a�ected by fact WMEs for a given
subproblem: those facts now a�ect both the original rules (in one cluster for that subproblem)
and the new macro-rules (solving that subproblem and others).

Although we cannot predict with certainty what characteristics future large learning systems
will have, the above analysis suggests that large a�ect sets will arise in a broad class of systems,
not just the particular testbed systems studied here.

3.5 Sharing

Given the increase in the number of productions a�ected by changes to working memory, how
can we avoid a slowdown in the matcher? One partial solution can already be found in the basic
Rete algorithm. As discussed in Chapter 2, when two or more productions have the same �rst
few conditions, the same nodes in the beta part of the Rete network are used to match those
conditions (see Figure 2.2 on page 10). By sharing nodes among productions in this way, Rete
avoids duplicating match e�ort across those productions.

In our testbed systems, this sharing becomes increasingly important as more and more rules
are learned. This is because the learned rules often have many conditions in common. For
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instance, consider the �rst four conditions from the rule shown in Figure 3.4:

(<g> ^problem-space <p>) ; if the problem space used for the current goal ...

(<p> ^name predict) ; ... is named ``predict''

(<g> ^state <s>) ; and the current state ...

(<s> ^task predict) ; ... says the task is to make a prediction

All the learned rules in SCA-Fixed have these conditions in common, so the same Rete nodes
will be used to represent them.12 The more rules the system learns, the more rules will share
these nodes, and hence the more match e�ort will be saved via sharing. Similar e�ects arise in
all the testbed systems.

Figure 3.5 shows, for each system, the factor by which sharing reduces the number of tokens
generated in the basic Rete algorithm. The y-axis is obtained by taking the number of tokens
that would have been generated if sharing were disabled, and dividing it by the number that
actually were generated with sharing. This ratio is plotted as a function of the number of rules in
each of the systems.13 This shows the result of sharing in the beta part of the network only, not
sharing of alpha memories or nodes in the alpha network. With just the initial rules (no learned
rules) in each system, sharing reduces the number of tokens by a factor of 1.5 (in SCA-Fixed) to
10.2 (in Dispatcher). This factor increases dramatically as the number of rules in each system
increases. With 100,000 rules in each system, sharing reduces the number of tokens by a factor
of �450 (in SCA-Random) to �1000 (in Merle).14

Note that Figure 3.5 shows the ratio of token counts, not CPU time measurements. The
ratio of CPU times would be approximately a constant factor (not necessarily the same factor
in each system), independent of the number of rules. The reason is as follows. The basic Rete
algorithm slows down linearly in the number of rules even with sharing, as Figure 3.2 shows.
If we disable sharing, the match process would proceed independently for each a�ected rule;
since the number of a�ected rules increases linearly in the total number of rules (as Figure 3.3
shows), the match cost would increase linearly as well. Thus, the basic Rete algorithm slows
down linearly in the total number of rules in these testbed systems, with or without sharing.
The ratio of CPU times is thus the ratio of two linearly increasing functions, so it asymptotically
approaches some constant factor as the number of rules grows very large.

If Figure 3.5 does not re
ect the actual speedup factor we gain by using sharing in the basic
Rete algorithm, why is it important? It is important because it shows that the cost of one part
of the Rete algorithm increases linearly if we do not use sharing. The overall match cost can be
broken down into several parts. If we want to avoid a linear increase in overall match cost, then
we must avoid having the cost of any one part increase linearly. Later in this thesis, we develop

12Assuming the conditions get ordered in the same way. See Section 6.3.3.
13A previous paper (Doorenbos, 1993) reported that sharing was less e�ective in Assembler, yielding only a

factor of six. This was an artifact of using a di�erent implementation of Rete, an implementation which sometimes

did not share memory nodes in places where our current implementation does. The previous implementation

would use a merged beta-memory-plus-join node even when the memory had more than one child join node | see

Section 2.9.2.
14The �gure shows the increase to be roughly linear in all the testbed systems except SCA-Random, where the

increase is sublinear (but still over two orders of magnitude). The di�erence is due to a larger number of tokens

generated in unshared portions of the Rete network in SCA-Random, as will be discussed later in Section 6.3.2.
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Figure 3.5: Reduction in tokens due to sharing.

techniques for avoiding having the cost of certain other parts increase linearly. The data shown
in Figure 3.5 imply that without sharing, all our e�orts would be for naught, since the cost of
generating tokens would increase linearly.

3.6 Discussion

The large average number of a�ected productions, increasing linearly in the total number of
rules in each of our testbed systems, is the fundamental source of increasing match cost in these
systems. Since this problem has not been observed in previous studies of production systems,
previous research on production match algorithms has not been aimed at solving it. As a result,
most previous research would be of no help in avoiding the linear increase in match cost in
these systems. Of the optimizations mentioned in Section 2.10, modify-in-place, sca�olding,
collection Rete, and Uni-Rete might yield small constant factor improvements, but they are
essentially orthogonal to the problem of large a�ect sets. Alternative ways of implementing the
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alpha network cannot solve the problem, because the bad e�ects of large a�ect sets arise in
the beta network, not the alpha network. Lazy match and other ways of incorporating con
ict
resolution into the matcher are not applicable in these systems, because Soar does not employ
any con
ict resolution methods.15 Two optimizations | factored arc consistency and nonlinear
topologies | may have the potential to address this problem, but previous work on them has
not studied this possibility. Factored arc consistency is discussed in Section 5.8.4. Although we
touch on nonlinear networks brie
y in Section 5.7, a thorough study is beyond the scope of this
thesis.

In addition to the large number of a�ected productions, a second di�erence between the large
learning systems we study here and previously studied production systems is the importance of
sharing. The importance of sharing in our testbed systems was demonstrated in Section 3.5.
However, previous measurements on smaller systems have found sharing of beta nodes to produce
only very limited bene�t, typically only a factor of 1{2 (Gupta, 1987; Tambe et al., 1988;
Miranker, 1990). This is probably due to the small a�ect sets in those systems.

Because of this limited bene�t, previous work in production systems has often ignored shar-
ing. For example, the Treat match algorithm does not incorporate sharing in the beta part of
the match. Consequently, on each working memory change, it must loop over all the a�ected
rules. Although Treat incorporates an optimization (rule-active 
ags) which may enable each
a�ected rule to be processed very quickly, the number of iterations of the loop would increase
linearly in the total number of rules in each of our testbed systems. So Treat would not scale
well for these systems | like Rete, Treat would slow down linearly in the total number of rules.
We will later discuss Treat in more detail, including the possibility of incorporating sharing into
it, in Section 5.8.5.

The Match Box algorithm (Perlin and Debaud, 1989; Perlin, 1991a), another recent devel-
opment, also fails to incorporate any form of sharing of match e�ort across productions. Match
Box di�ers from Rete in that it operates on tuples of variable bindings rather than on tuples of
WMEs. Due to its lack of sharing, Match Box requires work linear in the number of a�ected
productions. It may be possible to incorporate sharing into Match Box, but that is beyond the
scope of this thesis.

Work on machine learning systems has also often failed to incorporate sharing into the match
process.16 For example, the match algorithm used by Prodigy (Minton, 1988a) treats each rule
independently of all the others. As more and more rules are learned, the match cost increases,
leading to a utility problem. Prodigy's approach to this problem is to discard many of the learned
rules in order to avoid the match cost. An alternative approach was tried by (Doorenbos and
Veloso, 1993): sharing was incorporated into the matcher, with the rules organized as a tree
much like the beta part of a Rete network (but without any alpha network or any memory
nodes | the match is repeated from scratch every cycle). While this did not eliminate the

15Soar's version of con
ict resolution takes place at a higher level, in its decision procedure, which selects one

operator to apply, rather than one production to �re.
16Notable exceptions include (Veloso, 1992), which organizes a case library into a tree in which parts of

descriptions of problem-solving cases are shared, and (Wogulis and Langley, 1989), which stores learned concept

de�nitions in a hierarchy so the match e�ort for common subconcepts can be shared between multiple higher-level

concepts.
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increase in match cost, it did speed up the matcher by up to a factor of two, and in one case
it avoided the utility problem | with the new matcher, the increase in match cost was o�set
by a reduction in the number of search nodes the system explored. (It the other cases, sharing
reduced the increase in match cost, but not by enough to avoid the utility problem.)

We will return to discuss the e�ect of match algorithms on the utility problem further in
Chapter 7, but �rst we need to examine the linear increase in match cost we observed in the
basic Rete algorithm in this chapter. The next two chapters discuss the two major sources of
this linear increase, and develop techniques to eliminate them.
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Chapter 4

Adding Right Unlinking to Rete

In the previous chapter we showed that in each of our testbed systems, the basic Rete algorithm
slows down signi�cantly and linearly in the number of rules, in spite of the e�ectiveness of
sharing. How can such a slowdown arise? As we saw in Section 3.4, a fundamental phenomenon
in these systems is the very large average number of productions a�ected by a WME. Recall
that if a production is a�ected by a WME, there is some join node1 (used to represent one of
the conditions of the production) that gets right-activated when that WME is added to working
memory. If a WME a�ects many productions, there might be only one join node that gets
right-activated | one node shared by all the a�ected productions. This often arises with nodes
near the top of the network, shared by many productions. In this case, we have only one right
activation. (Data
ow may propagate down the network from that node, causing left activations
of many other nodes, and the number of such left activations can increase with the number of
rules in the system; we will discuss this possible cause of Rete's slowdown in Chapter 5.) On the
other hand, if a WME a�ects many productions, there might be many (unshared) join nodes,
one for each a�ected production, that get right-activated. In this case, the number of right
activations can increase linearly in the number of rules in the system. This possible cause of
Rete's slowdown is the focus of the current chapter.

After we look at a concrete example of this increasing number of right activations, we explain
in Section 4.1 why most of these activations are useless work. Section 4.2 explains the basic
idea of right unlinking, our extension to Rete which avoids most of these activations. Section 4.3
presents the implementation of right unlinking. Finally, Section 4.4 gives empirical results.

We begin with a concrete example. Figure 4.1 shows the Rete network for the rules learned
by the SCA-Fixed testbed system. (One example rule is shown in Figure 3.4 on page 73.) The
�gure is substantially simpli�ed for expository purposes. It shows only the alpha memories
and join nodes; all the beta memory nodes are omitted. It also assumes that all the rules test
the same number of features (six, named f1 through f6); it assumes that each feature has ten
possible values; it \compresses" each feature/value test into a single condition, instead of two
conditions as in Figure 3.4; and it assumes that the conditions in di�erent rules are given similar
orderings before the rules are added to the Rete network.

1Or negative node. In this chapter, what we say about join nodes applies to negative nodes as well.

81
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AM for (_ ^problem-space _)

AM for (_ ^name predict)

AM for (_ ^f1 1)

AM for (_ ^f1 2)

AM for (_ ^f1 10)

AM for (_ ^f2 1)

AM for (_ ^f2 10)

AM for (_ ^f6 1)

AM for (_ ^f6 10)

AM for (_ ^description _)

AM for (_ ^f2 2)

AM for (_ ^f6 2)

(beta memories omitted)

alpha memory

beta join node

Key:

Figure 4.1: Simpli�ed view of the Rete network for SCA-Fixed.

As the �gure shows, the rules share the same join nodes for their �rst few conditions, down
to the �rst feature/value test. The more rules we have, the more share these join nodes, and the
more match e�ort will be saved by the use of this sharing. The portion of the network below
these shared join nodes is a simple subtree with a depth of six and a branching factor of ten.
(In the actual SCA-Fixed Rete, only some of the 106 leaves would be present; the number would
increase as the system learned more and more rules.)

Whenever a new match is found for the �rst few conditions, the data
ow propagates down
this subtree, starting at the top. First the ten children testing di�erent values of f1 are left-
activated. Assuming the object in question has exactly one value for f1, nine of these left
activations will \fail" and one will \succeed" | data
ow will be propagated further from only
one of the ten join nodes. Assuming the object in question has exactly one value for each of the
other �ve features, the data
ow will propagate down �ve more levels of the subtree in the same
way. The total number of left activations in this subtree is sixty-one (ten activations at each of
six levels, plus one activation of the top node in the subtree). This is quite a moderate number
of activations, considering that we have 106 rules represented in this Rete network.



4.1. Null Right Activations 83

However, when we encounter a new value of a feature, we may have a serious problem.
Consider what happens when we add a WME (I27 ^f6 2). The WME is �rst added to the
appropriate alpha memory. Then, we right-activate all its successor join nodes | all 105 of them,
since 1=10 of the 106 leaves in the subtree are successors of this alpha memory. In general, adding
a WME representing the value of feature i would cause 10i�1 join nodes to be right-activated.
Moreover, the number of right activations triggered by (I27 ^f6 2) increases with the number
of rules in the system. Initially, the system has no learned rules, and this whole tree is not
present in the Rete network. As more and more rules are learned, the tree gradually �lls out.
With n � 106 rules, there are n leaves in the tree, and a WME representing the value of f6
triggers (on average) n=10 right activations.

Note that there is no way to avoid the problem by changing the ordering of the conditions
here. If we move the conditions testing f6 up higher in the network, sharing will reduce the
number of right activations from WMEs for f6; however, this comes at the expense of increasing
the number of right activations from some other feature which takes f6's place at the bottom
of the network.

To generalize this situation beyond the SCA-Fixed testbed system, consider a system with a
large number n of rules, where no rule has conditions which are a subset of those of another rule;
i.e, no rule is a strict generalization of another rule, and no two rules are duplicates. Suppose
that a relatively small number k of alpha memories are required for all the rules. (In the SCA-
Fixed example above, n would be 106 and k would be 60{70.) For each rule, there is at least
one unshared join node | if all the join nodes for a rule were shared with some other rule, we
would have a duplicate or generalized rule. This implies that there are at least n unshared join
nodes. Each one is a successor of some alpha memory, but there are only k alpha memories. If
we add k WMEs to working memory, chosen so that at least one goes into each alpha memory,
this will trigger a right activation of each of these join nodes. Thus, there is a small set of k
WME additions which together cause an average of n=k right activations each; of course, this
number increases linearly in the total number of rules in the system.

4.1 Null Right Activations

Continuing our SCA-Fixed example from above, it is important to note that of the 105 right
activations triggered by the addition of (I27 ^f6 2), only one will \succeed" (i.e., result in
a new match being found). The join-node-right-activation procedure below (copied here from
page 24) will be called 105 times, once for each of 105 di�erent join nodes.

procedure join-node-right-activation (node: join-node, w: WME)
for each t in node.parent.items do f\parent" is the beta memory nodeg

if perform-join-tests (node.tests, t, w) then
for each child in node.children do left-activation (child, t, w)

end

Each time, the procedure iterates over all the tokens in the beta memory just above that join
node (the beta memories are not shown in Figure 4.1). But the beta memory will not have any
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tokens in it unless there is at least one match in working memory for all the earlier conditions
in the production. For example, consider the join node at the bottom left of Figure 4.1 (the
leftmost leaf in the tree). The beta memory just above it store matches for all the earlier
conditions | conditions testing that f1 has value 1, f2 has value 1, . . . , and f5 has value 1.
This beta memory will be empty unless there are WMEs in working memory indicating that the
object in question does have all these properties. Other beta memories for other join nodes at
the bottom level store matches for other sets of conditions which test for other values of these
features. Assuming that the object has just one value for each feature, all but one of these beta
memories will be empty.

More generally, in most systems, one expects most join nodes near the bottom of the network
to have empty beta memories at any given time. This is because usually there is some join node
higher up that has no matches | some earlier condition in the rule fails. To see why, consider
a rule with conditions c1; c2; . . . ; ck, and suppose the ci's have independent probabilities pi of
having a match. For the very last join node to have a non-empty beta memory, all the earlier
conditions must match; this happens with the relatively low probability p1p2 � � � pk�1. So at any
given time, most of these join nodes have empty beta memories.

A right activation in which the join node's beta memory is empty is called a null right
activation. On a null right activation, since there are no tokens for the join-node-right-activation
procedure to iterate over, no iterations of the for loop are performed, and the whole procedure
call is essentially useless work. In the above example, (I27 ^f6 2) will trigger 105 � 1 null
right activations | all wasted e�ort | plus one non-null right activation. Moreover, as the
system grows, learning more and more rules and gradually �lling out the tree, the number
of non-null right activations remains at most one, while the number of null right activations
increases linearly in the total number of rules in the system. Although each individual null right
activation takes only a handful of CPU instructions (procedure call overhead plus checking the
termination condition of the for loop), the number of null right activations grows very large, so
that their cost becomes the dominant factor in the overall match cost.

Our discussion so far has focussed on a particular example, a simpli�ed view of the SCA-
Fixed testbed system, since it makes a good illustration of how the problem of increasing null
right activations arises. However, this problem arises in all the other testbed systems as well.
Figure 4.2 shows, for each testbed system, the average number of null right activations of join
nodes per change to working memory, plotted as a function of the number of rules in the system.
It clearly shows that in each system, the number of null right activations increases linearly in
the number of rules. With 100,000 rules in each system, the number ranges from �2,000 in
Dispatcher to �17,000 in Merle. (The number varies from one system to another, depending
on what proportion of WMEs get added to alpha memories with large fan-outs, and on the
magnitude of those fan-outs.)
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Figure 4.2: Number of null right activations per change to working memory.

4.2 Right Unlinking: Basic Idea

In this section, we introduce an optimization for the Rete algorithm which avoids all null right
activations.2 With this optimization incorporated into the matcher, we will no longer see the
linear increase in null right activations shown in Figure 4.2.

By saying we avoid a null right activation, we do not mean just avoiding executing a procedure
call | that could be easily accomplished simply by \inlining" the join-node-right-activation
procedure everywhere it is called. While this would reduce the cost of null right activations
somewhat (instead of each one incurring the cost of a procedure call overhead plus the cost of
checking the termination condition of the for loop, it would only incur the cost of checking the
termination condition), the total cost of null right activations would still increase linearly in the
number of rules. To avoid having the total cost increase, the cost of each null right activation
must be zero. So when we say we avoid a null right activation, we mean we avoid executing any

2The optimization we present here is not the only possible way to avoid null right activations; we discuss

some others later, in Section 5.8.



86 Chapter 4. Adding Right Unlinking to Rete

Alpha
Memory

Beta
MemoryEmpty

Figure 4.3: Unlinking a join node from its associated alpha memory.

CPU instructions for it | i.e., the alpha memory does not even \look at" the join node or its
beta memory.

Our optimization is called right unlinking. The basic idea is that if we know in advance that
a join node's beta memory is empty, then we will arrange for right activations of that join node
to be skipped. We do this by unlinking the join node from its alpha memory; i.e., removing the
join node from the alpha memory's successors list. This is illustrated in Figure 4.3: whenever
the beta memory is empty, we cut the link (the data
ow path) from the alpha memory (the one
on the right) to the join node. Note that since the only activations we are skipping are null right
activations | which would not yield a match anyway | this optimization does not a�ect the
set of complete production matches that will be found; the semantics of the algorithm (viewed
as a \black box") are unchanged.

In a running system, as WMEs are added to and removed from working memory, beta
memories will sometimes change from empty to nonempty or vice-versa; we will dynamically
splice join nodes out of and back into the successors lists on alpha memories when this happens.
If a join node has been spliced out of its alpha memory's successors list, then when a WME
is added to that alpha memory, the join node will not be right-activated; in fact, the match
algorithm will perform no CPU instructions at all pertaining to that join node, since the alpha-
memory-activation procedure (page 32) just iterates over the alpha memory's successors list,
and this join node is not in that list.

Another way of looking at right unlinking is to view it as a way to reduce the (potentially
large) fan-out from alpha memories. In Figure 4.1, for example, the lowest few alpha memories,
for conditions testing values of f6, each have fan-outs of 105 in the basic Rete algorithm. If we
added right unlinking to the algorithm, this fan-out would be reduced to zero or one | most of
the join nodes have empty beta memories, hence would not be on successors lists.
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4.3 Right Unlinking: Implementation

To implement right unlinking, we modify the Rete interpreter routines so they dynamically
splice join nodes out of and back into their alpha memories' successors lists. We add code to
detect when the number of items in a beta memory changes from one to zero, and remove the
memory's child join nodes from the appropriate successors lists when this happens. We also
add code to insert join nodes back onto successors lists when their beta memories are no longer
empty.

Although we have only discussed right unlinking of (positive) join nodes so far, it can also
be done on negative nodes. Recall from Section 2.7 that negative nodes store tokens (matches
for the previous conditions) along with local result memories. If there are no tokens in a given
negative node, we can unlink it from its associated alpha memory.

We �rst modify the delete-token-and-descendents procedure. Whenever it deletes a token
from a memory node, it now also checks whether the memory has just become empty.3 If so,
it iterates over the memory's child join nodes, unlinking each one from its associated alpha
memory. Also, whenever it deletes a token from a negative node, it checks whether there are
any other tokens at that node; if not, it unlinks that node from its associated alpha memory.
(The lines in the margin indicate the changed parts of the pseudocode below.)

procedure delete-token-and-descendents (tok: token) frevised from page 51g
while tok.children 6= nil do

delete-token-and-descendents (the �rst item on tok.children)
if tok.node is not an NCC partner node then

remove tok from the list tok.node.items
if tok.wme 6= nil then remove tok from the list tok.wme.tokens
remove tok from the list tok.parent.children
if tok.node is a memory node then

if tok.node.items = nil then

for each child in tok.node.children do
remove child from the list child.amem.successors

if tok.node is a negative node then
if tok.node.items = nil then

remove tok.node from the list tok.node.amem.successors
for each jr in tok.join-results do

remove jr from the list jr.w.negative-join-results
deallocate memory for jr

. . . fextra handling for NCC's unchanged from page 51g . . .
deallocate memory for tok

end
3The pseudocode below and the implementation used in this thesis do this by checking whether the memory's

items list is now NIL. In some other implementations of Rete, an empty/nonempty indicator may not already

be conveniently available. In that case, a count �eld can be added to the data structure for each memory node

to store a count of the number of tokens it contains. Other procedures are then modi�ed to update this count

when tokens are added to or deleted from the memory.
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Next, we modify the join-node-left-activation procedure. Whenever a beta memory changes
from empty to nonempty, each child join node will be left-activated (with the new token that
was just added to the beta memory); we must relink each child join node to its associated alpha
memory at this point.4 This pseudocode uses a procedure relink-to-alpha-memory to do the
relinking; this procedure will be given below.

procedure join-node-left-activation (node: join-node, t: token)
frevised from version on page 32g

if node.parent just became nonempty5 then relink-to-alpha-memory (node)
for each item in node.amem.items do

if perform-join-tests (node.tests, t, item.wme) then
for each child in node.children do left-activation (child, t, item.wme)

end

We also modify the negative-node-left-activation procedure. Whenever this procedure is
called, if the negative node currently has no tokens in it (i.e., this procedure is about to build
and store the �rst one), we must relink the negative node to its associated alpha memory.

procedure negative-node-left-activation (node: negative-node, t: token, w: WME)
frevised from version on page 42g

if node.items = nil then relink-to-alpha-memory (node)
fbuild and store a new token, just like a beta memory would (page 30)g
new-token  make-token (node, t, w)
insert new-token at the head of node.items

fcompute the join resultsg
new-token.join-results  nil

for each item in node.amem.items do
if perform-join-tests (node.tests, new-token, item.wme) then

jr  allocate-memory()
jr.owner  new-token; jr.wme  w
insert jr at the head of the list new-token.join-results
insert jr at the head of the list w.negative-join-results

fIf join results is empty, then inform childreng
if new-token.join-results=nil then

for each child in node.children do left-activation (child, new-token, nil )
end

4This relinking could also be done in the beta-memory-left-activation procedure. The choice makes little

di�erence as far as e�ciency is concerned. We chose to put it in the join-node-left-activation procedure to make

it symmetrical with some code we will later add in Chapter 5; see Footnote 2 on page 102.
5There are several ways of determining this. We can have the beta-memory-left-activation procedure pass the

join-node-left-activation procedure a 
ag indicating this. Alternatively, we can just check whether the number

of items in the beta memory is exactly one. Another approach (taken by the implementation used in this thesis)

is to keep a 
ag on each join node indicating whether it is currently right-unlinked.
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A few other minor modi�cations to the pseudocode are needed. The routines that build
the Rete network must be modi�ed so they properly initialize newly-created join and negative
nodes; e.g., a newly-created join node should not be linked to its associated alpha memory if its
beta memory is empty. These modi�cations can be found in Appendix A but for brevity will
not be shown here.

4.3.1 Relinking: Strictly Tree-Structured Networks

It remains to discuss the relink-to-alpha-memory procedure. We must be careful here. Recall
from Section 2.4.1 that in order to avoid creating duplicate tokens, we must ensure that the join
nodes on each alpha memory's successors list are appropriately ordered. If J1 and J2 are on the
list and J1 is a descendent of J2, then J1 must come earlier in the list than J2. This property
is (trivially) maintained whenever a node is removed from a successors list. But when we relink
a node to its alpha memory, we must be careful to splice it into the successors list in the right
place, so as to maintain this property. Consider relinking a node Jnew to its alpha memory. For
the property to be maintained, we need two things:

1. If there is an ancestor of Jnew (call it Jold) already on the successors list, then Jnew must
end up on the list before Jold; and

2. If there is a descendent of Jnew (call it Jold) already on the successors list, then Jnew must
end up on the list after Jold.

It turns out that this is easy if we do not allow conjunctive negations (NCC's), but somewhat
tricky otherwise. Recall from Section 2.8 that when conjunctive negations are allowed, the beta
part of the network is not quite a tree, due to the subnetwork used for the conditions inside
the NCC. We �rst consider the case without conjunctive negations, i.e., where the beta part
of the network forms a tree. In this case, we can simply insert the node at the head of the
successors list, and the property will be maintained. Clause 1 above trivially holds when Jnew
is inserted at the head of the list. For clause 2 to hold, it must be the case that there are no
descendents Jold of Jnew on the list when we splice in Jnew. Suppose Jold is a descendent of Jnew,
and we are about to relink Jnew to its alpha memory. The only time we do this relinking of
Jnew is right after its beta memory changes from empty to nonempty. If Jnew's beta memory
was empty, then so must have been all the beta memories in the subtree underneath Jnew. In
particular, Jold's beta memory must have been empty. Since the data
ow has not gotten down
below Jnew (the relinking occurs at the start of Jnew's activation procedure), Jold's beta memory
is still empty | which means Jold is currently right-unlinked. Thus, no descendent Jold of Jnew
could be on the successors list when we splice in Jnew. Thus, the desired property is maintained.

If we have no conjunctive negations, then, the following simple procedure su�ces. This
would normally be coded \inline" for e�ciency.

procedure relink-to-alpha-memory (node: rete-node)
fsimple version, does not allow conjunctive negationsg

insert node at the head of the list node.amem.successors
end
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4.3.2 Relinking: Totally Ordered Ancestors

Unfortunately, the above procedure breaks down in the presence of conjunctive negations. The
problem is that in the discussion of clause 2, the fact that Jnew's beta memory is empty does not
necessarily mean that the beta memories of all its descendents are empty. If Jnew is a node in
the subnetwork for an NCC (see Figure 2.7 on page 46), this may not be true. Basically, a lack
of matches in the NCC subnetwork implies that the NCC is satis�ed; hence data
ow propagates
down from the NCC node to other nodes below it. Thus, if Jnew is a join node in the subnetwork
for an NCC, and Jnew has an empty beta memory, there could be a Jold with a nonempty beta
memory somewhere below the NCC node.

To support conjunctive negations, then, we need a di�erent approach. Allowing conjunctive
negations means the beta part of the network may not be a tree. However, for any individual
join node, if we look at all its ancestors, there is a total ordering on them | if J1 and J2 are
both ancestors of some node, then either J1 is an ancestor of J2, or J2 is an ancestor of J1.
This is in contrast to bilinear networks (Tambe et al., 1992) or more general nonlinear networks
(Schor et al., 1986; Ishida, 1988; Lee and Schor, 1992; Hanson, 1993), where the ancestors of a
node may be only partially ordered.

If every node's ancestors are totally ordered, as is the case in the implementation used in this
thesis, then the following approach to relinking works. When relinking a node Jnew to its alpha
memory, we splice it into the successors list immediately in front of its nearest ancestor linked

to the same alpha memory (or at the tail of the list, if it has no such ancestor). Here \nearest"
refers to the total ordering. Note that the nearest ancestor may be inside the subnetwork for a
conjunctive negation higher up in the network.

With this approach, clause 1 above obviously holds for the nearest Jold (call it Jnearest). Any
other ancestor Jold of Jnew must be an ancestor of Jnearest, since the ancestors are totally ordered.
Since the successors list is initially appropriately ordered before we splice in Jnew, Jnearest must
be on the list before Jold. So when we splice in Jnew before Jnearest, it will also end up coming
before Jold. Thus, clause 1 holds. As for clause 2, if Jold is a descendent of Jnew, then Jold is
also a descendent of Jnearest, so it is initially on the list before Jnearest; this means that when we
splice Jnew into the list immediately in front of Jnearest, we end up with Jnew on the list after
Jold. So clause 2 holds as well.

To implement this, we'll add a �eld to each join node and each negative node, pointing to its
nearest ancestor that happens to use the same alpha memory. This is not really required | we
could always �nd that ancestor for a given node by walking up the network from that node |
but that would make the relinking procedure much slower. So we modify the join-node and
negative-node data structures:

structure join-node: frevised from version on page 24g
amem: alpha-memory fpoints to the alpha memory this node is attached tog
tests: list of test-at-join-node
nearest-ancestor-with-same-amem: rete-node

end
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structure negative-node: frevised from version on page 41g
fjust like for a beta memoryg
items: list of token
fjust like for a join nodeg
amem: alpha-memory fpoints to the alpha memory this node is attached tog
tests: list of test-at-join-node
nearest-ancestor-with-same-amem: rete-node

end

We also modify the Rete network construction routines (Section 2.6) to have them initialize
these �elds when new nodes are created, and to have them immediately right-unlink newly
created nodes whose beta memories are empty. For brevity, these modi�cations are not shown
here; see Appendix A.

Finally, we have the relink-to-alpha-memory procedure. Again, this would normally be coded
\inline" for e�ciency. From a given node, it follows the chain of nearest-ancestor-with-same-
amem pointers up the network, in order to �nd the �rst ancestor on the chain (i.e., the nearest
one) that is currently linked to the alpha memory. It then splices the given node into the
successors list just before that ancestor, or at the tail of the list, if there is no such ancestor.
Note that splicing it in at the tail requires the alpha-memory data structure (page 32) to have
a pointer to the tail of the successors list, in addition to the usual pointer to the head.

procedure relink-to-alpha-memory (node: rete-node)
fversion allowing conjunctive negationsg
ffollow links up from node, �nd �rst ancestor that's linkedg
ancestor  node.nearest-ancestor-with-same-amem
while ancestor 6= nil and ancestor is right-unlinked6 do

ancestor  ancestor.nearest-ancestor-with-same-amem
fnow splice in the node in the right placeg
if ancestor 6= nil

then insert node into the list node.amem.successors immediately before ancestor
else insert node at the tail of the list node.amem.successors

end

Since this procedure contains a while loop, one might expect that it would be rather time-
consuming, and that right unlinking would therefore add a lot of overhead to the Rete algorithm.
The worst-case number of iterations of this loop is O(C), where C is the number of conditions
in a production (treating a conjunctive negation containing k conjuncts as if it were k separate
conditions). However, the worst case only arises if all the conditions in a production use the
same alpha memory; this is very unlikely to happen in practice. Furthermore, in any produc-
tion not containing a conjunctive negation, at most a single evaluation of the while condition
will be needed: the �rst ancestor cannot be right-unlinked, since its beta memory cannot be

6The implementation used in this thesis determines this by keeping a 
ag on each join node indicating whether

it is currently right-unlinked. An alternative is to check whether the node's beta memory is empty.
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empty (the reasoning is similar to that in the Section 4.3.1). Thus, unless productions contain
many conjunctive negations and have many conditions using the same alpha memory, very few
iterations of the while loop will be performed.

4.3.3 Relinking: Fully General

There is a fully general approach to relinking nodes to their alpha memories which does not
require ancestors to be totally ordered, and which does not have a potentially large number of
iterations of a loop in the worst case. The idea is to partition each successors list by level. Each
join node is assigned a level number when the network is constructed; level numbers are assigned
so that the number assigned to any given node is lower than the number assigned to any of its
descendents. (This can be done via a topological sort.) Let C be the maximum number of
conditions in any production. When a WME is added to an alpha memory, the successors at
level C are right-activated �rst, then those at level C�1, and so on. To relink a node to its alpha
memory, we simply insert it at the head of the list for the appropriate level. The disadvantage
of this approach is the extra space required for many more list headers: we now need separate
list headers for successors-at-level-1 successors-at-level-2, . . . , successors-at-level-C.

4.4 Right Unlinking: Empirical Results

The graphs in Figure 4.4 show the results of adding right unlinking to Rete. The graph for
each testbed system shows two lines: one plots the average match time per change to working
memory in the basic Rete algorithm as a function of the number of rules, the same data as shown
in Figure 3.2 on page 70; the other line plots the average match time with right unlinking added
to Rete.7 Note that the scales on the vertical axes di�er from one testbed to another.

As the �gure shows, the addition of right unlinking to the basic Rete algorithm greatly
reduces the match cost in six of the seven testbed systems. (It has only a small e�ect in
Assembler.) Moreover, it allows two of the systems, Dispatcher and SCA-Fixed, to avoid the
linear slowdown incurred with the unmodi�ed Rete algorithm. In Merle, SCA-Random, and
Sched, there is still a small linear increase in match cost; this e�ect is not pronounced on the
graphs in Figure 4.4, but will become clear in the next chapter. The graphs in Figure 4.4 clearly
show a signi�cant linear increase still present in Assembler and Radar. This is because increasing
null right activations are not the only major cause of Rete's linear slowdown in Assembler and
Radar. Eliminating the remaining major cause is the topic of the next chapter.

7Note that the �gure gives CPU time measurements, not token counts or comparison counts (see Footnote 4

on page 67). Since a null activation does not lead to any tokens being created or any variable binding comparisons

being performed, examining token or comparison counts here would be misleading | such counts would suggest

that right unlinking had no e�ect on the match algorithm's performance, whereas Figure 4.4 demonstrates

otherwise.
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Figure 4.4: Match cost with right unlinking added to the basic Rete algorithm.
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Chapter 5

Adding Left Unlinking to Rete

At the beginning of the previous chapter, we mentioned two possible causes of the linear slow-
down observed in the basic Rete algorithm in all the testbed systems. We then introduced right
unlinking as a way to reduce or eliminate one of these | a linear increase in the number of
right activations. The other one | a linear increase in the number of left activations | is the
subject of this chapter. Due to the sharing of nodes in the Rete network, a WME that a�ects
a large number of rules may only trigger one right activation | namely, the right activation of
a shared join node near the top of the network. However, data
ow may propagate down the
network from that node, causing left activations of many other nodes, and the number of such
left activations can increase linearly in the number of rules in the system.

After we look at a concrete example of this increasing number of left activations, we explain
in Section 5.1 why most of these activations are useless work. Section 5.2 explains the basic
idea of left unlinking, our extension to Rete which avoids most of these activations. Section 5.3
discusses why left unlinking and right unlinking interfere with each other, and shows how to
combine the two so as to minimize this interference. Section 5.4 presents the implementation
of this combination of left and right unlinking, which yields the Rete/UL match algorithm.
Sections 5.5 and 5.6 present theoretical and empirical results. Section 5.7 shows how to generalize
unlinking to systems with non-binary join nodes. Finally, Section 5.8 discusses some alternatives
to unlinking.

As in the previous chapter, we begin our discussion with a concrete example | in this
case, the Assembler system. As mentioned in Section 3.1.1, this system is a cognitive model of
a person assembling printed circuit boards, e.g., inserting resistors into the appropriate slots.
Most of the rules it learns are speci�c to the particular slot on the board being dealt with at
the moment. The �rst few conditions in these rules are always the same, but the next condition
is di�erent in each rule. As illustrated in Figure 5.1, this leads to a large fan-out from one beta
memory. (As with our SCA-Fixed example in the previous chapter, this �gure is simpli�ed for
expository purposes.) The �rst few conditions in all the rules share the same nodes, but at this
point, sharing is no longer possible because each rule tests for a di�erent slot. As the system
deals with more and more slots, it learns more and more rules, and the fan-out increases linearly
in the total number of rules.

Now, whenever all of the �rst few conditions of these rules are true, the data
ow in the Rete

95
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matches for first few conditions
AM for (_ ^slot-id r19)

AM for (_ ^slot-id c12)

AM for (_ ^slot-id r18)

AM for (_ ^slot-id c14)

beta memory

alpha memory

beta join node

Key:

Figure 5.1: Part of the Rete network for Assembler.

network reaches this beta memory and a token is stored there. This token is then propagated
to all the memory's child join nodes, left activating each one. Since the number of such nodes
is increasing linearly in the number of rules, the work done here is also linearly increasing. This
causes the Rete algorithm to slow down linearly in the number of rules.

Note that as was the case with SCA-Fixed, we cannot eliminate this problem by changing
the ordering of the conditions here. If we reorder the conditions so this fan-out point occurs
lower in the network, it may alleviate the problem somewhat, by reducing the number of tokens
that reach the fan-out point, but the slowdown will still be linear, since the work performed
each time a token reaches the fan-out point will still be linear. Moving the fan-out point higher
in the network would aggravate the problem, except in the special case where the fan-out occurs
directly from the top node of the beta network; in this one case, the problem would be avoided
because tokens are never added to or removed from the dummy top node. However, there are
three drawbacks to this: it wastes a lot of space, since it precludes a lot of potential sharing;
it is unclear how to arrange for conditions to be ordered this way automatically; and it cannot
be used if rules contain more than one problematic condition like this | e.g., if the rules in
Assembler were speci�c to pairs of slots, so each had two slot-id-testing conditions | since only
one of them could be placed directly below the dummy top node.

5.1 Null Left Activations

In the SCA-Fixed example of the previous chapter, we observed that most of the linearly increas-
ing number of right activations were wasted work | only one of them would \succeed," while
the others were null right activations. A similar phenomenon occurs with the left activations in
Assembler. Since the system is only focusing its attention on a few slots at a time, most of the
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join nodes have empty alpha memories. Their activations are therefore null left activations, and
no new matches result from them. Although each individual null left activation takes very little
time to execute, the number of null left activations per change to working memory is linearly
increasing, and so this can grow to dominate the overall match cost.

This problem arises in other systems in addition to Assembler. The large fan-out from beta
memories can arise in any system where the domain has some feature with a large number
of possible values, and the learned rules are speci�c to particular values of that feature. For
instance, in a robot domain, if the appropriate action to be taken by the robot depends on the
exact current room temperature, it might learn a set of rules where each one checks for a di�erent
current temperature. In a system with a simple episodic memory, learned rules implementing
that memory might contain di�erent timestamps in their conditions. In cases like these, learned
rules will often share nodes in the Rete network for their early conditions, up to but not including
the conditions testing the feature in question. If this feature can have only one value at a time,
then most of the rules will fail to match at this condition, so there will be a large number of
null left activations.

Turning to our testbed systems now, Figure 5.2 shows, for each testbed system, the average
number of null left activations incurred by join nodes per change to working memory, plotted as
a function of the number of rules in the system. In two of the systems, Assembler and Radar,
the number of null left activations per change to working memory increases quite signi�cantly
and linearly in the number of rules. (It increases by �98 and �16 per 10,000 rules in these two
systems, respectively). In two others, Sched and Merle, it increases slightly and linearly (by �2
and �1 per 10,000 rules). In the other three systems, it does increase somewhat, but only very
slightly (by much less than 1 per 10,000 rules). (The points for these systems are very close to
the horizontal axis in Figure 5.2.)

5.2 Left Unlinking: Basic Idea

In this section, we introduce an optimization for the Rete algorithm which avoids all null left
activations. (Some other possible ways to avoid null left activations are discussed in Section 5.8.)
With this optimization incorporated into the matcher, we will no longer see the linearly increas-
ing null left activations shown in Figure 5.2. As in the previous chapter, by saying we avoid a
null left activation, we do not mean just that we avoid executing a procedure call | we mean
we avoid executing any CPU instructions for it | i.e., the beta memory does not even \look
at" the join node or its alpha memory.

Our optimization, called left unlinking, is symmetric to right unlinking: whereas with right
unlinking, a join node is spliced out of its alpha memory's list of successors whenever its beta
memory is empty, with left unlinking, a join node is spliced out of its beta memory's list of
children whenever its alpha memory is empty. This is illustrated in Figure 5.3: whenever the
alpha memory is empty, we cut the link (the data
ow path) from the beta memory (the one
on the left) to the join node. Then whenever a token is added to the beta memory, the join
node will not be left-activated; in fact, the match algorithm will perform no CPU instructions
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Figure 5.2: Number of null left activations per change to working memory.

at all pertaining to that join node, since the beta-memory-left-activation procedure (page 30)
just iterates over the beta memory's children list, and this join node will not be in that list.

Whenever alpha memories change from nonempty to empty or vice-versa in a running system,
we will dynamically splice join nodes out of and back into the children lists on beta memories.
So in the Assembler system, at any given time, most of the join nodes would be unlinked from
the beta memory shown in Figure 5.1, and hence they would not be activated whenever the �rst
few conditions in the rules are true. As was the case with right unlinking, the only activations
we are skipping are null activations, which would not yield a match anyway, so this optimization
does not a�ect the set of complete production matches that will be found; the semantics of the
algorithm (viewed as a \black box") are unchanged.

Just as right unlinking can be viewed as a way to reduce the potentially large fan-out from
alpha memories, left unlinking can be viewed as a way to reduce the fan-out from beta memories.
It is expected to be an important optimization in Assembler and other systems where some beta
memories have large fan-outs. In addition, we will see in Section 5.6 that left unlinking can also
be bene�cial even in systems where the fan-out isn't especially large and null left activations
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Alpha
Memory

Beta
Memory Empty

Figure 5.3: Unlinking a join node from its associated beta memory.

don't dominate the overall match cost.

In the previous chapter, we did right unlinking not only on (positive) join nodes, but also
on negative nodes. Unfortunately, left unlinking cannot be used on negative nodes. With an
ordinary join node, if the alpha memory is empty, then the (positive) condition is false, hence
we do not want the data
ow to propagate further down the network. With a negative node,
though, if the alpha memory is empty, then the (negative) condition is true, hence we do want
the data
ow to propagate further down the network. Left-unlinking a negative node would
prevent this, thus destroying the correctness of the match algorithm. Hence, negative nodes
cannot be left-unlinked. Fortunately, negated conditions are typically much less common than
positive conditions (Gupta, 1987).

We will give pseudocode for the implementation of left unlinking in Section 5.4 below. How-
ever, we must �rst discuss how to combine left unlinking with right unlinking. We clearly need
to use both in systems such as Assembler and Radar, where both null right activations and null
left activations are increasing linearly in the number of rules, as shown in Figures 4.2 and 5.2,
respectively. Combining left and right unlinking is not entirely straightforward, as we discuss in
the next section.

5.3 Interference Between Left and Right Unlinking

Since right unlinking avoids all null right activations, and left unlinking avoids all null left
activations, we would like to combine both in the same system and avoid all null activations
entirely. Unfortunately, this is not possible, because the two optimizations can interfere with
each other. The problem arises when a join node's alpha and beta memories are both empty,
as illustrated in Figure 5.4. Left unlinking dictates that the node be unlinked from its beta
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Alpha
Memory
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MemoryEmpty Empty

Figure 5.4: Unlinking a join node from both its alpha memory and its beta memory at the same
time, destroying the correctness of the match algorithm.

memory. Right unlinking dictates that the node be unlinked from its alpha memory. If we
do both, then the join node will be completely cut o� from the rest of the network | all the
data
ow links to it will have been removed | so it will never be activated again, even when it
should be.1 The correctness of the match algorithm would be destroyed. To ensure correctness,
when a join node's memories are both empty, we can use either left unlinking or right unlinking,
but not both. But which one? If we use left but not right unlinking in this situation, then we
can still su�er null right activations. If we use right but not left unlinking, then we can still
su�er null left activations. Thus, no scheme for combining left and right unlinking can avoid all

null activations.

If both memories are empty, which one should the join node be unlinked from? A number
of possible heuristics come to mind. We might left unlink nodes whose beta memories have
su�ciently large fan-out, as in Figure 5.1. Or we might do a trial run of the system in which we
record how many null left and right activations each node incurs; then on later runs, we would
unlink from the side that incurred more null activations in the trial run.

Remarkably, it turns out that there is a simple scheme for combining left and right unlinking
which is not only straightforward to implement, but also provably optimal (as we will show) in
minimizing the residual number of null activations.

De�nition: In the �rst-empty-dominates scheme for combining left and right unlinking, a

join node J with alpha memory A and beta memory B is unlinked as follows. (1) If A is empty

1Assuming it does not somehow get relinked at some later time. Of course, we could have a piece of code

somewhere that periodically checked all the nodes currently unlinked from a certain memory, and decided to

relink some of them. But this would require executing a few CPU instructions for each of the unlinked nodes,

which is precisely what we don't want to do, because the match cost would again increase linearly.
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but B is nonempty, it is linked to A and unlinked from B. (2) If B is empty but A is nonempty,

it is linked to B and unlinked from A. (3) If A and B are both empty, it is (i.e., remains) linked

to whichever memory became empty earlier, and unlinked from the other memory.

To see how this works and how it falls naturally out of a straightforward implementation,
consider a join node that starts with its alpha and beta memories both nonempty, so it is linked
to both. Now suppose the alpha memory becomes empty. We unlink the join node from its beta
memory (i.e., left unlink it). As long as the alpha memory remains empty, the join node remains
unlinked from the beta memory | and hence, never gets activated from the beta memory: it
never hears about any changes to the beta memory. Even if the beta memory becomes empty,
the join node doesn't get informed of this, so nothing changes | it remains left unlinked | and
the empty alpha memory essentially \dominates" the empty beta memory because the alpha
memory became empty �rst. The join node remains unlinked from its beta memory until the
alpha memory becomes nonempty again.

The de�nition of �rst-empty-dominates ignores the possibility that a join node could start
with both its memories empty. When a rule is learned and added to the Rete net, some of its
join nodes may initially have both memories empty. In this case, we can pick one side by any
convenient method. (In the current implementation, the node is right unlinked.) The worst
that can happen is that we pay a one-time initialization cost of one null activation for each join
node; this cost is negligible in the long run. Once one of the memories becomes nonempty, we
can use �rst-empty-dominates.

It turns out that �rst-empty-dominates is the optimal scheme for combining left and right
unlinking: except for the possible one-activation initialization cost, it minimizes the number of
null activations. Thus, this simple scheme yields the minimal interference between left and right
unlinking. We formalize this result in Section 5.5 below, but �rst we give pseudocode for this
scheme in the next section.

5.4 Left Unlinking and Rete/UL: Implementation

We now add left unlinking to Rete, combining it with right unlinking using the �rst-empty-
dominates scheme. We call the resulting match algorithm Rete/UL. We must make several
modi�cations to the Rete interpreter routines. There are four main things to consider:

� What extra code do we need when an alpha memory changes from nonempty to empty?

� What extra code do we need when a beta memory changes from nonempty to empty?

� What extra code do we need when an alpha memory changes from empty to nonempty?

� What extra code do we need when a beta memory changes from empty to nonempty?

For the �rst question, whenever an alpha memory changes from nonempty to empty, we need
to left-unlink each join node on its successors list. We add code to the remove-wme procedure
to do this. Note that some join nodes using this alpha memory may not currently be on the



102 Chapter 5. Adding Left Unlinking to Rete

successors list | some may be right-unlinked because their beta memories are already empty.
We leave these join nodes alone, letting the empty beta memory \dominate" the now-empty
alpha memory.

procedure remove-wme (w: WME) frevised from version on page 44g
for each item in w.alpha-mem-items do

remove item from the list item.amem.items
if item.amem.items = nil then falpha memory just became emptyg

for each node in item.amem.successors do
if node is a join node then fdon't left-unlink negative nodesg

remove node from the list node.parent.children
deallocate memory for item

while w.tokens 6= nil do

delete-token-and-descendents (the �rst item on w.tokens)
for each jr in w.negative-join-results do

remove jr from the list jr.owner.join-results
if jr.owner.join-results=nil then

for each child in jr.owner.node.children do
left-activation (child, jr.owner, nil )

deallocate memory for jr
end

For the second question, whenever a beta memory changes from nonempty to empty, we
need to right-unlink each join node on its children list. This modi�cation was already made in
the previous chapter for right unlinking (see the revised delete-token-and-descendents procedure
on page 87); nothing further needs to be done here. Note, however, that now that we are
combining right unlinking with left unlinking, a beta memory's children list may not contain
all the join nodes using that beta memory | some of those join nodes may currently be left-
unlinked because their alpha memories are already empty. We leave these join nodes alone,
letting the empty alpha memory \dominate" the now-empty beta memory. (The code needs no
modi�cation, since it simply loops over the memory's children list.)

Turning to the third question, whenever an alpha memory changes from empty to nonempty,
we need to relink each join node on its successors list to its beta memory. Also, note that during
the time period these join nodes were unlinked from their beta memories, some of those beta
memories may have become empty | in which case, some of these join nodes now have empty
beta memories but a nonempty (shared) alpha memory. Consequently, in addition to relinking
these join nodes to their beta memories, we unlink the ones with empty beta memories from the
alpha memory. To do this, we add code to the join-node-right-activation procedure, and also
create a straightforward relink-to-beta-memory procedure.2

2An alternative is to add the code to the alpha-memory-activation procedure, which calls the join-node-right-

activation procedure. The drawback to placing the code in the join-node-right-activation procedure is that it

makes the \alpha memory just became nonempty" condition often get tested multiple times (once per join node

activation) rather than just once (for the alpha memory activation). The drawback to placing the code in the
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procedure join-node-right-activation (node: join-node, w: WME)
frevised from version on page 24g

if node.amem just became nonempty3 then
relink-to-beta-memory (node)
if node.parent.items = nil then

remove node from the list node.amem.successors
for each t in node.parent.items do f\parent" is the beta memory nodeg

if perform-join-tests (node.tests, t, w) then
for each child in node.children do left-activation (child, t, w)

end

procedure relink-to-beta-memory (node: join-node)
insert node at the head of the list node.parent.children

end

Finally, for the fourth question, whenever a beta memory changes from empty to nonempty,
we need to relink each join node on its children list to its alpha memory. This modi�cation
was already made in the previous chapter for right unlinking (see the revised join-node-left-
activation procedure on page 88). However, one further change must be made now. During
the time period these join nodes were unlinked from their alpha memories, some of those alpha
memories may have become empty | in which case, some of these join nodes now have empty
alpha memories but a nonempty (shared) beta memory. Consequently, in addition to relinking
these join nodes to their alpha memories, we unlink the ones with empty alpha memories from
the beta memory. To do this, we add some more code to the join-node-left-activation procedure.
This is symmetrical to the code we added to the join-node-right-activation procedure above.

procedure join-node-left-activation (node: join-node, t: token)
frevised from version on page 88g

if node.parent just became nonempty then
relink-to-alpha-memory (node)
if node.amem.items = nil then

remove node from the list node.parent.children
for each item in node.amem.items do

if perform-join-tests (node.tests, t, item.wme) then
for each child in node.children do left-activation (child, t, item.wme)

end

alpha-memory-activation procedure is that an extra conditional statement must be executed there, once for each

successor node, because the relinking code is speci�c to the type of successor node | join nodes get relinked to

their beta memories, while negative nodes don't need to be relinked since we never left-unlink them to begin with.

With the relinking code in the join-node-right-activation procedure, this extra conditional is not needed, since it

essentially gets \folded into" the jumptable or switch statement that dispatches the appropriate right-activation

procedure.
3There are several ways of determining this. We can have the alpha-memory-activation procedure pass the

join-node-right-activation procedure a 
ag indicating this. Alternatively, we can just check whether the number

of items in the alpha memory is exactly one. Another approach (taken by the implementation used in this thesis)

is to keep a 
ag on each join node indicating whether it is currently left-unlinked.
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Figure 5.5: Possible states of a join node and its alpha and beta memories.

We also modify the Rete network construction routines (Section 2.6) to have them immedi-
ately unlink newly-created nodes if at least one of their memories is empty. For brevity, these
modi�cations are not shown here; see Appendix A.

5.5 Interference: Theoretical Results

As mentioned above, �rst-empty-dominates is the optimal scheme for combining left and right
unlinking: except for the possible one-activation initialization cost, it minimizes the number of
null activations. Thus, this simple scheme yields the minimal interference between left and right
unlinking. This result is formalized as follows:

Theorem 5.1 (Optimality of First-Empty-Dominates) Any scheme for combining left
and right unlinking must incur at least as many null activations of each join node as �rst-
empty-dominates incurs, ignoring the possible one-activation initialization cost.

Proof: For any given join node, Figure 5.5 shows the four states its alpha and beta memories
can be in: the number of items in each memory can be 0 or nonzero (NZ). The �gure also shows
all the possible state transitions that can occur on changes to the alpha and beta memories.
All the transitions into and out of (NZ,NZ) are non-null activations. Unlinking never avoids
non-null activations, so the join node will incur one activation on each of these transitions no
matter what unlinking scheme we use.

The remaining transitions (labeled A{F) are null activations if no unlinking is done; but
the join node will not be activated on these if it is unlinked from the appropriate memory.
Under �rst-empty-dominates, the join node is always unlinked from its beta memory when in
state (NZ,0). This means it will not incur a null activation on transition A or E. Similarly,
it is always unlinked from its alpha memory when in state (0,NZ), so it will not incur a null
activation on transition B or F. This leaves just C and D to consider. In state (0,0), the
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join node is unlinked from its beta memory if its alpha memory became empty before its beta
memory did | i.e., if it arrived at (0,0) via transition A | and unlinked from its alpha memory
otherwise | i.e., if it arrived via B. (This ignores the case where the node starts at (0,0).) This
means a null activation is incurred by �rst-empty-dominates only when D follows A or when C
follows B.

Now, in any scheme for combining left and right unlinking, the join node must incur at
least one null activation when taking transition A and then D | the reason is as follows. The
join node cannot start out unlinked from both sides: as noted above, this would destroy the
correctness of the algorithm. If it starts out linked to its beta memory, it incurs a null activation
on transition A. On the other hand, if it starts out linked to its alpha memory, it incurs a null
activation on transition D. (The link cannot be \switched" after transition A but before D| that
would require executing a piece of code just for this one join node, which logically constitutes
an activation of the node.) So in any case, it incurs at least one null activation.

A symmetric argument shows that in any unlinking scheme, at least one null activation
must be incurred when taking transition B and then C. Since these are the only causes of null
activations in �rst-empty-dominates, and it incurs only a single null activation on each one, it
follows that any scheme must incur at least as many null activations. 2

How bad could the interference between left and right unlinking be? It would be nice
if the residual number of null activations per change to working memory were bounded, but
unfortunately it is not | other than being bounded by n, the total number of join nodes in the
network (a very large bound). However, null activations don't occur all by themselves | they
are triggered by changes to alpha and beta memories. If it takes a lot of triggering activity to
cause a lot of null activations, then null activations won't dominate the overall match cost. The
question to ask is: \By what factor is the matcher slowed down by null activations?" To answer
this, we'll look at

�
def
=

Number of activations of all nodes

Number of activations of all nodes, except null join node activations

= 1 +
Number of null join node activations

Number of activations of all nodes, except null join node activations
:

Note that � is actually a pessimistic answer to this question, because it assumes all activations
have the same cost, when in fact null activations take less time to execute than other activations.

Without any unlinking, or with left or right unlinking but not both, � is O(n) in the worst
case. This is proved in the following theorem:

Theorem 5.2 (Worst Case Null Activations Without Unlinking) Over any �nite se-
quence of changes to working memory, � � 1 + n, where n is the number of join nodes in the
network.

Proof: In the data
ow operation of the Rete algorithm, join node activations can only be
triggered by activations of alpha memories or beta memories. Moreover, the number of join
node activations (null or non-null) triggered by a single alpha or beta memory activation is at
most the number of successors of that alpha memory or children of that beta memory; this is
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in turn at most n. Thus, if a sequence of changes to working memory triggers a alpha memory
activations and b beta memory activations, then it can trigger at most n(a + b) null join node

activations. It follows that � � 1 + n(a+b)

a+b
= 1 + n. 2

This worst-case result is not merely theoretical: � often turns out to be linear in n in practice,
too. This is illustrated by our SCA-Fixed and Assembler examples (see Figure 4.1 on page 82
and Figure 5.1 on page 96, respectively) and clearly demonstrated by the empirical results on
right unlinking (Section 4.4) and left unlinking (Section 5.6 below). However, the �rst-empty-
dominates combination of left and right unlinking reduces the theoretical worst case to O(

p
n),

as we prove below.

Before we get to the worst-case analysis, two assumptions must be made. First, we will
ignore the possible initial null activation of each join node which starts out with its alpha and
beta memories both empty | of course, this initialization cost is negligible in the long run.
Second, we will assume that no two join nodes use both the same alpha memory and the same
beta memory. This is the normal situation in practice.4

It turns out that with the �rst-empty-dominates combination of left and right unlinking,
� � 1 + 1

2

p
n. Before we present a proof of this, it is instructive to see how the worst case can

arise. Consider how we might design a system so as to maximize �, by causing a large number
of null activations with only a few other activations. First, we want all join node activations
to be null, since non-null join node activations just decrease �. The denominator in the above
de�nition of � then comprises just alpha and beta memory activations. So we want each alpha
or beta memory activation to trigger as many null join node activations as possible. The key
to this, of course, is having large fan-outs from alpha and beta memories, since the number
of null activations triggered by a single memory activation is at most the fan-out from that
memory. Suppose we have a single alpha memory with a large fan-out | an alpha memory
with b successor join nodes, each of which uses a di�erent beta memory (as required by our
assumption above). Recall that with �rst-empty-dominates, null activations occur when join
nodes take transition A and then D (see Figure 5.5), or transition B and then C. We can trigger
b null activations, one of each join node, with a single activation of the alpha memory (adding
a WME to it), by causing each join node to take transition D. However, this requires each join
node to have just taken transition A; causing these transitions requires removing a token from
each of the b beta memories. Thus, we trigger b null activations with a total of b + 1 alpha
and beta memory activations, and � = 1 + b

b+1
< 2. The problem is that although the fan-out

from the alpha memory is large, the fan-out from each beta memory is only one, so it requires
a large number of beta memory activations to cause all the A transitions. If instead we have a
single beta memory with a large fan-out, but each of its child join nodes uses a di�erent alpha
memory, a similar analysis holds.

This suggests that to get bad case behavior, we need a large number of join nodes for which
both (1) the beta memories they use have large fan-outs, and (2) the alpha memories they use

4It is possible for two or more join nodes to use the same alpha and the same beta memories | if there

are productions whose conditions test exactly the same constants in the same places, but have di�erent inter-

condition variable binding consistency checks | but this is not very common in practice. Even in theory, the

number of join nodes using the same pair of memories can be bounded independent of the number of productions

in the system. If this bound is c, the worst-case bound in Theorem 5.4 becomes 1 + c

2

p
N .
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have large fan-outs. Importantly, this situation does not arise in our testbed systems. In the
SCA-Fixed example (see Figure 4.1 on page 82), the join nodes at the bottom of the network use
alpha memories with large fan-outs (105), but the beta memories they use have only relatively
small fan-outs (10). In the Assembler example (see Figure 5.1 on page 96), the join nodes use a
beta memory with a large fan-out, but the alpha memories they use have only relatively small
fan-outs.

What happens if conditions (1) and (2) both hold? Suppose we have a system with a alpha
memories and b beta memories, and suppose that all possible join nodes are present | i.e, for
every alpha memory, for every beta memory, there is a join node using that alpha memory and
that beta memory, for a total of n = ab join nodes. Each alpha memory has fan-out b and
each beta memory has fan-out a. We can trigger ab null activations, one of each join node, by
causing each one to take transition A and then D. This requires removing a token from each
beta memory and then adding a WME to each alpha memory, for a total of a + b alpha and
beta memory activations. We then have � = 1+ ab

a+b
. We can also trigger ab null activations by

causing each join node to take transition B and then C; a similar analysis yields the same value
of � in this case. This expression attains its maximum value when a = b; when this happens,
we have n = a2 and � = 1 + a2

2a
= 1 + a

2
= 1 + 1

2

p
n.

How might this situation arise in a real system? Consider once again the situation in our
SCA-Fixed example of Figure 4.1. The lowermost join nodes use alpha memories with large fan-
outs (105), but the beta memories they use have only relatively small fan-outs (10). Generalizing
this example, suppose we have f features, each with v possible values, and a total of vf rules.
(In our SCA-Fixed example, f = 6 and v = 10.) The lowermost join nodes then use alpha
memories with fan-outs of vf�1 and beta memories with fan-outs of v. To make these fan-outs
equal, we take f = 2. So to get this bad behavior in a real system, we would need a large
number of rules that test di�erent values of exactly two features in working memory, both of
which have a large number of possible values.

The analysis just presented made several assumptions not likely to hold in practice: that
there are no non-null activations of join nodes; that alpha and beta memory activations always
occur in just the right sequence so as to cause B-C and A-D transition sequences; that all join
nodes incur the same number of null activations; that there is a \complete set" of join nodes,
one for each alpha memory-beta memory pair. We now generalize our analysis. That 1+ 1

2

p
n is

actually the worst possible value of � in the general case is proved in Theorem 5.4 below (which
actually proves a slightly stronger statement). To prove the theorem, we will need the following
lemma.

Lemma 5.3 Let (xij) be an A�B matrix with all xij � 0. Let S be the sum of all entries, R

be the sum of the row maxima, C be the sum of the column maxima, and N be the number of

nonzero entries. Then S2 � NRC.

Proof: Let ri denote the maximum of row i, and cj denote the maximum of column j. The
Cauchy-Schwarz inequality from linear algebra tells us that for vectors u and v of real numbers,
(u�v)2 � (u�u)(v�v). Take u to be a vector of N 1's, and v to be a vector containing the N
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nonzero entries in the matrix. Then u�v = S, u�u = N , and the Cauchy-Schwarz inequality
gives us the �rst step below:

S2 � N
AX
i=1

BX
j=1

x2ij � N
AX
i=1

BX
j=1

ricj = N

 
AX
i=1

ri

!0
@ BX
j=1

cj

1
A = NRC:

2

Theorem 5.4 (Worst Case Null Activations in First-Empty-Dominates) Consider the

�rst-empty-dominates combination of left and right unlinking, ignoring the one initial null acti-

vation of each join node that starts with its alpha and beta memories both empty. Assume that

for each pair of alpha and beta memories, there is at most one join node using that pair. Over

any �nite sequence of changes to working memory, � � 1 + 1
2

p
N , where N is the number of

join nodes incurring at least one null activation over that sequence.

Proof: Let the alpha memories in the network be numbered from 1 to A, where A is the total
number of alpha memories, and let ai be the number of activations of (i.e., items added to or
removed from) alpha memory i. Likewise, let the beta memories be numbered from 1 to B, and
let bj be the number of activations of beta memory j. If there is a join node using alpha memory
i and beta memory j, then let xij be the number of null activations it incurs over the given
sequence of changes to working memory. If there is no join node using alpha memory i and beta
memory j, then let xij be zero. Finally, let S denote the total number of null activations of all

join nodes: S
def
=
PA

i=1

PB
j=1 xij. (Note that this S is the same as in the statement of Lemma 5.3.

We will later apply the lemma to this matrix (xij).)

Consider xij, the number of null activations incurred by the join node (call it J) testing
alpha memory i and beta memory j. Under �rst-empty-dominates, and ignoring the one initial
null activation if i and j are both initially empty, each null activation of J requires one change
to alpha memory i and one change to beta memory j (see Figure 5.5 | each null activation
requires a sequence of two transitions: one change to the alpha and one to the beta memory).
Thus, for all i and j, ai � xij and bj � xij.

It follows that for all i, ai � maxBj=1 xij; and for all j, bj � maxAi=1 xij. Thus, the total

number of activations of all alpha memories is at least R
def
=

PA
i=1max

B
j=1 xij, and the total

number of activations of all beta memories is at least C
def
=
PB

j=1max
A
i=1 xij.

Now consider �. By the de�nition of �, and since R and C are lower bounds on the number
of memory activations, we have � � 1 + S

R+C
. Then

� � 1 +

vuut S2

(R + C)2
= 1 +

vuut S2

(R �C)2 + 4RC
� 1 +

s
S2

4RC
= 1 +

1

2

s
S2

RC

Applying Lemma 5.3, we get � � 1 + 1
2

p
N . 2
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Join node activations per change to working memory:
Null, when using this type of unlinking:

System Non-null None Left only Right only Both
Assembler 13.2 4,487.8 3,504.5 983.3 0.11
Dispatcher 19.8 2,050.2 2,044.7 5.5 0.17
Merle 17.2 16,724.6 16,708.2 16.3 0.24
Radar 9.6 2,885.4 2,725.4 160.0 0.10
SCA-Fixed 7.4 3,820.3 3,819.0 1.3 0.21
SCA-Random 12.4 3,219.8 3,214.1 5.7 2.69
Sched 19.7 10,862.3 10,809.3 53.0 0.17
Average 14.2 6,292.9 6,117.9 175.0 0.53

Table 5.1: Average number of join node activations per change to working memory with 100,000
rules on each testbed, using di�erent versions of the matcher.

5.6 Left Unlinking and Rete/UL: Empirical Results

In this section we present empirical results from Rete/UL on our testbed systems. There are
two major questions here. First, how bad is the interference between left and right unlinking?
Second, how e�ective is the combination of left and right unlinking in avoiding a linear increase
in the overall match cost?

For the �rst question, as mentioned above, in order to get a large amount of interference
between left and right unlinking, we need a large number of join nodes for which both (1) the
beta memories they use have large fan-outs, and (2) the alpha memories they use have large
fan-outs; this situation does not arise in our testbed systems. Table 5.1 shows, for each system,
the average number of null and non-null join node activations per working memory change,
when there are 100,000 rules in the system.5 For null activations, four di�erent numbers are
given, corresponding to four di�erent match algorithms: the basic Rete algorithm without any
unlinking, Rete with left but not right unlinking, Rete with right but not left unlinking, and
Rete/UL. The table shows that without any unlinking, or with left unlinking only, the matcher
is essentially swamped by null activations in all the systems. With right unlinking but no left
unlinking, there are still a large number of null (left) activations in both Assembler and Radar,
a fair number in Sched, and a few in Merle. Finally, with left and right unlinking combined in
Rete/UL, the number of null activations is very small in all the systems. Thus, the interference
between left and right unlinking turns out to be insigni�cant in practice, at least for this diverse
set of systems.

We now turn to the second question | how e�ective is Rete/UL in avoiding a linear increase
in the overall match cost? The graphs in Figure 5.6 show the results. The graph for each testbed
system shows four lines, each plotting the average match time per change to working memory as
a function of the number of rules. The four lines correspond to four di�erent match algorithms:
the basic Rete algorithm (this is the same data as in Figure 3.2 on page 70), Rete plus right

5See (Doorenbos, 1994) for a similar table giving the activation counts averaged over the course of the whole

run of each system, from just its initial rules out to beyond 100,000 rules.
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Figure 5.6: Match cost with left and right unlinking added to the basic Rete algorithm.

unlinking but not left unlinking (this is the same data as in Figure 4.4 on page 93), Rete plus
left unlinking but not right unlinking, and Rete/UL. Note that the scales on the vertical axes
di�er from one testbed to another.

The �gure shows that with just the basic Rete algorithm, or with left but not right unlink-
ing, all the systems su�er a major linear slowdown as the system learns more and more rules.
Incorporating left unlinking into the matcher without using right unlinking actually slows down
the matcher in all the testbeds except Assembler and Radar. This is because left unlinking
adds a small overhead to various node activation procedures. This overhead slows down the
matcher by a small factor, and if this small factor is not outweighed by a large factor reduction
in the number of activations, a slowdown can result. In most of the testbed systems, when left
unlinking is used alone, null right activations are so numerous that avoiding null left activations
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Figure 5.7: Match cost with right unlinking only, and with right plus left unlinking.

only reduces the total number of activations by a very small factor. In the Assembler and Radar
systems, though, null left activations constitute a su�cient fraction of the activations in the
basic Rete algorithm that avoiding them using left unlinking does pay o�.

For most of the systems in Figure 5.6, the lines for Rete plus right unlinking and Rete plus
both right and left unlinking are quite close together. Figure 5.7 shows just these two lines for
each system, with the scale on the vertical axis changed to make them clear. As the �gure shows,
the addition of left unlinking (in combination with right unlinking) enables both Assembler and
Radar to avoid a signi�cant linear slowdown as the number of rules increases, and Sched and
Merle to avoid a small linear slowdown. In the other three systems, the addition of left unlinking
has only a minor e�ect: it reduces the match cost slightly (7%) in Dispatcher and increases it
slightly (8% and 10%, respectively) in SCA-Fixed and SCA-Random, because of the overhead
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Figure 5.8: Match cost with Rete/UL.

involved. As Table 5.1 shows, the two SCA systems are the systems where adding left unlinking
to right unlinking reduces the number of null activations by the smallest amount.

Figure 5.8 shows the match cost in each of the testbed systems with Rete/UL. The linear
increase in match cost we saw in the unmodi�ed basic Rete algorithm has now been eliminated
in six of the seven systems | in all but SCA-Random, the increase is now either sublinear or
zero. (We will examine SCA-Random in Chapter 6.) For most of the systems, the match cost
does increase somewhat after the �rst group of learned rules is added to the initial rules; this is
probably because there is little sharing of Rete nodes between the learned rules and the initial
rules. As more and more learned rules are added to the network, they share more nodes with
previously learned rules, and the match cost does not increase much further.6

6Although the lines in the �gure appear to indicate that the remaining increase in match cost is sublinear

or zero, they do not conclusively demonstrate this, since there might be a small linear e�ect \hidden" by a

larger sublinear e�ect; with enough more rules, the small linear e�ect would eventually dominate. For the

Assembler, Radar, SCA-Fixed, and Sched systems, we conjecture that the \levels-and-structures" theoretical

model introduced in Chapter 6 can be applied to obtain a sublinear bound on the match cost. The Dispatcher
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System Speedup Factor
Assembler 86.3
Dispatcher 44.4
Merle 225.4
Radar 133.2
SCA-Fixed 162.0
SCA-Random 78.9
Sched 155.5
Average 126.5

Table 5.2: Speedup factors from using Rete/UL rather than basic Rete, with 100,000 rules in
each testbed system.

Table 5.2 shows the speedup factors obtained from using Rete/UL rather than the basic Rete
algorithm when there are 100,000 rules in each of the testbed systems. The speedup factors range
from 44.4 in Dispatcher to 225.4 in Merle, with an average of 126.5. Thus, Rete/UL reduces the
match cost by approximately two orders of magnitude in this diverse set of systems.

Finally, note that Rete/UL's performance scales well on a broader class of systems than Rete
and Treat. We �rst consider Treat. Since Treat iterates over the set of productions a�ected by
each WME, Treat's performance scales well if and only if a�ect sets remain small. Of course, if
a�ect sets remain small, then the performance of both Rete and Rete/UL will scale well. We
now consider Rete. In any system where Rete's performance scales well, Rete/UL's will also,
because even in the worst case, the addition of unlinking to Rete merely adds a small constant
factor overhead. Thus, in any system where Rete or Treat scales well, Rete/UL will scale well
also. Moreover, the empirical results from our testbed systems demonstrate that Rete/UL also
scales well on a large class of systems where Rete and Treat do not scale well.

5.7 Generalizing Unlinking

So far we have dealt with networks containing just binary joins | every join node has exactly
two \input" memories. Unlinking can be generalized to k-ary joins: if any one of a join node's k
input memories is empty, the node can be unlinked from each of the k�1 others (Barrett, 1993).
This can avoid many null activations. A null activation of a k-ary join node is an activation of
it from one of its memories during which any one (or more) of its other memories is (are) empty.
Such activations yield no new matches or tokens, so they can be skipped without changing the
semantics of the match algorithm.

and Merle systems are more complicated, making them di�cult to analyze with this model. However, we can still

obtain a bound on the severity of the increase in match cost in these systems. Under the pessimistic assumption

that the increase is completely linear from 90,000 to 100,000 rules and thereafter, preliminary experiments

indicate that it would require over eight million additional rules to double the match cost in any of these testbed

systems, except SCA-Random, where about 350,000 would be required. (To obtain a tighter bound, these

experiments measured the number of CPU instructions executed in the matcher, rather than the CPU time,

which is in
uenced by changes in the cache hit rate.)
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Since we do not use k-ary joins in the implementation used in this thesis, we are unable to
report any detailed empirical results. Anecdotally, however, (Barrett, 1993) reports obtaining a
speedup factor of about �ve by using this generalized form of unlinking on a system with just
seven rules. This indicates that although unlinking was designed especially for systems with
thousands of rules, it can be very useful even in systems with only a small number of rules.
It also provides the one empirical data point we have from a non-Soar-based system | a data
point which is very positive.

In Section 5.3, we saw that with binary joins, we must leave each join node linked to one
of its memories when both of them are empty. With k-ary joins, a similar restriction applies:
each join node must always be linked to at least one of its k memories when all of them are
empty. In the �rst-empty-dominates combination of left and right unlinking, the join node is
(i.e., remains) linked to whichever memory became empty �rst. First-empty-dominates can be
extended to k-ary joins: if two or more of a join node's k memories are empty, the join node is
(i.e., remains) linked to whichever memory became empty �rst.

However, with k-ary joins (k > 2), �rst-empty-dominates is no longer optimal for all systems.
Consider a join node J with memoriesM1; . . . ;Mk, and suppose J is currently linked to an empty
memoryM1 and unlinked from the other k� 1 memories. Now suppose M1 becomes nonempty.
With binary joins (k = 2), when this happens, we relink J to its other memory (M2), and also
unlink it from M1 if M2 is empty. When k > 2, this procedure becomes: relink J to each of
M2; . . . ;Mk, and then, if there is some empty memory Mi (i > 1), then unlink J from each
of M1; . . . ;Mi�1;Mi+1; . . . ;Mk. The problem is that there may be more than one such empty
memoryMi. In this case, we have to choose one of them; J will then be linked to the chosen Mi

and unlinked from all its other memories. (Note that with binary joins, there is never a choice:
J only has one other memory, M2.)

Of course, remaining linked to one empty memory when there are others implies risking
incurring a null activation: if the linked-to memory becomes nonempty while at least one of
the unlinked-from ones remains empty, we incur a null activation. So to minimize residual null
activations, when we choose one such empty Mi here, we would like to choose the one that will
remain empty the longest. In some cases, the choice will end up not making any di�erence | a
null activation will later be incurred no matter what choice we make | but in cases where the
choice matters, this is the best choice. Unfortunately, we cannot predict which memory will
remain empty longest | questions of this sort are undecidable. A reasonable heuristic would
be to predict that whichever memory has been empty for the longest time is likely to remain
empty the longest. This amounts to �rst-empty-dominates: J ends up linked to whichever one
of the empty memories became empty before all the others. Of course, while this �rst-empty-
dominates strategy may work well in some systems, it is just heuristic, not necessarily optimal
in any particular system.

There is an interesting correspondence between strategies for unlinking with k-ary joins and
strategies for paging in virtual memory systems. Suppose we have a k-ary join where items
always happen to get removed from memories immediately after being added to them; i.e., we
add an item to some memory, then remove that item, then add some other item to some memory,
then remove it, and so on, so that there is at most one nonempty memory at any time. Then
all activations of the join node are null activations, and we would like an unlinking strategy
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k input memories for a join node  ! k pages of virtual memory
can unlink from k � 1 of them  ! can have k � 1 in physical memory
must be linked to 1 of them  ! must have 1 swapped out

add, then remove item in memory i  ! access page i
no join activation on add/remove in the k � 1  ! no page fault on access to the k � 1

join activation on add/remove in the 1  ! page fault on access to the 1
choice of memory to remain linked to  ! choice of page to swap out

�rst-empty-dominates  ! least recently used

Table 5.3: Correspondence between unlinking with k-ary joins and paging in virtual memory
systems.

(a way of choosing which of the k � 1 empty memories the join node will be linked to) that
minimizes the number of null activations. A null activation occurs each time an item is added
to the currently-linked-to memory, at which point our strategy must choose some other memory
to link to. The optimal strategy would always choose the memory that will remain empty
the longest, but in general this is impossible to predict. First-empty-dominates is a heuristic
designed to approximate this strategy.

As shown in Table 5.3, this situation is analogous to a virtual memory system with k pages
of virtual memory but only k � 1 pages of physical memory. At any time, k � 1 pages are
resident in physical memory, and one page is swapped out to disk. We want a page replacement
strategy which will minimize the number of page faults. A page fault occurs each time the
currently-swapped-out page is accessed, at which point our strategy must choose some other
page to swap out. The optimal strategy would always choose the page that will not be accessed
for the longest time, but in general this is impossible to predict. In this correspondence, the
counterpart of �rst-empty-dominates | remaining linked to the memory that became empty
earlier than all the others | is swapping out the page whose last access time is earlier than
those of all the other pages; i.e., \least recently used" paging.

Of course, there is no paging strategy that is optimal for all systems. With any given
strategy, the page selected to be swapped out might turn out to be the very next page that gets
accessed. One can contrive example programs for which least recently used paging performs
terribly. Similarly, there is no strategy for doing unlinking with k-ary joins that is optimal for
all systems; �rst-empty-dominates seems to be a reasonable approach, but it could fail miserably
on some systems.

5.8 Alternative Approaches

We introduced unlinking as a way to reduce or eliminate null activations. This section discusses
some alternative ways to reduce or eliminate null activations. The key to the success of any
approach is, of course, that it should avoid performing many null activations when the fan-out
from an alpha or beta memory is large.
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5.8.1 Join-Node-Table-Based Propagation

One alternative approach is to replace the whole mechanism by which data
ow is propagated
from a memory node to its successors or children. In Rete, with or without unlinking, we simply
iterate over a list of nodes to which data
ow should be propagated. For example, to propagate
data
ow from a given alpha memory, we iterate over the successors list. The problem with this
is that the list may contain nodes whose beta memories are empty, resulting in null activations.

From a given alpha memory, we want to propagate the data
ow to exactly the set of join
nodes which both (1) are successors of the given alpha memory, and (2) have nonempty beta
memories. Similarly, from a given beta memory, we want to propagate the data
ow to exactly the
set of join nodes which both (1) are children of the given beta memory, and (2) have nonempty
alpha memories.7 In Rete, we iterate over the nodes satisfying (1), but do some useless work
because some of them turn out not to satisfy (2). An alternative is to use criterion (2) �rst, at
the risk of doing useless work because of failure to satisfy (1).

We call this join-node-table-based propagation. In this approach, we do away with the children
and successors lists on alpha and beta memories, and replace them with a single global table.
The table provides the following mapping:

join-node-table(A;B) = fJ j J is a join node using alpha mem. A and beta mem. Bg

This could be implemented using a hash table or some other e�cient data structure. To conserve
space, the table would not contain entries for pairs (A,B) for which there is no join node using
both A and B. We also maintain two extra global lists, one containing all currently non-empty
alpha memories, the other containing all currently non-empty beta memories:

nonempty-alpha-memories: list of alpha-memory
nonempty-beta-memories: list of beta-memory

We add code in various procedures to splice alpha and beta memories into and out of these lists
whenever their empty/nonempty status changes.

Now, to propagate updates from a given alpha memory A, we use criterion (2) �rst, by
iterating over all the nonempty beta memories B. For each such B, we propagate the data
ow
to any join nodes J which use beta memory B and are successors of A. The join node table is
used to �nd these J 's.

fTo propagate data
ow from alpha memory Ag
for each B on the list nonempty-beta-memories do

nodes  lookup in join-node-table (A,B)
if nodes 6= \no-entry-in-table" then

for each J in nodes do right-activation (J)

Similarly, to propagate updates from a given beta memory B, we iterate over all the nonempty
alpha memories A; for each one, we propagate the data
ow to any join nodes J which use alpha
memory A and are successors of B.

7For simplicity, we ignore the case of negated conditions here.
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Mean Number of Wasted Lookups Per: Mean Null Act'ns
Alpha Memory Beta Memory Per WME Change

System Activation Activation With Rete/UL
Assembler 152 132 0.11
Dispatcher 773 187 0.17
Merle 420 175 0.24
Radar 200 87 0.10
SCA-Fixed 45 36 0.21
SCA-Random 58 31 2.69
Sched 202 84 0.17

Table 5.4: Average number of \wasted" join node table lookups, with 100,000 rules in each
testbed system, together with the average number of null activations in Rete/UL.

fTo propagate data
ow from beta memory Bg
for each A on the list nonempty-alpha-memories do

nodes  lookup in join-node-table (A,B)
if nodes 6= \no-entry-in-table" then

for each J in nodes do left-activation (J)

The drawback to this algorithm is that useless work may be done because of a failure to
satisfy criterion (1) after criterion (2) has already been satis�ed. This is manifested by join-
node-table lookups returning \no-entry-in-table" | this happens, for example, when we are
trying to propagate data
ow from an alpha memory A, and there is a beta memory B which
is nonempty, but none of A's successor join nodes is a child of B. These lookups are basically
wasted work.

How would the performance of join-node-table-based propagation compare to that of un-
linking in practice? To get an estimate of this, we measured the number of lookups that would
return \no-entry-in-table" in our testbed systems, with 100,000 rules in each one. The results
are shown in Table 5.4. For comparison, the table also shows the average number of residual
null activations we incur using unlinking, just as in the last column of Table 5.1. The table
shows that in practice, for these systems, join-node-table-based propagation would result in
quite a large amount of useless work being performed, compared to the very small number of
residual null activations in Rete/UL. We therefore conclude that unlinking works much better
in practice, at least for these systems.

Join-node-table-based propagation does have one advantage over unlinking, though: a better
worst-case performance when the number of rules is large. As we saw in Section 5.5, interference
between left and right unlinking can cost us a factor on the order of

p
n, where n, the number

of join nodes, increases linearly in the number of rules in the system. In Chapter 6, we will
see that under certain restrictions, the number of nonempty alpha and beta memories can be
bounded independent of the number of rules. It follows from this that the number of \wasted"
lookups with join-node-table-based propagation | in contrast to the number of residual null
activations with unlinking | can be bounded independent of the number of rules.
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It would be nice if we could use join-node-table-based propagation for one kind of memories
(alpha or beta) and unlinking on the other, so as to avoid null left activations using one tech-
nique and null right activations using another technique, without the problem of interference.
Unfortunately, this is not possible. Suppose, for instance, that we use join-node-table-based
propagation to go from beta memories to their child join nodes, but use the usual successors
lists on alpha memories, with right unlinking (but not left unlinking | so whenever a beta
memory is empty, all its child join nodes are right-unlinked, even those whose alpha memories
became empty �rst). As usual in right unlinking, whenever a beta memory changes from empty
to nonempty, we need to relink each child join node to its alpha memory. But how do we locate
all these join nodes? Using join-node-table-based propagation to go from that beta memory to
its child join nodes, we reach only those whose alpha memories are currently nonempty. There
might be others whose alpha memories are empty, and join-node-table-based propagation will
not reach them. Those nodes would incorrectly remain right-unlinked. Of course, we could keep
an extra list of such nodes on the beta memory, and use this whenever the beta memory changes
from empty to nonempty. However, this is essentially just a way of resorting to the standard
list-based method of propagation, without left unlinking. So it would yield a linearly increasing
match cost in systems with linearly increasing fan-outs from beta memories.

5.8.2 Replacing Large Fan-Outs with Binary Trees

Another way to reduce null activations when the fan-out from a memory node is large is to
replace this one large fan-out with a binary tree (Stolfo, 1993). For example, suppose that in
the standard Rete network, there is a beta memory with a fan-out of n = 2k, its child join nodes
using alpha memoriesA1; . . . ; A2k. We replace this with a binary tree, as illustrated in Figure 5.9.
Instead of propagating data
ow directly to all 2k join nodes, we �rst propagate it to two nodes |
the two �rst-level nodes of a k-level-deep binary tree, with the 2k join nodes as its leaves. One
of these �rst-level nodes checks whether any of A1; . . . ; A2k�1 are nonempty; if so, it propagates
the data
ow on to its two children at the second level of the binary tree. The other �rst-level
node checks whether any of A2k�1+1; . . . ; A2k are nonempty, and if so, propagates the data
ow
on to its two children. Propagation continues down the tree in this fashion. Importantly, if only
one of the alpha memories is nonempty, then only 2k activations are incurred, rather than 2k.
How do we perform the tests in the interior nodes of the tree? For each of these nodes, we need
to maintain a counter indicating the number of nonempty alpha memories in the appropriate
set. Each alpha memory contributes to k � 1 of these counters, so whenever an alpha memory
changes from empty to nonempty, we increment k � 1 counters; when it becomes empty again,
we decrement them.

This example shows how to replace large fan-outs from beta memories with binary trees. A
symmetric construction can replace large fan-outs from alpha memories with binary trees.

How would the performance of this approach compare to that of unlinking in practice? It
would certainly be slower than unlinking on all our testbed systems. This is because the binary
tree approach always yields a logarithmic cost | the number of \extra" node activations we
incur is proportional to the depth of the tree, hence the logarithm of the fan-out | in the worst
case, and even in the best case. As the last column in Table 5.1 shows, the interference between
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matches for first few conditions

AM2

AM63

AM1

AM64

J1 J2

Any of 
AM33..64
nonempty?

Any of 
AM1..32
nonempty?

Any of 
AM49..64
nonempty?

Any of 
AM33..48
nonempty?

Any of 
AM17..32
nonempty?

Any of 
AM1..16
nonempty?

J63 J64

Figure 5.9: Binary tree taking the place of a large fan-out from a beta memory.

left and right unlinking is so small in practice that unlinking would almost certainly yield fewer
\extra" activations (i.e., null activations) in practice. Of course, the worst-case performance of
the binary tree approach is better than that of unlinking, since this logarithmic cost is better
than the square-root worst-case cost in unlinking.

5.8.3 The Tree Match Algorithm

The Tree match algorithm has recently been proposed as an alternative to Rete in certain
systems (Bouaud, 1993). Although it was not intended to address null activations, Tree turns
out to avoid null right activations, as we will discuss shortly. It was developed as a way to
reduce the cost of performing individual join operations. In this respect, it is similar to the use
of hashed or indexed memories, as discussed in Section 2.3; however, its approach is di�erent.

We brie
y summarize Tree here; see (Bouaud, 1993) for a full presentation. In Rete, when
a WME is added to working memory, we feed it into a data
ow network, eventually right-
activating many join nodes. On each right activation, we attempt to \extend" each existing
token in a beta memory, i.e., add the new WME to the existing token in order to form a new
token. Tree's aim is to replace this data
ow with a simple index. The basic idea is to maintain a
global index of all tokens in all beta memories, so that when given a new WME, we can quickly
locate all tokens that the WME can extend. In other words, we index all tokens according to
their answers to the question, \What would a WME have to look like in order to extend this
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token?" Similarly, to process left activations, Tree maintains a global index of all WMEs in
working memory, so that when a new token is passed to a join node, it can quickly locate all
WMEs that can extend the token.

The key to Tree's performance is the e�ectiveness of these global indices. First, they must
have high selectivity: given a new WME or token, the index lookup should return just the
appropriate tokens or WMEs, with as few \extras" as possible. Second, they must yield fast

access: storing a new WME or token should be fast, and lookups should be fast.

In Tree, each global index is actually three separate index structures: one indexes according
to the contents of the identi�er �eld, one according to the attribute �eld, and one according to
the value �eld. Tree is designed especially for systems where WMEs have the simple three-tuple
form we have been using in this thesis. These three indices de�nitely o�er fast access | given
a WME, we can quickly store it in each of three indices, and perform three quick lookups to
retrieve a set of tokens. The empirical results in (Bouaud, 1993) indicate that the selectivity of
these indices is roughly comparable to that obtained using hashed memories in standard Rete.

The main drawback to Tree is that it is unclear how to modify these indices to handle WMEs
of a more general form, while still a�ording both fast access and high selectivity. Consider r-
tuple WMEs. A straightforward extension of Tree would store each WME or token under r
di�erent indices, each one indexing according to the value of one �eld. The larger r is, the lower
the selectivity of these indices will be, because each one essentially ignores r � 1 of the �elds of
the WME. In contrast, hashed memories in standard Rete can index on an arbitrary number of
�elds, simply by having the hash function take into account the value of more than one �eld. Of
course, we could add additional index structures to Tree to obtain higher selectivity; for example,
we could obtain perfect selectivity by having a separate index for each of the 2r possible subsets
of the r �elds. But increasing the selectivity this way slows down access times, since now a
WME addition requires a large number of index structures to be updated or searched.

As mentioned earlier, Tree avoids all null right activations. This is because if there are
no tokens in a given beta memory in Rete, then there will be no corresponding entries in the
global token index in Tree. So on a WME addition in Tree, the result of the index lookup will
not contain any tokens from that beta memory, and Tree will not waste any CPU cycles doing
processing for any of its child join nodes.

Tree does not address the problem of null left activations, however. Like the basic Rete
algorithm, it iterates over all the join nodes that are children of a given beta memory. For each
one, it asks, \What would a WME have to look like in order to extend this token at this join
node?" and stores an appropriate entry in the global token index.

Unfortunately, incorporating left unlinking into Tree yields exactly the same interference
problem as we encountered with right unlinking. We could modify Tree to iterate over only
some of the child join nodes, storing entries in the global token index for only these join nodes.
However, the global token index would then be incomplete. So we would have to modify the
add-wme processing to perform extra checks, in order to preserve the correctness of the match
algorithm in spite of the incomplete index. These extra checks essentially amount to extra right
activations, many of which may be null.
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5.8.4 Generalized Data
ow Reduction

We have now seen several optimizations which are essentially aimed at reducing the data
ow in
the Rete network: right unlinking, left unlinking, join-node-table-based propagation, and Tree.
In this section, we introduce a framework in which these and other optimizations can be viewed.

In general, we can skip any element of data
ow | i.e., propagating a WME or token to
a node | if we can guarantee that it will be fruitless, i.e., that it will not result in any new
matches. It is helpful to view this skipping of data
ow as being the result of placing blockages

on certain data
ow links in the network. For example, left unlinking is essentially a way of
placing a blockage on the link between a beta memory and one of its child join nodes.

A blockage can safely be placed on a given link only if we can guarantee that any data
ow
it prevents would be fruitless. To be able to make such a guarantee, we must have information
about the current status of other parts of the network. For example, with left unlinking, in order
to guarantee that the blockage between a beta memory and a join node is safe, we need to know
that the join node's alpha memory is currently empty. When the beta memory is activated,
the blockage acts as a way of taking into consideration information | the fact that the alpha
memory is empty | which would normally be considered only later | during the join node
activation. In general, a blockage is essentially a way of moving part of a test into a generator:
it takes information that would normally enter into consideration only later in the data
ow, and
arranges for it to be considered earlier in the data
ow.

In Rete, there are several possibilities for moving information \upstream" in the data
ow:

� Blockages can be placed on links in the beta network based on information normally
considered lower down in the beta network | speci�cally, information about the contents
of alpha memories used by join nodes lower down in the network.

� Blockages can be placed on links between alpha memories and join nodes, based on in-
formation normally considered at those join nodes | speci�cally, information about the
contents of the beta memories used by those join nodes | or based on information nor-
mally considered lower down in the beta network | speci�cally, information about the
contents of alpha memories used by join nodes lower down in the network.

� In versions of Rete using a data
ow implementation of the alpha network, blockages can
be placed on links between constant-test nodes, based on information normally considered
later in the alpha network or in the beta network.

This last possibility would yield little bene�t in most systems, because the alpha net typically
accounts for only a small fraction of the overall match cost. Consequently, we con�ne our
discussion to the �rst two.

Schemes for using blockages can be classi�ed along three dimensions. First, blockages can
be placed in links in the beta part of the network, or on links between the alpha part and the
beta part, as we just discussed. Second, blockages can be either coarse-grained, blocking all
data
ow along the links, or �ne-grained, blocking only some of the data
ow. Third, blockages
can represent the moving of information upstream either a single level, so it gets considered
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Coarse-Grained Fine-Grained
Alpha-to-Beta, Single-Level Right Unlinking Tree
Alpha-to-Beta, Multiple-Level Treat Rete/AC
Beta-to-Beta, Single-Level Left Unlinking none
Beta-to-Beta, Multiple-Level Deactivating Beta Nodes none

Table 5.5: Classifying existing schemes for data
ow reduction within the space of possibilities.

only one node (one data
ow link) earlier than it normally would, or multiple levels, so it gets
considered several nodes earlier.

We now examine various existing schemes for reducing data
ow in Rete or related match
algorithms. Table 5.5 shows the space of possible schemes, using the three dimensions just
discussed, and locates existing schemes within the space. Of course, the usefulness of any
scheme in practice depends on (1) how much data
ow it saves, and (2) how much overhead cost
it incurs in the process. We want to �nd schemes that save a great deal of data
ow with only a
very small overhead.

The �rst row of the table lists schemes which place blockages on links from alpha memories
to join nodes, based on moving information a single level upstream. Information normally used
at a join node | speci�cally, information about the tokens in its beta memory | is used to
place a blockage in between the join node's alpha memory and the join node. Right unlinking
does this in coarse-grained fashion. Tree is a �ne-grained way of doing this: although there are
no alpha memories per se in Tree, its global token index is basically a way of reducing the 
ow
of WMEs to join nodes, based on information contained in their beta memories. Empirically,
right unlinking reduces the data
ow tremendously in our testbed systems, with only a small
overhead cost. Tree would probably have the same e�ect; although we have not tried it in these
systems, the algorithm is quite simple, so its overhead is probably small.

The second row of the table lists schemes which place blockages on links from alpha memories
to join nodes, based on moving information multiple levels upstream. The Treat match algorithm
associates a rule-active 
ag with each rule, indicating whether every alpha memory used by that
rule is nonempty. Treat does not perform any joins for a rule if it is not active, i.e., if any of
its alpha memories are empty. This can be viewed as a coarse-grained way of reducing the 
ow
of WMEs to join nodes, based on information multiple levels away. This blockage is somewhat
di�erent from those in right unlinking and Tree: instead of being implicit (in the absence of a join
node in a successors list or the absence of any tokens in the global index), the Treat algorithm
explicitly checks the rule-active property for each rule in a WME's a�ect set. So while this
blockage would reduce the data
ow tremendously in our testbed systems, Treat would still slow
down linearly in the number of rules. A �ne-grained version of this blockage scheme has been
implemented in Rete/AC, which is formed by adding factored arc consistency to Rete (Perlin,
1992). In Rete/AC, an arc consistency algorithm is used to prune the set of WMEs in each
alpha memory that need to be considered during the beta part of the match. Unfortunately,
the empirical results in (Perlin, 1992) indicate that the overhead of running the arc consistency
algorithm usually outweighs the savings in data
ow.

The third row of the table lists schemes which place blockages on links from beta memories
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to join nodes, based on moving information a single level upstream. Information normally
used at a join node | about the WMEs in its alpha memory | is used to place a blockage
between the beta memory and the join node. Left unlinking does this in coarse-grained fashion,
and as discussed in Section 5.6, its bene�ts in our testbed systems usually, but not always,
outweigh its overhead costs. To our knowledge, no �ne-grained blockage scheme of this type has
been implemented. Such a scheme might be better than left unlinking in systems where beta
memories have large fan-outs but left unlinking is too coarse-grained to avoid many fruitless
left activations. For example, it is possible to defeat left unlinking by adding an \extra" useless
WME to all the alpha memories | with all the alpha memories nonempty, we cannot left
unlink any join nodes, and yet left activations of these join nodes would often be fruitless. A
�ne-grained scheme would be useful in such situations.

Finally, the last row of the table lists schemes which place blockages on links from beta
memories to join nodes, based on moving information multiple levels upstream. Information
normally used lower down in the beta network | about the contents of alpha memories used
by join nodes lower down in the network | is used to place a blockage in between a beta
memory and a join node. To our knowledge, no such scheme has been implemented in any
match algorithm. However, (Perlin, 1990b; Perlin, 1988) proposes a scheme for \deactivating"
beta nodes based on coarse-grained information moved multiple levels upstream from production
nodes rather than alpha memories. The idea is that one can \disable" a set of productions by
blocking o� any sections of the Rete network that are used by those productions only. This
would be useful in systems where at any given time, a large number of productions can be
ignored a priori.

In general, there is a limit to how much bene�t schemes of the last type can yield, at least for
our testbed systems and any other systems where right unlinking or other alpha-to-beta, single-
level schemes are important. The reason involves a general interference phenomenon between
data
ow reduction schemes. In order to achieve large data
ow reduction via a beta-to-beta,
multiple-level blockage, we must take information in alpha memories and move it many levels
up the beta part of the network | the more levels up we move it, the larger the data
ow
reduction. When a blockage is placed multiple levels up from its information source, the beta
memories in between | below the blockage but above the join nodes whose alpha memories are
the information source | are not kept up-to-date, i.e., they may not contain tokens they would
if the blockage were absent. As a result, single-level, alpha-to-beta data
ow reduction schemes
cannot be used at join nodes in these intermediate levels | the appropriate information cannot
be moved over to the alpha memories, because the appropriate information is simply unavailable.
Thus, interference between alpha-to-beta, single-level schemes and beta-to-beta, multiple-level
schemes limits the e�ectiveness of any combination of the two. A similar argument applies to the
combination of alpha-to-beta, single-level schemes with alpha-to-beta, multiple-level schemes.

5.8.5 Modifying Treat

As we mentioned before, the Treat match algorithm (Miranker, 1990) iterates over all the rules
a�ected by a WME, and hence would not scale well in our testbed systems. It is interesting to
examine how Treat might be modi�ed to improve its performance in these systems. We give
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some ideas in this section; however, implementing and evaluating them remains an interesting
direction for future work. We begin with a brief review of Treat.

In Treat, we use an alpha network just as in Rete. However, instead of using a beta network,
with beta memories and join nodes, we just keep on each alpha memory a list of all the produc-
tions that use that alpha memory. When a WME is added to working memory, we �rst use the
alpha network as in Rete; this yields a list of all the productions in the WME's a�ect set. Now, for
each a�ected production having, say, C conditions, we �nd any new complete matches by forming
the C-way join between this new WME and the contents of all the other alpha memories the pro-
duction uses; i.e., for a production using alpha memories AM1; . . . ; AMC, if a WME w is added
to AMi, we �nd new matches by evaluating AM1 1 . . . 1 AMi�1 1 fwg 1 AMi+1 1 . . . 1 AMC.
As a shortcut, we �rst check whether any AMj is empty, in which case the join result is null |
this is the rule-active property discussed above. To handle WME removals in Treat, we use
list-based removal (see Section 2.5). Note that since we do not store tokens in beta memories,
we need to delete only complete matches (i.e., con
ict set entries) involving the WME being
removed, so removals are extremely fast in Treat.

If Treat is to perform well in our testbed systems, we must modify it so it does not always
iterate over the set of a�ected productions. One way to do this is to incorporate unlinking into
the algorithm, but still leave out sharing. Another way is to incorporate sharing. We consider
each of these in turn.

Treat performs the beta part of the match separately for each production. The match for a
production having C conditions is essentially done using a single C-ary join node. The trouble
is that in our systems, the fan-outs from alpha memories to these C-ary join nodes would grow
very large. Recall our discussion of generalizing unlinking to k-ary joins in Section 5.7. These
fan-outs could be signi�cantly reduced by incorporating unlinking | splicing productions out
of and back into the lists on alpha memories.

Another way we might modify Treat to avoid iterating over all the a�ected productions is to
incorporate sharing into the beta part of the match. Unfortunately, this is not straightforward.
We want to modify Treat so it uses a network of sometimes-shared beta memories and join
nodes, just as in Rete, except that we do not save the contents of beta memories | after we
�nish processing each WME, we throw away any tokens that were generated during its handling.
(If we didn't throw them away, this algorithm would just be Rete.) So as a �rst cut, we might
try an algorithm basically the same as Rete except that the contents of beta memories are
calculated \on demand" | whenever we need to know the tokens in a given beta memory, we
perform any necessary joins for earlier conditions, and \cache" the results in the given beta
memory and others higher up. At the conclusion of the processing of each WME addition, we
delete any cached join results.

There are two problems with this scheme. First, it will incur a large number of null left and
null right activations, just as the basic Rete algorithm does. Second, it does not make use of
the rule-active property, an important optimization in Treat. These problems are related. In
order to avoid null left activations, we simply add left unlinking, but right unlinking cannot be
added (yet) because it requires continuous knowledge of the empty/nonempty status of beta
memories | and we keep throwing away this information. We can easily save an approxima-

tion of this information, though, without much extra space. Instead of maintaining the true
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empty/nonempty status of each beta memory, we maintain an earlier-conditions-active 
ag on
each beta memory; this 
ag is true if and only if all the alpha memories used for earlier con-
ditions are nonempty. Note the similarity to rule-active here | the rule-active property of a
production is equivalent to the earlier-conditions-active 
ag its p-node would have (if we used
such 
ags on p-nodes). With this 
ag, we can safely right-unlink a join node if its beta memory
has earlier-conditions-active false.

This approach achieves only part of the data
ow reduction that the standard Treat algorithm
achieves using rule-active. To get the full reduction, we would also need later-conditions-active

information. This would be an instance of an alpha-to-beta, multiple-level data
ow reduction
scheme, as discussed in the previous section. Unfortunately, this would lead to interference with
right unlinking, as we discussed | the more we reduced data
ow using later-conditions-active


ags on nodes higher in the network, the less we would be able to reduce data
ow using earlier-
conditions-active 
ags on nodes lower in the network. So it is unclear whether the full data
ow
savings of rule-active can be achieved by a version of Treat that does not iterate over all the
a�ected productions.

The techniques we have discussed here are all ways of reducing or avoiding increasing null
activations, a problem which has been the subject of this chapter and the previous one. We
addressed this problem by incorporating left and right unlinking into Rete, and presented em-
pirical results from the resulting Rete/UL algorithm. The next chapter complements the largely
empirical character of this thesis by giving a theoretical analysis of match cost, including an
analysis of the circumstances under which Rete/UL guarantees e�cient matching. The chapter
also discusses the remaining slowdown in SCA-Random.
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Chapter 6

Theoretical Analysis

In this chapter, we give a theoretical analysis of several important questions about match cost.
The theoretical nature of this chapter stands in contrast to the predominantly empirical char-
acter of the rest of this thesis. It is important to keep in mind while reading this chapter that
theoretical analyses, especially those concerning worst-case behavior, do not necessarily re
ect
what commonly happens in practice. For example, we have already seen in Chapter 5 that in the
theoretical worst-case, interference between left and right unlinking can be so bad that residual
null activations slow down the matcher by a factor of O(

p
n), where n is the number of join

nodes in the network, but the empirical results on our testbed systems show the interference to
be insigni�cant. Although many of the results in this chapter may seem discouraging, we have
already shown that match cost can be kept quite small on most of our testbed systems.

Our analysis asks under what circumstances e�cient matching can be guaranteed. By \e�-
cient," we mean the match cost should be (1) polynomial inW , the number of WMEs in working
memory; (2) polynomial in C, the number of conditions per production;1 and (3) sublinear in
P , the number of productions.

The rest of this chapter is organized as follows. We �rst consider requirements (1) and (2)
in Section 6.1. These requirements probably cannot be met in general, but they can be met
if we restrict the representations used in working memory and productions. We then consider
requirement (3) in Section 6.2. By placing some restrictions on what types of conditions we
allow, such a bound can in fact be achieved; unfortunately, the bound is so high that it would
be unacceptable for most systems in practice. From these general discussions of matching using
any algorithms, we turn to one particular match algorithm | Rete/UL | and ask in Section 6.3
under what circumstances we can guarantee e�cient match with it. We also explain in that
section why SCA-Random still has a signi�cantly increasing match cost, while SCA-Fixed does
not. Finally, we discuss in Section 6.4 whether e�cient match can be guaranteed through simple
representational restrictions alone.

1For simplicity, we assume here that all rules have the same number of conditions. We also assume that all

rules are di�erent | no two rules have exactly the same conditions.

127
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6.1 Keeping Match Cost Polynomial in W and C

We �rst ask whether match cost can be kept polynomial inW , the number of elements in working
memory, and C, the number of conditions per production. In general, the answer is \no." The
amount of output a match algorithm must generate (i.e., the list of all complete matches for all
productions) can be exponential in C. Consider a system with W WMEs in working memory,
and just one rule, having C conditions, each of which happens to match all W WMEs. The
number of di�erent matches for this rule is WC. In this case, of course, the running time of the
match algorithm must be exponential in C.2 We might consider easing the matcher's job by
requiring it merely to list the productions having at least one complete match, without listing all
the di�erent matches. Unfortunately, this is of little help | even in this case, match cost cannot
be kept polynomial in W and C unless P=NP. Without any restrictions placed on the WMEs
or conditions allowed, determining whether a given rule has any complete matches is NP-hard.
This is easily proven using a reduction from one of various graph problems, particularly graph
colorability (Smith and Genesereth, 1986) or subgraph isomorphism (Minton, 1988a, Section
2.5). For subgraph isomorphism, the basic idea is that given two graphs, we can encode one
using a set of WMEs and the other using a set of conditions for a single rule; that rule then has
a match if and only if the graph it represents is isomorphic to a subgraph of the other.

If we place certain restrictions on the WMEs or conditions allowed, though, matching a
single rule can be done in time polynomial in W and C. A variety of such restrictions are
possible (Tambe and Rosenbloom, 1994). For example, with the unique attributes restriction on
working memory (Tambe et al., 1990), a single rule can be matched in time linear in W and
C. With such restrictions, matching a single rule is no longer NP-hard | the aforementioned
NP-hard graph problems can no longer be transformed into questions of whether a single rule
has a match. Instead, they can be transformed into questions of whether any of a large set of
rules has a match; the number of rules required is exponential in the size of the given graphs.
For example, instead of transforming a graph colorability problem into a set of WMEs plus one
production which tests for the existence of any legal coloring, we can transform it into a set of
WMEs plus many productions, each of which tests for the legality of one particular coloring.
Since the number of possible (legal or illegal) colorings is exponential in the size of the graph,
so is the number of productions we need.3

It is tempting to conclude from this that even with these restrictions on WMEs or conditions,
the match cost of a large number of rules must necessarily be large in the worst case, since
the matcher is essentially being made to answer the same NP-hard graph problem as with
one rule and no restrictions. This is incorrect. The transformations used in proofs of NP-
hardness | e.g., \given two graphs, here's how we transform them into a set of WMEs and

2With this simple example production, match algorithms such as Collection Rete (Acharya and Tambe, 1992)

may avoid this by denoting theWC matches by the cross-product of C sets, each containingW WMEs. However,

this technique can easily be defeated. By adding appropriate inequality tests to the production, we can have it

pick out W !=(W �C)! permutations of the WMEs, and these cannot be denoted as a simple cross product.
3This does not mean systems using these restrictions in practice necessarily require exponentially many rules.

If they are solving problems which are not NP-hard, they may need only polynomially many rules. Moreover,

a system solving an NP-hard problem could match a small number of rules to solve a few commonly-occurring

problem instances quickly, but resort to non-match methods to solve other instances.
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a set of conditions" | must run in polynomial time. With these restrictions on WMEs or
conditions, we have transformations that run in exponential time, since their output is a list
of an exponential number of rules. Thus, the aforementioned reduction of graph colorability to
the problem of matching a large number of rules with unique attributes is not a polynomial-
time reduction. Another way of looking at this is as follows. Consider any NP-hard problem.
Suppose we are asked to solve problem instances of size N (their descriptions are N bits long).
We can precompute the answers to all 2N possible problem instances and store the answers in
a big table. (This takes a very long time, but once it's done, that doesn't matter any more.)
Now, given a problem instance of size N , we can \solve" it simply by doing a table lookup. The
\solving" step can be done very e�ciently, because an exponential amount of work was done in
the preprocessing phase. In the same way, it may be possible to match an exponential number
of restricted-representation rules very e�ciently, because the matcher is not really \solving" an
NP-hard problem, but merely \looking up" a previously-computed solution to one instance of
it.

In summary, if WMEs and conditions are unrestricted, then matching a single rule is NP-
hard, hence no algorithm can guarantee e�cient matching (unless P=NP). With certain re-
strictions on WMEs or conditions, there are algorithms that match each individual rule in time
polynomial in W and C. Unfortunately, the total match cost of all rules can still be linear in P

with these algorithms, as we discuss in the next section.

6.2 Keeping Match Cost Sublinear in P

We now turn to the question of whether match cost can be guaranteed to be sublinear in P , the
number of rules. In general, the answer is again \no." This is because the number of rules that
successfully match can be linear in the total number of rules; this implies that the amount of
output a match algorithm must generate (i.e., the list of all complete matches) can be linear in
P . For example, consider a system with P rules, each of the form \If today's winning lottery
number is not hd1d2 . . . dki, then . . . ," where each rule has di�erent particular values for the
digits di. The number of successfully matching rules here will be at least P � 1.

Clearly, the key to this contrived example is the presence of the word \not." Remove the
not, and the number of matching rules will be at most one. Another way to construct contrived
examples like this is to use tests other than equality tests | e.g., \less-than," or \greater-than."
If we replace the \not" in the above example with \less than," then P=2 of the rules will match
on average.

Suppose we restrict the conditions that can appear in rules so as to preclude examples like
these. We will require that all conditions be positive | no negative conditions (or conjunctive
negations) are allowed. Furthermore, all tests appearing in conditions must be tests for equal-
ity | either equality with a constant or a variable. In this case, it turns out that match cost can
not only be bounded sublinearly in the number of rules, but in fact can be bounded independent
of the number of rules. We formalize this result as follows:
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Theorem 6.1 (Matching with Simple Positive Conditions) Suppose all conditions in all

rules are positive conditions containing equality tests only. Then all matches of all rules can be

found with an algorithm whose worst-case running time is independent of the number of rules.

Proof sketch: The key observation here is that whatever the W WMEs in working memory
are, there are only �nitely many ways to write a set of C conditions that match them. (That is,
except for renaming variables; we can canonicalize the variable names in all the rules ahead of
time to take care of this.) The number is very large | exponential in C | but it is �nite. So to
�nd the set of matching rules, we can just iterate over all the possible syntaxes for a matching
set of conditions, and for each one, check to see whether we have a rule with that syntax. The
number of syntaxes depends on W and C, but is independent of P , so this algorithm runs in
time independent of P .

Why is the number of matching syntaxes �nite? If a rule has C conditions, then a match for
it is some C-tuple of WMEs �w = hw1; . . . ; wCi. If there are W WMEs in working memory, then
there are WC possible C-tuples. How many ways can we write C conditions that match a given
C-tuple �w? By the theorem's hypothesis, each �eld in each condition tests for either equality
with a constant or equality with a variable. So all syntaxes matching �w can be obtained by
starting with �w and replacing some of the constants with variables. With three �elds in each
WME, there are a total of 3C �elds; each can either remain a constant or be replaced with a
variable. Since we canonicalize variable names, and we will end up with at most 3C constants
being replaced with variables, there are at most 3C variable names to choose from. Thus, there
are at most 3C + 1 things that can happen to each �eld. So there are at most (3C + 1)3C

syntaxes that match �w. With WC possible �w's, we have an upper bound on the number of ways
to write C conditions that match working memory: WC(3C + 1)3C . A more careful analysis
could tighten this bound a bit, but that is unimportant; it would still be exponential in C (since
the WC part cannot be tightened) and independent of P . 2

Of course, it would be foolish to use this exhaustive generate-and-test algorithm in practice.
If we use Rete/UL, we obtain a bound on match cost which is exponential in C and sublinear in
but not independent of P . The reason for this bound is as follows. Without negative conditions
or non-equality tests, the number of alpha and beta memories that are nonempty at any time
is bounded independent of P (but exponential in C) | this follows from an analysis similar to
the one above, using the fact that memories store k-tuples of WMEs (0 � k < C). From this
it follows that the number of non-nul l activations per change to working memory is bounded
independent of P . With the �rst-empty-dominates combination of left and right unlinking, the
additional cost of null activations adds a factor of at most O(

p
n) = O(

p
PC) (see Theorem 5.4

on page 108). Thus, the upper bound on the total match cost is exponential in C but only
sublinear in P .

This bound can be improved further by using the join-node-table-based propagation tech-
nique introduced in Section 5.8.1. Since this method avoids all null activations, we avoid the
additional factor of O(

p
n) incurred above. So the upper bound on the total match cost is then

exponential in C but independent of P .

Unfortunately, these theoretical results are not very useful in practice. The worst-case bounds
are exponential in the number of conditions per production: O(WC) or worse. For the values
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Match cost Match cost
sublinear in P ? poly in W&C? Theoretical results

no no any algorithm will su�ce
no yes various restrictions on representations
yes no no negative cond's & no non-equality tests
yes yes unclear | see Sections 6.3 & 6.4

Table 6.1: Summary of theoretical results on e�cient matching.

that typically arise in practice | W in the tens or hundreds, and C anywhere from about
�ve to �fty | the bounds are astronomical. If worst-case behavior were to arise in practice,
these match algorithms would take centuries to run, even on a supercomputer. Moreover, what
might happen in practice is that as the number of rules increases, the match cost would increase
nearly linearly for some initial period, then gradually approach the bound as an asymptote.
If the initial period lasts for the �rst trillion rules, the asymptote would be irrelevant for all
practical purposes.

Table 6.1 summarizes the theoretical results discussed so far in this chapter. Representational
restrictions such as unique attributes yield a match cost polynomial in W and C but linear in P .
Disallowing negated conditions and non-equality tests yields a match cost sublinear in (in fact,
independent of) P , but exponential in C. Unfortunately, combining this with unique attributes
still leaves the total match cost exponential in C (though the cost per rule is only linear in C) |
at least with current match algorithms. Whether some as-yet-undeveloped match algorithm can
yield a bound polynomial in W and C and sublinear in P without overly restricting the WMEs
and conditions allowed is an open question. We will say more about this later, but we have no
de�nitive answer.

6.3 Analysis of Rete/UL

We now turn to the question of under what circumstances our current best match algorithm
(in practice), Rete/UL, can be guaranteed to perform e�ciently. We will assume rules do not
contain negative conditions or non-equality tests. As discussed in the previous section, we cannot
guarantee e�cient match if we allow (unlimited) use of such constructs.

The basic idea of our analysis is to limit the number of tokens that will be present in the
network at any given time. We will present conditions under which the number of tokens can be
kept small and bounded independent of the number of productions. It follows from this that the
number of nonempty beta memories is similarly bounded. Moreover, the number of nonempty
alpha memories is also bounded | it is at most 8W , since each WME can go into at most
eight di�erent alpha memories, as discussed in Section 2.2.3. From these bounds, it follows that
the number of non-null activations per change to working memory is similarly bounded, since a
non-null activation requires a nonempty alpha memory and a nonempty beta memory. Finally,
since null activations can add at most a square-root factor to the match cost, the total match
cost will still be sublinear in the number of rules.
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AM for (_ ^problem-space _)

AM for (_ ^name predict)

AM for (_ ^f1 1)

AM for (_ ^f1 2)

AM for (_ ^f1 10)

AM for (_ ^f2 1)

AM for (_ ^f2 10)

AM for (_ ^f6 1)

AM for (_ ^f6 10)

AM for (_ ^description _)

AM for (_ ^f2 2)

AM for (_ ^f6 2)

Figure 6.1: Simpli�ed view of the Rete network for SCA-Fixed.

How can we keep the number of tokens small as the number of productions grows very
large? An illustrative example is provided by the SCA-Fixed system we discussed at length in
Chapter 4. Figure 6.1 shows a simpli�ed view of the Rete network for SCA-Fixed. The beta part
of the Rete network in this system can be divided conceptually into several levels; as data
ow
propagates down the network, a number of join nodes are activated at each level, but only one
of them \succeeds," �nding any new matches and creating any new tokens. The result is that
at any given time, tokens are present in beta memories only along one path from the top of the
beta network to a leaf, so the number of tokens stays small, no matter how many productions
there are.

6.3.1 The Levels-and-Structures Model

We now develop our model by abstracting the details away from this simpli�ed SCA-Fixed
example. In SCA-Fixed, tokens are present only along one path from the top node to a leaf.
We will allow multiple paths, as long as the number of paths is kept small and independent
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m =2i

Figure 6.2: The levels and structures model. At any given time, only a few small subnetworks
out of the whole beta network contain tokens.

of the number of productions. We will also generalize the notion of a \path" | instead of a
sequence of individual beta memories and join nodes, a path will be a sequence of subnetworks,
i.e., portions of the whole beta network. This is illustrated in Figure 6.2. The large triangle
represents the whole beta network; small triangles represent subnetworks. (The \mi = 2" will
become clear shortly.) The �gure shows two top-to-leaf paths. If tokens are only present along
a small number of paths at any given time, then they will only be present in a small number of
subnetworks at any given time.

Suppose we bound the number of token-containing subnetworks; call this bound E. In
Figure 6.2, E would be the number of small triangles | these are the subnetworks containing
tokens. Suppose we also bound the number of tokens in any single subnetwork; call this bound
Tsingle. In the �gure, Tsingle would be the maximum number of tokens in any single small triangle.
Let Ttot denote the maximum total number of tokens in the whole network (the big triangle) at
any given time. Our goal is to limit the total number of tokens Ttot. From this construction,
Ttot � ETsingle. Since clearly E � 1 and Tsingle � 1, in order to keep Ttot small, we must keep
both E and Tsingle small. We will return to this shortly, after brie
y discussing how this model
would be applied.

In general, we need to partition the beta network into some number of levels; call the number
of levels `. In Figure 6.2, each level corresponds to a row of subnetworks. Each level can test
for the presence of arbitrary \structures" in working memory | arbitrary groups of WMEs |
rather than just simple feature/value pairs represented by a single WME as in SCA-Fixed. For
example, in a \blocks world" system, one \structure" might be a red block on top of a green
block; this would be represented by a group of three WMEs, two for color and one for on-top.
Note that this means a \level" of the network may be several join nodes \deep." A structure
corresponds to one path of nodes from the top of a subnetwork (small triangle) to the bottom



134 Chapter 6. Theoretical Analysis

of that subnetwork.

When we apply this model to a given system, it is up to us, the modelers, to pick the \levels"
and \structures." For every rule in the system, with conditions c1; . . . ; ck in that order from the

top of the network to the bottom, we view this sequence of k conditions as the concatenation of `
subsequences. We do this by picking \cut points" i1 < i2 < . . . < i`�1, so that the subsequences
are c1; . . . ; ci1 ; ci1+1; . . . ; ci2 ; . . . ; and ci`�1+1; . . . ; ck. Each of these subsequences becomes a
structure. Note that none of these subsequences is allowed to be null; i.e., the cut points must
all be di�erent. Also note that our cut points need not be the same on all rules | we can pick
them di�erently for di�erent rules. Once we have chosen these levels and structures, if we know
enough about the distribution of WMEs in working memory, we can �gure out what E and
Tsingle will be. The important question is whether there is some way to choose these cut points
on all the rules in the system so that both E and Tsingle turn out to be small | if there is such
a way, then Rete/UL is guaranteed to perform e�ciently.

We now analyze E in more detail; Tsingle will be dealt with below. Whenever data
ow
propagates from one level to the next lower one | say, from level i � 1 to level i | the
subnetwork at the lower level tests for the presence of various structures in working memory. To
keep E small, we want it to be the case that only a very small number of these various structures-
being-tested-for are ever present in working memory at the same time; call this number mi. We
assume mi > 0, otherwise there would never be any complete production matches. In our
SCA-Fixed example, all the mi's equal one. In Figure 6.2, one mi is two and all the rest are
one. In general, we will want most of m1; . . . ;m` to be one, but we will not require them all to
be. We will, however, want them all to be fairly small numbers independent of the number of
productions in the system.

Given this model, how many subnetworks could contain tokens at any given time? We
consider one level at a time. Let Ei denote the number of token-containing subnetworks at level
i. Since there is only a single subnetwork at level one (this is the subnetwork rooted at the top
node), E1 = 1. What about level two? Since at most m1 of the structures tested at level one
are present at one time, at most m1 of the subnetworks at level two will contain any tokens.
(A subnetwork can contain tokens only if there is a match for all the preceding conditions.) So
E2 � m1. Similarly, in each of these m1 token-containing level-two subnetworks, at most m2

structures-tested-for are present, and so at most m1m2 subnetworks at level three will contain
tokens: E3 � E2m2 � m1m2. In general, Ei � Ei�1mi�1 � m1m2 � � �mi�1. Hence,

E =
X̀
i=1

Ei � 1 +
X̀
i=2

i�1Y
j=1

mj � `
`�1Y
j=1

mj

Note that as long as most of the mj's are one, and the others are fairly small, E will be fairly
small. On the other hand, if most of the mj's are larger than one, then E will be quite large.

We now analyze Tsingle further. We present two simple ways to bound Tsingle here; there
may be others. One way is simply to make sure all the subnetworks are very small. Recall
that each structure is represented by some number of WMEs, and rules test for its presence
using corresponding conditions. Let s be the size of the largest structure that rules test for, i.e.,
the largest number of WMEs or conditions any structure requires. Each subnetwork is then a
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network with depth at most s, as opposed to the depth-C whole network. Now we can obtain
a bound for Tsingle by a counting argument similar to that in Section 6.2: just as the number of
tokens in the whole depth-C network is bounded exponential in C, the number of tokens in a
depth-s subnetwork is bounded exponential in s. Thus, Tsingle can be bounded exponential in s

but independent of P , the number of productions. Thus, as long as each structure is represented
by only a very small number of WMEs | one or two is okay, and perhaps three or four | Tsingle

will not be too large.

Another way to bound Tsingle involves placing restrictions on representations. Tsingle can
be bounded quadratic in W , independent of s and P if two conditions hold. First, working
memory must form a tree (Tambe and Rosenbloom, 1994): if we treat working memory as a

directed, labeled graph, viewing each WME (id ^attr value) as an arc id
attr�! value, then

this graph must be a tree. Second, all structures must be linear: if we treat structures as
directed, labeled graphs in a similar way, these graphs must be linear.4 That is, each structure
tests for a sequence of WMEs lying along a single branch of the tree formed by working memory.
With these restrictions on working memory and structures, Tsingle can be at most quadratic in
W . This is because each token represents an (acyclic) path from one node of the tree to another,
and the number of such paths in any tree is quadratic in the size of the tree.

In summary, we can keep the match cost small by keeping the total number of tokens, Ttot,
small. To keep Ttot small, we want to keep both E and Tsingle small, since Ttot � ETsingle. E

can be kept small if the network can be viewed in terms of levels and structures such that
the resulting mi's are small, usually one. Tsingle can be kept small if either (1) structures are
represented by only a very small number of WMEs, or (2) working memory forms a tree and
structures are linear.

6.3.2 Applying the Model to SCA-Fixed and SCA-Random

How do we apply this model to a given system? As mentioned above, it is up to us, the modelers,
to pick the \levels" and \structures," by picking the \cut points" in each rule in the system.
Once we have chosen these levels and structures, if we know enough about the distribution of
WMEs in working memory, we can �gure out what E and Tsingle will be. Di�erent choices of cut
points can lead to di�erent values of E and Tsingle. The important question is whether there is
a way to choose these cut points on all the rules in the system so that both E and Tsingle turn
out to be small.

In our SCA-Fixed example above, we can obviously choose cut points so that all the mi's
are one, hence E = 1. Moreover, each structure is represented by a single WME, so s = 1 and
Tsingle is quite small. (Actually, our description of SCA-Fixed was simpli�ed; in the real system,
we would have s = 2, but Tsingle is still small.)

What about SCA-Random? As mentioned in Section 3.1.5, the di�erence between SCA-
Fixed and SCA-Random is that SCA-Fixed is always consistent about which features it focuses

4Strictly speaking, we need two other minor restrictions here. First, the identi�er �eld of each condition

except the �rst one in the structure must contain a pre-bound variable | one that occurs in some previous

condition. Second, the attribute �eld of each condition must contain a constant, not a variable.
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its attention on, whereas SCA-Random focuses on a di�erent randomly chosen subset on each
training example. Consequently, in SCA-Fixed, if one rule tests the value of feature f5, then
so do all the rules. In contrast, in SCA-Random, some rules will test a value of f5, while other
rules completely ignore f5.

The problem this leads to in SCA-Random is that instead of having mi = 1, we havemi = 12.
In SCA-Fixed, the data
ow at each level fans out to up to twelve nodes testing up to twelve
di�erent possible values of the same feature; since this feature only takes on one value at a time,
the working memory distribution is such that mi = 1. In SCA-Random, though, the data
ow
at each level fans out to up to 144 nodes testing up to twelve di�erent values of up to twelve
di�erent features. Since each of the twelve features can take on one value, there may be up
to twelve \successes" at these nodes; hence, mi = 12. As a result, E is very large. This is
why SCA-Random slows down signi�cantly even when left and right unlinking are added to
Rete | the number of tokens (and consequently, the number of non-null activations) increases
signi�cantly, rather than remaining bounded, as more and more rules are learned.

Note that there is no way to avoid this problem by changing the order of the conditions in
SCA-Random. To get m1 = 1, we need there to be one feature that everything at level one tests
a value of. But whatever feature we might try, there are some rules that completely ignore that
feature. For those rules, there is no way to order their conditions to arrange for that feature to
be tested at level one | no matter what ordering we try, some other feature will be tested at
level one, and so m1 will be at least two. A similar argument applies to all the other mi's as
well.

The di�erent e�ects SCA-Fixed and SCA-Random have on the match cost illustrate an
important, but unfortunate, fact: we cannot predict the match cost by considering just the
representation a system uses, at least for reasonably expressive representations. SCA-Fixed
and SCA-Random use exactly the same working memory representation, and learn rules hav-
ing the same kinds of conditions. Yet these two systems yield very di�erent match algorithm
performance.

Applying the levels-and-structures model to a given system requires knowledge not only
about the representation it uses | what WMEs will be present and what structures will be
used| but also about the rules it learns and the order in which their conditions will be arranged.
For a system designer who wants to predict whether match cost will become problematic as a
system learns a large number of rules, this unfortunately means it may require a good deal of
e�ort to use this model. In some cases, a designer may not be able to anticipate enough about
the rules a system will learn, and thus may be unable to use this model at all. This obstacle may
some day be overcome by the development of other analytical models requiring less knowledge
on the designer's part; this is an important direction for future work.

We stated above that we cannot predict the match cost by considering just the representation
a system uses, for reasonably expressive representations. There are, however, at least two cases
in which we can use the levels-and-structures model without much knowledge. The trick is to
pick ` = 1; i.e., to treat the whole network as one level. In this case, E = 1, so we need only
ensure that Tsingle is kept small. As above, we have two ways to do this. First, we can make
sure structures are represented by only a very small number of WMEs | in other words, make
sure s is very small. Of course, with just one level in the network, s is the same as C, the
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number of conditions per production. So one way to ensure that the match cost stays small is
to only have rules with a very small number of conditions. The second way we can keep Tsingle

small is to make working memory form a tree and make all our rules linear. Unfortunately,
neither of these restrictions leaves us with a very convenient representation. In most existing
Soar systems, one simply cannot get by with just a handful of conditions per production, and
the expressiveness of linear rules is so limited as to make encoding many domains extremely
di�cult.5 The development of new programming styles or techniques may eventually alleviate
these di�culties, but for the systems being written today, these restrictions are unacceptably
severe.

6.3.3 Condition Ordering

Applying the levels-and-structures model requires knowledge about the order in which the condi-
tions of each rule are arranged. We cannot do without this knowledge, since condition orderings
can signi�cantly a�ect the match cost. In some systems, certain orderings a�ord a good choice
of cut points, while other orderings preclude any good choice of cut points | in other words,
with \good" condition orderings, the match cost will remain small, but with \bad" orderings,
it will grow linearly in the number of rules.

The developer can control condition ordering if all the rules are hand-coded, as in OPS5
production systems. However, if rules are created by a learning mechanism, their conditions
must be ordered automatically by some algorithm. Unfortunately, such algorithms are currently
not well-understood, and a full analysis of them is well beyond the scope of this thesis. We give
just a brief discussion here.

We have both good news and bad news about condition ordering. First, the bad news.
Finding the optimal ordering of the conditions in a single rule is NP-hard (Smith and Genesereth,
1986). Of course, considering only a single rule ignores sharing. Given two rules, �nding the
condition orderings which maximize sharing is also NP-hard.6 So with 100,000 rules, optimizing
anything is out of the question. Moreover, most existing algorithms for �nding good (but not
necessarily optimal) condition orderings do not take sharing into account at all | they order the
conditions for one rule independently of any other rules in the system. One notable exception
is (Ishida, 1988), which gives an algorithm for ordering all the conditions in a set of rules;

5An earlier version of the SCA system, not used in this thesis, actually did use a representation that was

mostly linear. While not a completely linear representation, it would eliminate the linear increase in match cost

now faced by SCA-Random. However, SCA's author abandoned this representation and opted for the increased

ease-of-use o�ered by that of the current version of SCA.
6Consider a variation on the subgraph isomorphism construction mentioned in Section 6.1. Given two graphs,

instead of encoding one as WMEs and one as a rule, we encode both graphs as rules. One graph is isomorphic

to a subgraph of the other if and only if the conditions of one rule are a generalization (except for renaming

variables) of those of the other rule. Thus, subgraph isomorphism can be reduced to the problem of determining

whether one rule is a generalization of another rule. This in turn can be reduced to the problem of maximizing

sharing, since one rule is a generalization of another if and only if all the Rete nodes for it can be shared with

the other rule. Incidentally, this construction also shows that the related problem of determining whether two

rules are isomorphic (i.e., identical except for reordering conditions and renaming variables) is equivalent to the

problem of graph isomorphism, the complexity class of which is an open question.
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unfortunately, the algorithm runs in time quadratic in the number of join nodes, so it is too
computationally expensive to use in systems with a very large number of rules.

Now, the good news. The condition ordering algorithm used in these testbed systems | a
very simple heuristic algorithm | turns out to do a \good enough" job in all of them. The
algorithm, a simpli�ed version of that described by (Scales, 1986), orders the conditions for one
rule independently of any other rules. It essentially tries to minimize the cost of matching that
rule alone, as if that rule were the only one present. While the exact details of the algorithm
are probably unimportant,7 there appear to be two important properties which lead it to do
\well enough" in our testbeds. First, it produces an ordering of the conditions of any individual
rule good enough to avoid any one rule being exorbitantly expensive to match. This was the
motivation for the design of this particular ordering algorithm. Second, it is fairly consistent:
given two similar productions, it gives their conditions similar orderings. For example, the
match cost of any individual rule in SCA-Fixed does not depend on the ordering of the various
feature/value tests, but with many rules, it is important that they be ordered consistently across
rules. This was not considered in the design of the algorithm | it simply turned out to have
this property. Soar's condition ordering algorithm has recently been enhanced to make it even
more consistent, but we have not yet studied its impact in these testbeds. Note that these two
properties may sometimes con
ict: while increased consistency leads to more sharing, it can
sometimes make particular rules more expensive to match.8 Further study is needed to better
understand condition ordering issues and algorithms.

6.4 Minimally Expressive Representations

In Section 6.3.2, we mentioned two cases in which we can guarantee that match cost will remain
small, without requiring advance knowledge about the rules a system will learn and the order in
which their conditions will be arranged. Unfortunately, in both cases, the representation is so
unexpressive that it makes encoding many domains very di�cult. In this section, we consider
whether these cases can be broadened to make their representations less restrictive.

The �rst case we discussed simply required the number of conditions in each production, C,
to be kept very small. Since matching a single production is NP-hard, it appears unlikely that

7For the curious reader | the procedure is basically a greedy algorithm. It begins by picking a condition to

put �rst (i.e., highest in the network), then picks a condition to put second, and so on. Each time, to pick the

current condition to output, it uses the following rules, in descending order of importance. (1) Prefer conditions

whose identi�er �eld contains the current goal (a Soar idiom) or a bound variable (i.e., a variable used in some

condition already selected by this algorithm). (2) Prefer conditions containing the fewest unbound variables. (3)

Break any ties remaining after rules (1) and (2) by using a one-step look-ahead | pick the condition which, when

used as the current condition, allows the next condition to be selected using as high-priority a rule as possible.

(4) Break any remaining ties deterministically (i.e., pick the �rst condition on the list of tied ones).
8At one point we tried using a more complex ordering algorithm which essentially let consistency have free

rein: given a new rule, it picked the ordering of its conditions which would allow the maximum number of them

to share existing join nodes. Any remaining unshared conditions were ordered using the old (usual) algorithm.

The revised algorithm helped in SCA-Random: although the match cost still increased linearly, the magnitude

of the increase was reduced by about a factor of three. However, the algorithm actually slowed down the matcher

in two other systems.
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this restriction can be relaxed very much | unless P=NP, even moderate values of C can lead
to very high match cost.

The second case we discussed required working memory to be a tree and rules to be linear.
Experience encoding many domains using Soar suggests that for most, the tree restriction on
working memory is at least tolerable, if sometimes fairly clumsy; it is the linear restriction on
rules that is often unacceptably restrictive. Consider a domain having several di�erent features
that need to be represented in working memory. With a tree-form working memory, we can
either represent them using several di�erent branches of the tree, or represent them all on one
branch. In the former case, a linear rule can only test one feature, not several. This severely
limits the expressiveness of rules. In the latter case, there is no way to write a rule that tests
a feature \lower down" on the branch while ignoring the features \higher up" on the branch.
This often forces rules to be unnecessarily speci�c.

In a domain with several features, we want to be able to write rules that test any combination
of them we desire. We will call a representation which allows this minimally expressive. Are
there any minimally expressive representations for which e�cient matching can be guaranteed?
We conjecture that there are not.

Consider what is probably the simplest minimally expressive representation possible. Work-
ing memory consists of a set of atomic symbols, without any structure to it at all. (Each symbol
represents some domain feature.) Rules simply test for the presence of particular combinations
of symbols in working memory. More formally, the matching problem here becomes:

Problem De�nition: Matching with atomic WMEs: In the preprocessing phase, we
are given P di�erent sets A1; . . . ; AP , where each Ai is a set of symbols taken from some �nite
alphabet � (j�j = m). (Each Ai is like a production, testing for the presence of certain symbols
in working memory.) We may preprocess these sets as we desire. (This corresponds to compiling
productions into a Rete network or some other data structure.) However, we are allowed to use
at most O(D logD) storage, where D =

PP
i=1 jAij is the size of the input data. (This precludes

preprocessing into a structure requiring exorbitant space | in practice, even space quadratic in
the number of productions is too much.) In the query phase, we are given a set W � � (this
speci�es the symbols in working memory), and we must output the set fijAi � Wg of matching
productions.

Although this is clearly an extremely simple representation, the matching problem for it is
no easier than that for at least one much more complex representation. If we relax the strin-
gent linear requirement on rules in our discussion above, allowing rules to be trees, but add the
requirement that working memory use unique-attributes, we obtain a minimally expressive rep-
resentation (tree-structured rules, tree-structured unique-attribute working memory) for which
the matching problem is reducible to that for atomic WMEs. The details of this reduction can
be found in Appendix D.

An e�cient algorithm for matching with atomic WMEs would be one that takes time poly-
nomial in W , polynomial in the size of the largest Ai, and sublinear in P . Unfortunately, there
is no known algorithm for this problem guaranteed to be e�cient, and we conjecture that none
exists.9

9It was recently pointed out by (Naor, 1994) that this problem is equivalent to the problem of partial match re-
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If this conjecture is true, it implies that to guarantee e�cient match, we must either have
advance knowledge about the rules a system will learn and the order in which their conditions
will be arranged, or else we must somehow restrict the representation the system uses so that
it is not minimally expressive. Unfortunately, encoding useful rules for most domains using
representations so restricted is beyond the current capability of our encoding techniques.

If this all seems rather discouraging, keep in mind that this is all based on worst-case analyses
of match cost. The empirical results of this thesis stand in marked contrast. None of our testbed
systems was designed with learning a large number of rules in mind, let alone with this theoretical
analysis of match cost in mind. Yet Rete/UL turns out to perform very well on six of the seven
systems.

trieval in database systems (Rivest, 1976) (Knuth, 1973b, pages 558{565). An initial study of existing algorithms

for partial match retrieval has not revealed any algorithms which guarantee e�cient match here.



Chapter 7

Match and the Utility Problem

In the preceding chapters, we have demonstrated the e�ects of di�erent match algorithms on the
cost of matching rules. In this chapter, we examine the e�ects of di�erent match algorithms on
the overall performance of a system | the total time it takes to solve problems. As discussed in
Chapter 1, in many machine learning systems | \speedup learning" systems | the purpose of
learning rules is to enable the system to solve problems faster. Often, the rules are used to reduce
the number of basic problem-solving steps the system requires. Each step involves using the
match algorithm to determine which rules are applicable. Thus, the learned rules a�ect overall
system performance in two ways: they a�ect the number of steps taken, and they a�ect the cost
per step. These two e�ects are referred to respectively as the cognitive and computational e�ects
(Tambe et al., 1990), the search-space and architectural e�ects (Francis and Ram, 1993), or the
indirect and direct search time costs (Markovitch and Scott, 1988). If learned rules increase the
cost per step by some factor, and this factor is not outweighed by a larger factor reduction in
the number of steps, then the system will have a utility problem | the \learning" will make the
system slower rather than faster. From the preceding chapters, it should be clear that the choice
of match algorithm will a�ect the degree to which learned rules increase the cost per step. If
this e�ect is su�ciently large, the match algorithm will a�ect whether the system has a utility
problem or not. In this chapter, we demonstrate this empirically.

Of course, machine learning systems can be aimed at performance improvements other than
speedup. In many, for example, the primary performance metric is classi�cation accuracy, not
run time. So for learning systems not aimed at speedup, match cost is not as crucial. This does
not mean it is completely irrelevant, though. For example, a system which classi�es examples
perfectly is useless if it takes intolerably long to produce its output. Thus, it may be acceptable
for learned rules to increase the running time of such a system mildly, but it is unacceptable
for them to increase it drastically. The choice of match algorithm used in such a system may
be relevant, if it drastically a�ects the overall running time. In this chapter, we demonstrate
empirically that it can.

Note that it may seem to have been suggested in (Etzioni, 1993) that even a small increase in
match cost will cause a utility problem unless the learned rules drastically reduce search | unless
they curtail search enough to transform an exponential-time problem-solver into a polynomial-
time problem-solver. This is a rather lofty goal for speedup learning systems, considering that
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many AI systems attempt to solve problems which are NP-hard. In practice, it can be extremely
useful to transform an exponential-time problem-solver into a faster but still exponential-time
problem-solver (or, for that matter, to transform a polynomial-time problem-solver into a faster
polynomial-time problem-solver). Etzioni writes:

When �� [the number of search nodes expanded when the system is guided by
a set � of rules] is exponential in s [the number of literals in the description of the
current state], the total overhead of matching � is exponential in s. (Proposition
3.4, page 107)

The total overhead is exponential because the number of times the matcher is invoked is ex-
ponential | it is invoked once per node, and the number of nodes is exponential | and the
cost per invocation is at least some small number of CPU instructions. This may appear to
indicate that the rules are a bad thing, because they cause the system to incur an exponential
overhead. But this overhead is summed over all the nodes the system expanded. So when ��
is exponential, the per-node overhead may be just a constant factor. Etzioni points this out
but does not elaborate. Although elsewhere in the article (page 100) Etzioni explicitly states
that the rules reduce problem-solving time if and only if (� + �� )�� < ��, where � is the cost
per node without rules, �� is the extra cost per node of matching rules, and � is the number
of search nodes expanded in unguided search, the casual reader of Proposition 3.4 may be left
with the impression that using the rules is necessarily a bad idea. Of course, if the per-node
overhead is a small constant factor, and the rules reduce the number of nodes expanded by a
larger constant factor, then using the rules will speed up the system. Moreover, although it
will not reduce the system's asymptotic complexity to polynomial, it may reduce it to a smaller
exponential. For example, if the original problem-solver explores a search space with branching
factor b and depth d, then a single rule that always prunes o� one possible branch at every
node in the search would reduce the asymptotic complexity from bd to (b� 1)d. This would be
a tremendous improvement in practice, even though the total overhead of matching that rule
would be exponential: 
((b� 1)d).

A small factor increase in match cost will not cause a utility problem as long as the learned
rules reduce the number of problem-solving steps by at least that same factor. In this chapter,
we demonstrate that the choice of match algorithm has a tremendous impact on the factor by
which match cost increases, and hence on whether a system has a utility problem or not. Our
basic methodology is described in Section 7.1. The results of our experiments are presented in
Section 7.2.

7.1 Methodology

The methodology for our experiments is a typical one for the evaluation of speedup learning
systems. For each of our testbed systems, we created two sets of problems: a training set and
a test set. We �rst measured the total time the system takes to solve all problems in the test
set. Then, we had the system solve all the problems in the training set. After it had learned
from these training problems, we again measured the time the system takes to solve all the
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test problems. We then compared the two measured times for the test set, one from before
learning on the training set and one from after, to see how e�ective the speedup learning was
and whether the system su�ered a utility problem. In order to examine the e�ect of the choice
of match algorithm on the utility problem, we performed this whole process twice for each
system | once with the system using the basic Rete algorithm, and once with the system using
Rete/UL.

For each system, the training set consisted of the problems that were given to the system to
have it learn 100,000 or more rules, as described in Section 3.1. The same problem generator was
used to create a small set of test problems for each system. (See Appendix E for details.) Since
the generators for the Radar, SCA-Fixed, and SCA-Random systems selected problems from a
distribution with replacement, there may be some overlap between the test set and the training
set, though we have not examined this. In the Dispatcher, Merle, and Sched systems, the test
and training sets were disjoint. In the Assembler system, the test set was chosen to be a subset
of the training set. This is appropriate in Assembler because Assembler's learning is speci�cally
designed for speedup when encountering the same problem repeatedly (i.e., assembling many
identical printed circuit boards); it is not intended to allow the system to assemble an unfamiliar
board faster after gaining experience on some other board.

In contrast to the typical methodology for evaluating speedup learning systems, in our exper-
iments the system was allowed to learn as it solved each test problem. This was required because
at least one (and possibly more) of the testbed systems will not function properly with learning
completely disabled. However, anything the system learned on one test problem was removed
before it started working on the next test problem, so all the test problems were e�ectively run
independently of each other.

7.2 Empirical Results

We now summarize the results of these experiments. For the interested reader, more details are
presented in Appendix E. Table 7.1 shows, for each system, the run times obtained with the
basic Rete algorithm and with Rete/UL, both before and after learning, i.e., with and without
the 100,000 or more rules learned on the training set. Columns four and seven show the speedup
factors from learning, using each algorithm. These speedup factors are the ratios of the time
before learning to the time after learning. A \speedup factor" less than one indicates an overall
slowdown due to learning | i.e., a utility problem. The last column shows the factor by which
the overall system performance is improved by the use of Rete/UL instead of the basic Rete
algorithm, when there are 100,000 or more rules, i.e., the ratio of column three to column six.
This factor is approximately an order of magnitude in all the systems.

As the fourth column of the table shows, when the basic Rete algorithm is used, all the
testbed systems su�er a utility problem, and in �ve of the seven cases, the problem is quite
severe | they slow down by over an order of magnitude as a result of the \learning" (the
speedup factors are less than 0.10). However, the seventh column shows that when Rete/UL is
used, the utility problem is avoided in four of the seven systems (Assembler, Dispatcher, Merle,
and Sched) | the result of the learning is now a speedup rather than a slowdown. Note that
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Basic Rete Rete/UL Overall
Time Time Time Time Speedup
Before After Speedup Before After Speedup From

System Learning Learning Factor Learning Learning Factor Unlinking
Assembler 805.0 1,641.0 0.49 756.3 174.6 4.33 9.4
Dispatcher 2,330.2 3,253.0 0.72 1,949.6 574.2 3.40 5.7
Merle 1,255.5 13,278.3 0.09 958.5 624.2 1.54 21.3
Radar 40.5 1,614.1 0.03 32.4 152.9 0.21 10.6
SCA-Fixed 54.6 2,677.8 0.02 55.4 66.5 0.83 40.3
SCA-Random 56.6 2,254.3 0.03 55.0 113.0 0.49 19.9
Sched 342.7 5,530.6 0.06 276.0 213.7 1.29 25.9

Table 7.1: Summary of results of the utility problem experiments. Times are in CPU seconds.
Columns four and seven show the speedup factors obtained due to learning. The last column
shows the speedup obtained from using Rete/UL instead of Rete, with 100,000 rules.

these are the four systems where the purpose of the learning is in fact to speed up the system.
In the other three systems (Radar, SCA-Fixed, and SCA-Random), the purpose of the learning
is not to speed up the system, but to improve its classi�cation accuracy; thus, a small slowdown
is acceptable, but a drastic one is not. With unlinking, these three systems are still somewhat
slower after learning, but unlinking reduces the slowdown factor by approximately an order of
magnitude.

These results conclusively demonstrate that by using an improved match algorithm, we can
reduce or eliminate the utility problem in all of these testbed systems. Note that our \baseline"
case here is not a \straw man," but a state-of-the-art match algorithm (Rete). If, instead, we
had started with a simple, straightforward match algorithm like that used in many machine
learning systems, and compared the results using it with those using Rete/UL, the e�ect would
have been even more striking than that shown in Table 7.1.

At present, most papers in the machine learning literature describing systems where high
match cost is the primary (or only) cause of the utility problem do not state what algorithm
the system uses for matching. Our results conclusively demonstrate that the choice of match
algorithm is an important consideration in such systems. Thus, future papers on such systems
should specify the match algorithms they use. Moreover, if the algorithms are not state-of-the-
art, the papers should address the issue of whether incorporating an improved matcher would
a�ect the empirical results or conclusions in the paper.
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Summary and Future Work

This thesis has addressed the machine learning utility problem by developing an improved
production match algorithm, which enables scaling up the number of rules in production systems,
and which signi�cantly reduces or eliminates the utility problem in a broad class of machine
learning systems. In this chapter, we review the major results of the thesis, and point out some
interesting directions for future work.

8.1 Summary of Results and Contributions

We began by examining a diverse set of seven large learning systems and observing Rete's
behavior on them. This empirical study, the �rst one ever performed with such systems, revealed
several phenomena not found in previous studies of smaller systems. The most fundamental of
these phenomena is the linearly increasing number of productions a�ected by WMEs. This
causes existing match algorithms to slow down linearly in the number of productions in the
system. Rete's sharing is one way to counter this e�ect, and its importance does increase with
the number of productions, but Rete's sharing alone is insu�cient to avoid a linear slowdown.

The problem is that sharing can only be done near the top of the network, while the sources
of linear slowdown occur both at the top and the bottom of the network. We observed three
such sources in our testbed systems:

� An increasing number of null right activations occurred in all seven systems, and its e�ect
was severe in all seven. Null right activations increased in the bottom (unshared) parts of
the network. They would have increased at the top of the network too, had it not been
for the use of sharing.

� An increasing number of null left activations occurred in four of the seven systems, and
its e�ect was severe in two. Null left activations increased in the bottom (unshared) parts
of the network. They would have also increased at the top of the network in all seven
systems, had it not been for the use of sharing.

� An increasing number of non-null activations occurred in just one of the systems, SCA-
Random, where its e�ect was signi�cant but not severe. Here non-null activations increased
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in the bottom (unshared) parts of the network. Had it not been for the use of sharing, non-
null activations would have also increased at the top of the network in all seven systems.

To avoid the two sources that we identi�ed as responsible for the most severe slowdown |
null right activations and null left activations | we introduced two optimizations for Rete, right
unlinking and left unlinking. Although these two optimizations can interfere with each other, we
presented a particular way of combining them which we proved minimizes the interference. This
reduces the theoretical worst-case impact of null activations from a linear factor to a square-root
factor; it reduced the practical impact of null activations in the testbed systems from a large
linear factor to an insigni�cant constant factor.

Table 8.1 summarizes the various types of activations, locations in the network where they
can increase, and the techniques match algorithms can use to avoid an increase. In addition to
the number of activations, it is also possible for the time per activation to increase, causing a
slowdown. This was not a major problem in any of our testbed systems, and there are already
existing techniques, such as indexed memories, for addressing it.

Type of Location of Occurrence
Activation Top of Beta Network Bottom of Beta Network
Null Left sharing or left unlinking left unlinking
Null Right sharing or right unlinking right unlinking
Non-Null sharing ?

Table 8.1: Types and locations of increasing activations, and ways to avoid them.

By incorporating our combination of right and left unlinking into the basic Rete algorithm,
we obtained a new match algorithm, Rete/UL, which is a general extension to Rete. Rete/UL
eliminated the linear slowdown in six of the seven testbed systems, and signi�cantly reduced it in
the remaining one. With 100,000 rules in each system, Rete/UL was approximately two orders
of magnitude faster than Rete. Moreover, Rete/UL's performance scales well on a signi�cantly
broader class of systems than that of the best previously-existing match algorithms (Rete and
Treat). Thus, this thesis has advanced the state-of-the-art in production match.

We also presented a theoretical analysis of the circumstances under which e�cient matching
can be guaranteed, and introduced a theoretical model which AI system designers can use to
analyze the increase (or lack thereof) in match cost in large learning systems.

Finally, we empirically demonstrated that the use of Rete/UL signi�cantly reduces or elimi-
nates the utility problem in all our testbed systems. Since these testbeds represent a diverse set
of domains, problem-solving techniques, authors, and research interests, they are representative
of a broad class of systems. We conclude that the use of Rete/UL can signi�cantly reduce or
eliminate the utility problem in a broad class of large learning systems.

8.2 Directions for Future Work

We mentioned in Chapter 1 that our general approach to reducing match cost so as to avoid
the utility problem complements two other approaches | reducing the match cost of individual
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rules, and reducing the number of rules. We also mentioned that there are other possible sources
of the utility problem in addition to match cost. Combining the techniques developed in this
thesis with other techniques for reducing or eliminating the utility problem is an important
direction for future work.

A glance at Table 8.1 immediately suggests another important direction: developing tech-
niques to reduce or avoid an increase in the number of non-null activations in unshared parts of
the network. The results from our testbed systems suggest that such an increase does not occur
pervasively in large learning systems, but does occur sometimes. Thus, these techniques will
probably not tremendously broaden the class of systems where match algorithm performance
scales well, but may broaden it somewhat, perhaps enough for it to include certain important
systems. One possibility here is to use generalized data
ow reduction techniques, as we discussed
in Section 5.8.4 for Rete and in Section 5.8.5 for a modi�ed version of Treat. Another possibility
involves the use of nonlinear Rete networks, perhaps including k-ary joins; the advantages and
disadvantages of such networks in large systems are not yet well-understood.

In this thesis, we have used WMEs taking the form of three-tuples. As we discussed in
Section 2.11, the Rete algorithm can be used with WMEs having many other syntactic forms.
The same is true of unlinking: the left and right unlinking optimizations do not depend in any
way upon WMEs having any particular form. As Section 2.11 mentioned, we can transform one
representation for WMEs into another; this can sometimes have the e�ect of shifting work from
one part of the network to another. For example, if SCA-Random were reimplemented using
OPS5-style WMEs, with the values of all twelve features represented on a single WME, the
feature/value tests would be shifted out of the beta network and into the alpha network; instead
of having a linearly increasing match cost due to increasing non-null join node activations, we
would have one due to increasing constant-test node activations. This would probably change
the matcher's performance by some constant factor. An interesting direction for future work,
then, is to study the relative performance of the matcher when the same systems are encoded
with di�erent forms of WMEs (although the speedups this yields are unlikely to be as large as
those already obtained in this thesis).

Another interesting possibility is to investigate extending Rete to perform partial matching,
as we suggested in Section 2.11. If successful, such an extension would allow Rete and unlinking
to be used not only in systems that learn rules, but also in systems that learn cases (previously-
encountered problems and their solutions), where they could support e�cient retrieval of relevant
cases from a large case library.

Another important area needing much work is the issue of how to obtain good orderings of
the conditions in each rule. As we mentioned in Section 6.3.3, this issue is not well understood,
especially in the context of systems where sharing is very important. A reliable algorithm for
�nding good condition orderings while taking sharing into account would be another major
advance in the �eld of production match.

In Chapter 6, we conjectured that e�cient matching cannot be guaranteed for any minimally
expressive representation. Proving or disproving this conjecture remains for future work. If the
conjecture is true, then it will be important to develop techniques to help designers of AI systems
predict whether match cost will become problematic. The levels-and-structures model is one such
technique, but it requires a good deal of knowledge on the designer's part. Other techniques
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might be developed to make the designer's job easier. On the other hand, if the conjecture
is false | if there are minimally expressive representations which a�ord guaranteed e�cient
matching | then investigating the appropriate match algorithms for these representations will
obviously be important.

Finally, this thesis has addressed scalability along the dimension of the number of rules. As
we mentioned in Chapter 1, other researchers in production systems have recently developed
techniques for improving the scalability of match algorithms along the dimension of the number
of WMEs. An interesting possibility for future work is to try to combine the results of the two
e�orts, with the aim of obtaining an algorithm capable of quickly matching millions of rules
against millions of working memory elements.



Appendix A

Final Pseudocode

This appendix gives pseudocode for Rete/UL. Most of this pseudocode is simply copied from
appropriate places in the body of the thesis, as indicated below on each code fragment. We
also include here a few details that were omitted in the body of the thesis; lines in the margin
indicate the parts of the pseudocode that are changed.

We begin with the basic data structures for WMEs and tokens:

structure WME fcopied from page 41g
�elds: array [1..3] of symbol
alpha-mem-items: list of item-in-alpha-memory fthe ones with wme=this WMEg
tokens: list of token fthe ones with wme=this WMEg
negative-join-results: list of negative-join-result

end

structure token fcopied from page 48g
parent: token fpoints to the higher token, for items 1...i-1g
wme: WME fgives item ig
node: rete-node fpoints to the node this token is ing
children: list of token fthe ones with parent=this tokeng
join-results: list of negative-join-result fused only on tokens in negative nodesg
ncc-results: list of token fsimilar to join-results but for NCC nodesg
owner: token
fon tokens in NCC partners: token in whose local memory this result residesg

end
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We now give the code for the alpha part of the network. The pseudocode here implements
the alpha network using the exhaustive-hash-table-lookup technique described in Section 2.2.3.
We need to make one minor change to this code when we use right unlinking. Each alpha
memory must have a reference-count on it, indicating the number of join or negative nodes
using it. We need this count so that when we remove productions from the network, we can tell
when an alpha memory is no longer needed and should be deallocated. In Chapter 2 we did this
by checking whether the successors �eld of the alpha memory was nil, but when we use right
unlinking, it is possible for successors to be nil even when the alpha memory is still in use | if
every node using it happens to be right-unlinked.

structure alpha-memory frevised from version on page 32g
items: list of item-in-alpha-memory
successors: list of rete-node
reference-count: integer

end

structure item-in-alpha-memory fcopied from page 32g
wme: WME fthe WME that's in the memoryg
amem: alpha-memory fpoints to the alpha memory nodeg

end

procedure alpha-memory-activation (node: alpha-memory, w: WME)
fcopied from page 32g

new-item  allocate-memory()
new-item.wme  w; new-item.amem  node;
insert new-item at the head of node.items
insert new-item at the head of w.alpha-mem-items
for each child in node.successors do right-activation (child, w)

end

procedure add-wme (w: WME) fexhaustive hash table versiong
fcopied from page 17g

let v1, v2, and v3 be the symbols in the three �elds of w
alpha-mem  lookup-in-hash-table (v1,v2,v3)
if alpha-mem 6= \not-found" then alpha-memory-activation (alpha-mem, w)
alpha-mem  lookup-in-hash-table (v1,v2,�)
if alpha-mem 6= \not-found" then alpha-memory-activation (alpha-mem, w)
alpha-mem  lookup-in-hash-table (v1,�,v3)
if alpha-mem 6= \not-found" then alpha-memory-activation (alpha-mem, w)
...
alpha-mem  lookup-in-hash-table (�,�,�)
if alpha-mem 6= \not-found" then alpha-memory-activation (alpha-mem, w)

end
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All nodes in the beta part of the network have the following �elds in common:

structure rete-node: fcopied from page 22g
type: \beta-memory", \join-node", \p-node", etc. for various other node typesg
children: list of rete-node
parent: rete-node
. . . (variant part | other data depending on node type) . . .

end

We now give the implementation of beta memory nodes. With left unlinking, we need to
add an extra �eld containing a list of all the node's children, including unlinked ones | recall
that some of the node's children will be spliced out of the children list. Having access to all

the children is important so that when we are adding new productions to the network, we can
�nd nodes to share. Without having a second list, we would be unable to �nd and share any
currently-left-unlinked nodes.

structure beta-memory: frevised from version on page 22g
items: list of token
all-children: list of rete-node

end

procedure beta-memory-left-activation (node: beta-memory, t: token, w: WME)
fcopied from page 30g

new-token  make-token (node, t, w)
insert new-token at the head of node.items
for each child in node.children do left-activation (child, new-token)

end

function make-token (node: rete-node, parent: token, w: wme)
returning token fcopied from page 42g

tok  allocate-memory()
tok.parent  parent
tok.wme  w
tok.node  node ffor tree-based removalg
tok.children = nil ffor tree-based removalg
insert tok at the head of parent.children ffor tree-based removalg
if w 6= nil then fwe need this check for negative conditionsg

insert tok at the head of w.tokens ffor tree-based removalg
return tok

end
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We now give the implementation of join nodes. The relink-to-alpha-memory procedure allows
the use of conjunctive negations, as described in Section 4.3.2.

structure join-node: fcopied from page 90g
amem: alpha-memory fpoints to the alpha memory this node is attached tog
tests: list of test-at-join-node
nearest-ancestor-with-same-amem: rete-node

end

structure test-at-join-node: fcopied from page 24g
�eld-of-arg1: \identi�er", \attribute", or \value"
condition-number-of-arg2: integer
�eld-of-arg2: \identi�er", \attribute", or \value"

end

function perform-join-tests (tests: list of test-at-join-node, t: token, w: WME)
returning boolean fcopied from page 25g

for each this-test in tests do
arg1  w.[this-test.�eld-of-arg1]
fWith list-form tokens, the following statement is really a loopg
wme2  the [this-test.condition-number-of-arg2]'th element in t
arg2  wme2.[this-test.�eld-of-arg2]
if arg1 6= arg2 then return false

return true

end

procedure join-node-left-activation (node: join-node, t: token)
fcopied from page 103g

if node.parent just became nonempty then
relink-to-alpha-memory (node)
if node.amem.items = nil then

remove node from the list node.parent.children
for each item in node.amem.items do

if perform-join-tests (node.tests, t, item.wme) then
for each child in node.children do left-activation (child, t, item.wme)

end

procedure join-node-right-activation (node: join-node, w: WME)
fcopied from page 103g

if node.amem just became nonempty then
relink-to-beta-memory (node)
if node.parent.items = nil then

remove node from the list node.amem.successors
for each t in node.parent.items do f\parent" is the beta memory nodeg

if perform-join-tests (node.tests, t, w) then
for each child in node.children do left-activation (child, t, w)

end
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procedure relink-to-alpha-memory (node: rete-node)
fversion allowing conjunctive negationsg fcopied from page 91g
ffollow links up from node, �nd �rst ancestor that's linkedg
ancestor  node.nearest-ancestor-with-same-amem
while ancestor 6= nil and ancestor is right-unlinked do

ancestor  ancestor.nearest-ancestor-with-same-amem
fnow splice in the node in the right placeg
if ancestor 6= nil

then insert node into the list node.amem.successors immediately before ancestor
else insert node at the tail of the list node.amem.successors

end

procedure relink-to-beta-memory (node: join-node) fcopied from page 103g
insert node at the head of the list node.parent.children

end
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We now give the implementation of negative nodes.

structure negative-join-result fcopied from page 41g
owner: token fthe token in whose local memory this result residesg
wme: WME fthe WME that matches owner g

end

structure negative-node: fcopied from page 91g
fjust like for a beta memoryg
items: list of token
fjust like for a join nodeg
amem: alpha-memory fpoints to the alpha memory this node is attached tog
tests: list of test-at-join-node
nearest-ancestor-with-same-amem: rete-node

end

procedure negative-node-left-activation (node: negative-node, t: token, w: WME)
fcopied from page 88g

if node.items = nil then relink-to-alpha-memory (node)
fbuild and store a new token, just like a beta memory wouldg
new-token  make-token (node, t, w)
insert new-token at the head of node.items

fcompute the join resultsg
new-token.join-results  nil

for each item in node.amem.items do
if perform-join-tests (node.tests, new-token, item.wme) then

jr  allocate-memory()
jr.owner  new-token; jr.wme  w
insert jr at the head of the list new-token.join-results
insert jr at the head of the list w.negative-join-results

fIf join results is empty, then inform childreng
if new-token.join-results=nil then

for each child in node.children do left-activation (child, new-token, nil )
end

procedure negative-node-right-activation (node: negative-node, w: WME)
fcopied from page 43g

for each t in node.items do
if perform-join-tests (node.tests, t, w) then

if t.join-results=nil then delete-descendents-of-token (t)
jr  allocate-memory()
jr.owner  t; jr.wme w
insert jr at the head of the list t.join-results
insert jr at the head of the list w.negative-join-results

end
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We now give the implementation of negated conjunctive conditions (NCC's). As discussed
in Section 2.8, we assume that the children list on the join node for the condition preceding the
NCC is ordered so that the NCC subnetwork gets activated before the NCC node.

structure ncc-node fcopied from page 47g
items: list of token
partner: rete-node fpoints to the corresponding NCC partner nodeg

end

structure ncc-partner-node fcopied from page 48g
ncc-node: rete-node fpoints to the corresponding NCC nodeg
number-of-conjuncts: integer fnumber of conjuncts in the NCCg
new-result-bu�er: list of token

fresults for the match the NCC node hasn't heard aboutg
end

procedure ncc-node-left-activation (node: ncc-node, t: token, w: WME)
fcopied from page 49g

new-token  make-token (node, t, w) fbuild and store a new tokeng
insert new-token at the head of node.items
new-token.ncc-results  nil fget initial ncc resultsg
for each result in node.partner.new-result-bu�er do

remove result from node.partner.new-result-bu�er
insert result at the head of new-token.ncc-results
result.owner  new-token

if new-token.ncc-results=nil then fNo ncc results, so inform childreng
for each child in node.children do left-activation (child, new-token, nil )

end
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procedure ncc-partner-node-left-activation (partner: rete-node, t:token, w:WME)
fcopied from page 50 | see additional comments thereg

ncc-node  partner.ncc-node
new-result  make-token (partner, t, w) fbuild a result token ht; wig
fFind the appropriate owner token (into whose local memory we should put this

result)g
owners-t  t; owners-w  w
for i = 1 to partner.number-of-conjuncts do

owners-w  owners-t.wme; owners-t  owners-t.parent
fLook for this owner in the NCC node's memory. If we �nd it, add new-result to its

local memory, and propagate (deletions) to the NCC node's children.g
if there is already a token owner in ncc-node.items with parent=owners-t

and wme=owners-w then

add new-result to owner.ncc-results; new-result.owner  owner

delete-descendents-of-token (owner)
else

fWe didn't �nd an appropriate owner token already in the NCC node's memory,
so we just stu� the result in our temporary bu�er.g
insert new-result at the head of partner.new-result-bu�er

end
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We now give the pseudocode for handling removals of WMEs.

procedure remove-wme (w: WME) fcopied from page 102g
for each item in w.alpha-mem-items do

remove item from the list item.amem.items
if item.amem.items = nil then falpha memory just became emptyg

for each node in item.amem.successors do
if node is a join node then fdon't left-unlink negative nodesg

remove node from the list node.parent.children
deallocate memory for item

while w.tokens 6= nil do

delete-token-and-descendents (the �rst item on w.tokens)
for each jr in w.negative-join-results do

remove jr from the list jr.owner.join-results
if jr.owner.join-results=nil then

for each child in jr.owner.node.children do
left-activation (child, jr.owner, nil )

deallocate memory for jr
end
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procedure delete-token-and-descendents (tok: token) fcopied from page 87g
while tok.children 6= nil do

delete-token-and-descendents (the �rst item on tok.children)
if tok.node is not an NCC partner node then

remove tok from the list tok.node.items
if tok.wme 6= nil then remove tok from the list tok.wme.tokens
remove tok from the list tok.parent.children
if tok.node is a memory node then

if tok.node.items = nil then

for each child in tok.node.children do
remove child from the list child.amem.successors

if tok.node is a negative node then
if tok.node.items = nil then

remove tok.node from the list tok.node.amem.successors
for each jr in tok.join-results do

remove jr from the list jr.w.negative-join-results
deallocate memory for jr

if tok.node is an NCC node then
for each result-tok in tok.ncc-results do

remove result-tok from the list result-tok.wme.tokens
remove result-tok from the list result-tok.parent.children
deallocate memory for result-tok

if tok.node is an NCC partner node then
remove tok from the list tok.owner.ncc-results
if tok.owner.ncc-results = nil then

for each child in tok.node.ncc-node.children do
left-activation (child, tok.owner, nil )

deallocate memory for tok
end

procedure delete-descendents-of-token (t: token) fcopied from page 43g
while t.children 6= nil do

delete-token-and-descendents (the �rst item on t.children)
end
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Finally, we have the pseudocode for adding and removing productions. The code here in-
cludes several things omitted in the body of the thesis: creating nodes for negative conditions,
creating nodes for NCC's, �lling in the nearest-ancestor-with-same-amem �elds on newly-created
join and negative nodes, and unlinking newly-created nodes that have an empty memory. It also
makes some minor changes we need in order to be able to remove productions when unlinking
is used.

We modify the build-or-share-alpha-memory function so it initializes the reference-count on
newly-created alpha memory nodes.

function build-or-share-alpha-memory (c: condition) fexhaustive table lookup versiong
returning alpha-memory frevised from version on page 36g
f�gure out what the memory should look likeg
id-test  nil ; attr-test  nil ; value-test  nil

if a constant test t occurs in the \id" �eld of c then id-test  t

if a constant test t occurs in the \attribute" �eld of c then attr-test  t

if a constant test t occurs in the \value" �eld of c then value-test  t

fis there an existing memory like this?g
am  lookup-in-hash-table (id-test, attr-test, value-test)
if am 6= nil then return am
fno existing memory, so make a new oneg
am  allocate-memory()
add am to the hash table for alpha memories
am.successors  nil ; am.items  nil

am.reference-count  0
finitialize am with any current WMEsg
for each WME w in working memory do

if w passes all the constant tests in c then alpha-memory-activation (am ,w)
return am

end
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We modify the build-or-share-beta-memory-node function so it initializes the all-children �eld
on newly-created beta memory nodes.

function build-or-share-beta-memory-node (parent: rete-node)
returning rete-node frevised from version on page 34g

for each child in parent.children do flook for an existing node to shareg
if child is a beta memory node then return child

new  allocate-memory()
new.type  \beta-memory"
new.parent  parent; insert new at the head of the list parent.children
new.children  nil

new.all-children  nil

new.items  nil

update-new-node-with-matches-from-above (new)
return new

end

We make one minor change to get-join-tests-from-condition. We must now allow earlier-
conds to contain negative conditions. Occurrences of variables inside negative conditions do not
represent bindings of those variables | a negative condition tests for the absence of something
in working memory, so there will be no binding. Thus, we modify the function so that it ignores
negative conditions in earlier-conds.

function get-join-tests-from-condition (c: condition, earlier-conds: list of condition)
returning list of test-at-join-node frevised from version on page 35g

result  nil

for each occurrence of a variable v in a �eld f of c do
if v occurs anywhere in a positive condition in earlier-conds then

let i be the largest i and f2 be a �eld such that v occurs in the f2 �eld of
the ith condition (a positive one) in earlier-conds

this-test  allocate-memory()
this-test.�eld-of-arg1  f

this-test.condition-number-of-arg2  i

this-test.�eld-of-arg2  f2
append this-test to result

return result
end

For right unlinking, we need to initialize the nearest-ancestor-with-same-amem �elds on
newly-created join and negative nodes. The �nd-nearest-ancestor-with-same-amem procedure
�nds the appropriate value. It starts at a given node and walks up the beta network, returning
the �rst node it �nds that uses a given alpha memory. Note that this node may be in the
subnetwork for a conjunctive negation.
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function �nd-nearest-ancestor-with-same-amem (node: rete-node, am: alpha-memory)
returning rete-node

if node is the dummy top node then return nil

if node.type = \join" or node.type = \negative" then
if node.amem = am then return node

if node.type = \NCC"
then return �nd-nearest-ancestor-with-same-amem (node.partner.parent, am)
else return �nd-nearest-ancestor-with-same-amem (node.parent, am)

end

When we create a new join node, we check whether either of its memories is empty; if so, we
unlink it right away.

function build-or-share-join-node (parent: rete-node, am: alpha-memory,
tests: list of test-at-join-node)

returning rete-node frevised from version on page 34g
for each child in parent.all-children do flook for an existing node to shareg

if child is a join node and child.amem=am and child.tests=tests then
return child

new  allocate-memory()
new.type  \join"
new.parent  parent; insert new at the head of the list parent.children
insert new at the head of the list parent.all-children
new.children  nil

new.tests  tests; new.amem  am
insert new at the head of the list am.successors
increment am.reference-count
new.nearest-ancestor-with-same-amem  

�nd-nearest-ancestor-with-same-amem (parent, am)
fUnlink right away if either memory is emptyg
if parent.items = nil then remove new from the list am.successors
else if amem.items = nil then remove new from the list parent.children
return new

end

The function for creating new negative nodes is similar to the ones for creating beta memories
and join nodes. However, one additional consideration is important with negative conditions,
and also with conjunctive negations. Any time there is a variable <v>which is tested in a negative
condition and bound in one or more other (positive) conditions, at least one of these positive
conditions must come before the negative condition. Recall that when we add a production to
the network, the network-construction routines are given a list of its conditions in some order. If
all conditions are positive, any order will work. Negative conditions require the aforementioned
constraint on the order, though, because negative nodes need to be able to access the appropriate
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variable bindings in tokens, and the tokens \seen" by negative nodes indicate only variable
bindings from earlier conditions, i.e., conditions higher up in the network.

function build-or-share-negative-node (parent: rete-node, am: alpha-memory,
tests: list of test-at-join-node)

returning rete-node
for each child in parent.children do flook for an existing node to shareg

if child is a negative node and child.amem=am and child.tests=tests then
return child

new  allocate-memory()
new.type  \negative"
new.parent  parent; insert new at the head of the list parent.children
new.children  nil

new.items  nil

new.tests  tests; new.amem  am
insert new at the head of the list am.successors
increment am.reference-count
new.nearest-ancestor-with-same-amem  

�nd-nearest-ancestor-with-same-amem (parent, am)
update-new-node-with-matches-from-above (new)
fRight-unlink the node if it has no tokensg
if new.items = nil then remove new from the list am.successors
return new

end
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When adding a production that uses an NCC, we use the build-or-share-ncc-nodes function.
Most of the work in this function is done by the helper function build-or-share-network-for-

conditions, which builds or shares the whole subnetwork for the subconditions of the NCC. The
rest of the build-or-share-ncc-nodes function then builds or shares the NCC and NCC partner
nodes.

function build-or-share-ncc-nodes (parent: rete-node, c: condition fthe NCC conditiong,
earlier-conds: list of condition)

returning rete-node freturns the NCC nodeg
bottom-of-subnetwork  build-or-share-network-for-conditions (parent,

subconditions of c, earlier-conds)
for each child in parent.children do flook for an existing node to shareg

if child is an NCC node and child.partner.parent=bottom-of-subnetwork
then return child

new  allocate-memory(); new-partner  allocate-memory()
new.type  \NCC"; new-partner.type  \NCC-partner"
new.parent  parent
insert new at the tail of the list parent.children fso the subnetwork comes �rstg
new-partner.parent  bottom-of-subnetwork
insert new-partner at the head of the list bottom-of-subnetwork.children
new.children  nil ; new-partner.children  nil

new.partner  new-partner; new-partner.ncc-node  new
new.items  nil ; partner.new-result-bu�er  nil

partner.number-of-conjuncts  number of subconditions of c
fNote: we have to inform NCC node of existing matches before informing the partner,
otherwise lots of matches would all get mixed together in the new-result-bu�erg
update-new-node-with-matches-from-above (new)
update-new-node-with-matches-from-above (partner)
return new

end
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The build-or-share-network-for-conditions helper function takes a list of conditions, builds
or shares a network structure for them underneath the given parent node, and returns the
lowermost node in the new-or-shared network. Note that the list of conditions can contain
negative conditions or NCC's, not just positive conditions.

function build-or-share-network-for-conditions (parent: rete-node,
conds: list of condition,
earlier-conds: list of condition)

returning rete-node
let the conds be denoted by c1; . . . ; ck
current-node  parent
conds-higher-up  earlier-conds
for i = 1 to k do

if ci is positive then
current-node  build-or-share-beta-memory-node (current-node)
tests = get-join-tests-from-condition (ci, conds-higher-up)
am  build-or-share-alpha-memory (ci)
current-node  build-or-share-join-node (current-node, am, tests)

else if ci is negative (but not NCC) then
tests = get-join-tests-from-condition (ci, conds-higher-up)
am  build-or-share-alpha-memory (ci)
current-node  build-or-share-negative-node (current-node, am, tests)

else fNCC'sg
current-node  build-or-share-ncc-nodes (current-node, ci,

conds-higher-up)
append ci to conds-higher-up

return current-node
end

Finally, the add-production procedure can now be greatly simpli�ed by having it use build-
or-share-network-for-conditions.

procedure add-production (lhs: list of conditions) frevised from version on page 37g
current-node  build-or-share-network-for-conditions (dummy-top-node, lhs, nil )
build a new production node, make it a child of current-node
update-new-node-with-matches-from-above (the new production node)

end
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We modify the update-new-node-with-matches-from-above procedure so it handles the case
where the parent node is a negative or NCC node. One additional note: if the parent is a join
node, this procedure will right-activate it. The join-node-right-activation procedure contains
the line \if node.amem just became nonempty then . . . " | depending on how this test is
implemented (e.g., by checking whether the number of items in the alpha memory is exactly
one), we may need to be careful to ensure that right-activations from the update-new-node-

with-matches-from-above procedure do not make the alpha memory \look" like it just became
nonempty.

procedure update-new-node-with-matches-from-above (new-node: rete-node)
frevised from version on page 38g

parent  new-node.parent
case parent.type of

\beta-memory":
for each tok in parent.items do left-activation (new-node, tok)

\join":
saved-list-of-children  parent.children
parent.children  [new-node] flist consisting of just new-nodeg
for each item in parent.amem.items do

right-activation (parent, item.wme)
parent.children  saved-list-of-children

\negative":
for each tok in parent.items do

if tok.join-results = nil then left-activation (new-node, tok, nil )
\NCC":

for each tok in parent.items do
if tok.ncc-results = nil then left-activation (new-node, tok, nil )

end
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Finally, we modify the procedures for removing productions so they handle negative condi-
tions and NCC's.

procedure remove-production (prod: production) fcopied from page 38g
delete-node-and-any-unused-ancestors (the p-node for prod)

end

procedure delete-node-and-any-unused-ancestors (node: rete-node)
frevised from version on page 39g
fFor NCC nodes, delete the partner node toog
if node is an NCC node then

delete-node-and-any-unused-ancestors (node.partner)

fClean up any tokens the node containsg
if node is a beta memory, negative, or NCC node then

while node.items 6= nil do

delete-token-and-descendents (�rst item on node.items)
if node is an NCC partner node then

while node.new-result-bu�er 6= nil do

delete-token-and-descendents (�rst item on node.new-result-bu�er)

fDeal with the alpha memoryg
if node is a join or negative node then

if node is not right-unlinked then
remove node from the list node.amem.successors

decrement node.amem.reference-count
if node.amem.reference-count=0 then delete-alpha-memory (node.amem)

fDeal with the parentg
if node is not left-unlinked then

remove node from the list node.parent.children
if node is a join node then

remove node from the list node.parent.all-children
if node.parent.all-children=nil then

delete-node-and-any-unused-ancestors (node.parent)
else if node.parent.children=nil then

delete-node-and-any-unused-ancestors (node.parent)

deallocate memory for node
end



Appendix B

Static Characteristics of the Testbed

Systems

This appendix presents measurements of various characteristics of each of the testbed systems.
We have already discussed several important dynamic (run-time) characteristics of these systems
in the body of the thesis. Our focus here is on static characteristics | characteristics which are
independent of the run-time distribution of WMEs, e.g., statistics about the productions and
the Rete network construction.

Table B.1 shows the number of productions, right-hand-side (RHS) actions, conditions, and
Rete nodes in each testbed system, with 100,000 or more learned rules in each. The third row
gives the total number of RHS actions in all rules. (We have not discussed RHS actions in
this thesis, because their handling is highly system-dependent.) The fourth through sixth rows
give the number of positive, negative, and conjunctive negative conditions, summed over all the
rules; the seventh row gives the total number of all three types of conditions. Note that the
subconditions inside conjunctive negations are not counted at all here | a conjunctive negation
is counted as just one condition. (This makes little di�erence, since conjunctive negations are
not very common in these systems, as the table shows.) The eighth row gives the number of
alpha memories in the Rete network. This is particularly large in Assembler and Radar because
they create many new constants (\gensym" slot identi�cation tags or numeric timestamps) at
run-time, leading to the creation of new alpha memories. The ninth through thirteenth rows
give the number of beta nodes of various types (beta memories, join nodes, negative nodes, CN
or CN partner nodes, and production nodes); the last row gives the total number of beta nodes
in the Rete network. Note that the implementation used in this thesis sometimes merges beta
memories and join nodes, as discussed in Section 2.9.2; the counts shown here are those for a
network without merging, i.e., a single merged node is counted as one beta memory node plus
one join node.

Table B.2 gives the same data as Table B.1, except it is normalized for the number of
productions in each system, e.g., the second row gives the mean number of RHS actions per
production. Two things are noteworthy here. First, the average number of conditions per
production (the sixth row) ranges from 9.15 in Radar to 43.22 in Merle. As we mentioned in
Section 6.1, the worst-case cost of matching a single production is exponential in the number of
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Assem. Disp. Merle Radar SCA-F. SCA-R. Sched
Productions 105,308 115,891 106,323 105,548 154,299 119,950 117,386
RHS actions 466,646 588,264 1,593,719 129,577 462,861 359,814 466,509
Cond's: pos. 2,260,030 2,108,656 4,425,998 943,257 3,871,885 1,780,686 3,932,271

neg. 45,139 8,010 168,552 22,697 9 9 57,899
conj. neg. 2 17 779 2 0 0 16

Total 2,305,171 2,116,683 4,595,329 965,956 3,871,894 1,780,695 3,990,186
� nodes: mem. 30,267 1,286 1,106 22,891 66 66 1,154
� nodes: mem. 1,372,918 474,956 2,132,104 453,453 484,926 328,955 2,113,667

join 1,463,140 582,185 2,213,855 558,871 638,361 445,337 2,230,962
neg. 95 6,920 49,769 22,625 8 8 965

CN or CNP 4 26 8 4 0 0 34
p-node 105,308 115,891 106,323 105,548 154,299 119,950 117,386
Total 2,941,466 1,179,979 4,502,060 1,140,502 1,277,595 894,251 4,463,015

Table B.1: Number of productions, actions, conditions, and Rete network nodes in each testbed
system, with 100,000 or more learned rules.

conditions. If these systems actually exhibited this worst-case behavior, the match cost would
be astronomical. This clearly demonstrates that the match cost a system incurs in practice
may be much less than the theoretical worst case.1 Second, the number of join nodes or beta
memories per production is often much less than the number of conditions per production, due
to sharing. For example, productions in Sched contain 33.50 positive conditions on average (row
three). If there were no sharing, these conditions would be represented by 33.50 join nodes per
production. But the actual number of join nodes per production is only 19.01 (row nine) | so
on average, sharing saves 14.49 join nodes per production.

Table B.3 shows the static sharing factor for each type of Rete node in each system. The
second row gives the static sharing factor for alpha memories, i.e., the number of alpha memories
that would be needed if alpha memories were not shared between conditions, divided by the
number of actual memories that actually are needed. The third through seventh rows give
the static sharing factors for various types of beta nodes (beta memories, join nodes, negative
nodes, CN and CN partner nodes, and production nodes). The last row gives the overall static
sharing factor for beta nodes, i.e., the total number of beta nodes needed without sharing divided
by the total number needed with sharing. Note that the static impact of sharing beta nodes is
rather modest, compared with the dynamic impact discussed in Section 3.5. The di�erence arises
because the static measurement gives equal weight to all nodes, while the dynamic measurement
gives more weight to nodes activated more often, and many highly-shared nodes near the tops
of the networks in these systems are activated quite often.

The data shown in Tables B.1, B.2, and B.3 is from the testbed systems after learning, i.e.,

1Note that this occurs despite the fact that none of the systems strictly adheres to the unique attributes

restriction on working memory (Tambe, 1991, pages 36-37), since the presence of multiple goals and preferences

violates this restriction; moreover, at least two of the systems (Assembler and Dispatcher) use large multi-

attributes in one or more problem spaces.
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Assem. Disp. Merle Radar SCA-F. SCA-R. Sched
RHS actions 4.43 5.08 14.99 1.23 3.00 3.00 3.97
Cond's: pos. 21.46 18.20 41.63 8.94 25.09 14.85 33.50

neg. 0.43 0.07 1.59 0.22 0.00 0.00 0.49
conj. neg. 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Total 21.89 18.26 43.22 9.15 25.09 14.85 33.99
� nodes: mem. 0.29 0.01 0.01 0.22 0.00 0.00 0.01
� nodes: mem. 13.04 4.10 20.05 4.30 3.14 2.74 18.01

join 13.89 5.02 20.82 5.29 4.14 3.71 19.01
neg. 0.00 0.06 0.47 0.21 0.00 0.00 0.01

CN or CNP 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p-node 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Total 27.93 10.18 42.34 10.81 8.28 7.46 38.02

Table B.2: Number of actions, conditions, and Rete network nodes per production in each
testbed system, with 100,000 or more learned rules.

Assem. Disp. Merle Radar SCA-F. SCA-R. Sched
� nodes: mem. 76.16 1,645.96 4,155.61 42.20 58,665.06 26,980.23 3,457.72
� nodes: mem. 1.65 4.44 2.08 2.08 7.98 5.41 1.86

join 1.54 3.62 2.00 1.69 6.07 4.00 1.76
neg. 475.15 1.16 3.39 1.00 1.13 1.13 60.00

CN or CNP 1.00 1.31 194.75 1.00 NA NA 1.00
p-node 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Overall 1.62 3.78 2.05 1.86 6.30 4.25 1.83

Table B.3: Static sharing factors for various types of nodes, with 100,000 or more learned rules.

with the initial rules plus 100,000 or more learned rules. Tables B.4, B.5, and B.6 give the
corresponding data from the testbed systems before learning, i.e., with just the initial rules.
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Assem. Disp. Merle Radar SCA-F. SCA-R. Sched
Productions 293 1,953 624 341 48 48 418
RHS actions 1,607 9,414 1,814 1,374 108 108 1,259
Cond's: pos. 2,388 15,534 5,288 2,939 374 374 5,103

neg. 128 1,159 409 194 9 9 75
conj. neg. 2 17 3 2 0 0 16

Total 2,518 16,710 5,700 3,135 383 383 5,194
� nodes: mem. 209 918 378 266 30 30 238
� nodes: mem. 1,211 5,745 2,737 1,472 170 170 1,757

join 1,425 6,909 3,173 1,701 194 194 2,090
neg. 89 487 222 122 8 8 66

CN or CNP 4 26 6 4 0 0 34
p-node 293 1,953 624 341 48 48 418
Total 3,023 15,121 6,763 3,641 421 421 4,366

Table B.4: Number of productions, actions, conditions, and Rete network nodes in each testbed
system, with just the initial productions (no learned rules).

Assem. Disp. Merle Radar SCA-F. SCA-R. Sched
RHS actions 5.48 4.82 2.91 4.03 2.25 2.25 3.01
Cond's: pos. 8.15 7.95 8.47 8.62 7.79 7.79 12.21

neg. 0.44 0.59 0.66 0.57 0.19 0.19 0.18
conj. neg. 0.01 0.01 0.00 0.01 0.00 0.00 0.04

Total 8.59 8.56 9.13 9.19 7.98 7.98 12.43
� nodes: mem. 0.71 0.47 0.61 0.78 0.63 0.63 0.57
� nodes: mem. 4.13 2.94 4.39 4.32 3.54 3.54 4.20

join 4.86 3.54 5.08 4.99 4.04 4.04 5.00
neg. 0.30 0.25 0.36 0.36 0.17 0.17 0.16

CN or CNP 0.01 0.01 0.01 0.01 0.00 0.00 0.08
p-node 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Total 10.32 7.74 10.84 10.68 8.77 8.77 10.44

Table B.5: Number of actions, conditions, and Rete network nodes per production in each
testbed system, with just the initial productions (no learned rules).
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Assem. Disp. Merle Radar SCA-F. SCA-R. Sched
� nodes: mem. 12.07 18.22 15.09 11.80 12.77 12.77 21.92
� nodes: mem. 1.98 2.71 1.93 2.00 2.20 2.20 2.93

join 1.68 2.25 1.67 1.73 1.93 1.93 2.46
neg. 1.44 2.38 1.84 1.59 1.13 1.13 1.15

CN or CNP 1.00 1.31 1.00 1.00 NA NA 1.00
p-node 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Overall 1.82 2.40 1.81 1.86 2.03 2.03 2.57

Table B.6: Static sharing factors for various types of nodes, with just the initial productions
(no learned rules).
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Appendix C

Distribution of Sizes of A�ect Sets

This appendix presents the distribution of the sizes of WME a�ect sets in the testbed systems,
with 100,000 rules in each system. The mean sizes are shown in Figure 3.3 on page 72. The
distribution is shown in Figure C.1. For various size ranges, it shows the percentage of WMEs
whose a�ect set sizes fall into that range. (The scale on the horizontal axis is logarithmic.)
Table C.1 shows the distribution broken down into size ranges with a �ner granularity. As
the table shows, the distribution varies widely across systems. In each system, it has several
peaks; typically, a few peaks are at small sizes (less than 100 a�ected productions) and a
few are at very large sizes (10,000 or more a�ected productions). The largest sizes (80,000{
100,000 productions) are typically WMEs representing the current goal, problem space, state,
or operator; such WMEs are a common Soar idiom. Although it might be possible to design
special-case matching techniques to handle this idiom, this is neither necessary (since unlinking
and sharing already handle it quite well) nor su�cient to avoid a linear increase in match cost
(since many other WMEs also a�ect tens of thousands of productions).
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Size Range Assem. Disp. Merle Radar SCA-F. SCA-R. Sched
0{9 0.16 0.23 2.49 0.62 14.98 13.97 2.16

10{19 0.16 0.21 8.66 0.62 45.34 42.53 1.28
20{29 8.99 0.00 0.00 0.00 2.80 5.90 0.00
30{39 0.00 0.00 4.63 3.56 0.37 1.01 0.00
40{49 32.50 0.00 9.98 0.00 0.00 0.00 2.83
50{59 9.78 0.00 6.20 47.68 0.00 0.68 24.71
60{69 0.91 0.00 4.45 9.60 0.00 0.00 1.77
70{79 0.16 26.06 0.96 0.71 0.00 0.00 7.92
80{89 0.11 5.24 1.27 3.44 0.37 0.00 1.28
90{99 4.57 19.01 2.49 0.00 0.00 0.00 5.95

100{199 0.64 22.00 8.22 7.51 0.00 0.00 6.47
200{299 0.00 4.60 0.37 6.18 0.00 0.70 0.22
300{399 0.00 0.30 0.20 0.00 0.37 0.00 0.08
400{499 0.00 0.18 0.05 0.00 0.00 0.00 0.01
500{599 0.00 0.05 0.08 0.02 0.00 0.00 0.00
600{699 0.00 0.07 0.00 0.00 0.00 0.36 0.00
700{799 0.00 6.16 1.13 0.00 0.00 0.00 0.00
800{899 0.00 0.00 0.03 0.00 0.00 0.00 0.00
900{999 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000{1,999 0.01 1.52 1.27 0.07 0.37 0.80 14.90
2,000{2,999 0.01 0.07 1.95 0.11 0.38 0.00 0.06
3,000{3,999 0.01 0.00 2.32 0.48 0.00 0.00 0.00
4,000{4,999 0.22 0.00 0.88 0.25 0.00 0.00 0.00
5,000{5,999 0.01 0.17 0.81 0.00 0.41 0.95 0.00
6,000{6,999 0.01 0.00 1.86 0.34 0.00 0.00 0.00
7,000{7,999 0.01 0.00 0.56 0.99 0.46 0.00 0.00
8,000{8,999 0.01 0.00 0.91 0.21 0.00 0.00 0.00
9,000{9,999 0.01 2.21 0.05 0.00 0.00 0.52 0.68

10,000{19,999 11.83 4.31 11.86 7.40 5.47 1.54 0.00
20,000{29,999 13.49 1.22 3.30 0.00 1.17 4.52 0.95
30,000{39,999 0.00 0.10 1.56 0.00 0.48 17.33 0.00
40,000{49,999 9.20 3.06 1.74 5.27 3.33 1.10 16.01
50,000{59,999 0.00 0.14 0.99 0.44 5.04 0.00 4.20
60,000{69,999 0.00 0.23 1.74 0.18 2.31 0.00 0.00
70,000{79,999 0.00 0.96 3.12 0.00 1.11 0.00 0.00
80,000{89,999 2.49 1.89 1.78 0.00 1.04 0.00 0.00
90,000{100,000 4.73 0.00 12.07 4.33 14.18 8.09 8.51

Table C.1: Distribution of sizes of WME a�ect sets, with 100,000 rules in each system.
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Appendix D

Reducing Unique-Attribute Trees to

Atomic WMEs

In this appendix, we show that the problem of matching tree-structured productions against a
tree-structured, unique-attribute working memory can be reduced to the problem of matching
with atomic WMEs. Recall our de�nition of matching with atomic WMEs from Section 6.4:
in the preprocessing phase, we are given P di�erent sets A1; . . . ; AP , where each Ai is a set
of symbols taken from some �nite alphabet �. (Each Ai is like a production, testing for the
presence of certain symbols in working memory.) In the query phase, we are given a set W � �
(this speci�es the symbols in working memory), and we must output the set fijAi � Wg of
matching productions.

Now consider the problem of matching tree-structured productions against a tree-structured,
unique-attribute working memory. In this problem, working memory must form a tree: if we
treat working memory as a directed, labeled graph, viewing each WME (id ^attr value) as
an arc id

attr�! value, then this graph must be a tree. Working memory must also use unique-
attributes: for each id and each attr, there is at most one value such that (id ^attr value)

is in working memory. The LHS of each production must be tree-structured: if we treat LHS's as
directed, labeled graphs, these graphs must be trees. More precisely, we �rst require the identi�er
�eld of each condition to contain a variable, and the attribute �eld to contain a constant; the
value �eld may contain either. If we then view each condition (<id> ^attr value) as an arc
<id>

attr�! value, and each condition (<id> ^attr <value>) as an arc <id>
attr�! <value>, the

graph for each LHS must be a tree. We also require that the variable at the root of the LHS
tree be restricted to match the \root" of the tree in working memory. (This restriction can be
removed at a cost of an extra factor of O(W ) in the second phase of the reduction below | just
run the atomic WME matching problem W times, each time pretending a di�erent one of the
at most W nodes in the working memory tree is the root.)

Theorem D.1 (Reducing Unique-Attribute Trees to Atomic WMEs) The problem of

matching tree-structured productions against a tree-structured, unique-attribute working memory
is polynomial-time reducible to the problem of matching with atomic WMEs.
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Proof sketch: Since the LHS L of any given production forms a tree, it can be written as the
union of some number of root-to-leaf paths pj, where each pj is a sequence of conditions

(<var-1> ^attr-1 <var-2>)

(<var-2> ^attr-2 <var-3>)

(<var-3> ^attr-3 <var-4>)
...

(<var-k> ^attr-k [last-v])

where [last-v] can either be a constant or some variable that does not occur anywhere else
in the LHS. We will call these \condition-paths" to distinguish them from paths in working
memory (sequences of WMEs), which we will call \WM-paths."

We claim that L has a complete match in working memory if and only if each pj does. Clearly
if L has a complete match, then each pj does, since the conditions in pj are a subset of those
in L. If each pj has a complete match, then the union of the WMEs matching the pj 's forms
a complete match for L. (Note that the variable bindings from the matches for these di�erent
condition-paths will be consistent, due to the unique-attribute working memory | as explained
in (Tambe et al., 1990), this restriction guarantees that each variable has at most one possible
binding in WM at any given time.)

The basic idea in our reduction is to convert each LHS L into a set of root-to-leaf condition-
paths, and represent each one as an atomic WME (i.e., symbol). Given a tree-structured working
memory, we calculate all possible condition-paths that have a match in it, and represent each
such path as an atomic WME. It follows from the above claim that this reduction is valid, i.e.,
it results in the correct set of matches being found.

We now give the reduction. In the preprocessing phase, we are given the LHS's Li (1 � i � P )
of a set of P tree-structured productions. Initialize � to be empty. Express each Li as the
union of root-to-leaf condition-paths. Canonicalize the variable names in these condition-paths.
For each such path pj occurring in one or more productions, create a symbol �j and add it
to �. For each LHS Li, create the set Ai = f�jj path pj is part of Lig. This concludes the
preprocessing | we have constructed the Ai's and � for matching with atomic WMEs.

In the query phase, we are given a working memory WM containing jWMj WMEs. Since
WM is tree-structured, it contains at most jWMj paths from the root to some other node. Each
of these WM-paths is a sequence of WMEs

(id-1 ^attr-1 id-2)

(id-2 ^attr-2 id-3)

(id-3 ^attr-3 id-4)
...

(id-k ^attr-k last-v)

Note that there are two possible condition-paths that could match this WM-path, since the �nal
value �eld in a condition-path can be either a variable or a constant:
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(<var-1> ^attr-1 <var-2>) (<var-1> ^attr-1 <var-2>)

(<var-2> ^attr-2 <var-3>) (<var-2> ^attr-2 <var-3>)

(<var-3> ^attr-3 <var-4>) and (<var-3> ^attr-3 <var-4>)
...

...

(<var-k> ^attr-k last-v) (<var-k> ^attr-k <last-var>)

So for the working memory W for matching with atomic WMEs, we simply use the symbols �j
corresponding to these two condition-paths pj , for each of the at most jWMj WM-paths in our
given tree-structured working memory. 2

Note that a reduction between these two problems holds in the other direction as well.
Matching with atomic WMEs is trivially reducible to matching unique-attribute trees | we
just represent a given set of symbols S as a one-level tree having just a root and jSj leaves, each
leaf labeled with a di�erent element of S.
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Appendix E

Detailed Results of Utility Problem

Experiments

This appendix presents more information about the results of the utility problem experiments
described in Chapter 7. Table E.1 shows, for each system, the number of problems in the training
and test sets, and the number of rules it learned on the training set.1 The training and test
problems were created by random generators, as described in Sections 3.1 and 7.1. The sizes of
the training sets were chosen by estimating how many problems would be required in order to
have each system learn just over 100,000 rules. The sizes of the test sets were constrained by
two factors. We wanted the sets to be large enough that the fastest experiments (those using
Rete/UL) would take at least a few seconds, so that the granularity of the system clock would
not signi�cantly a�ect timing accuracy. On the other hand, we wanted the sets to be small
enough that the slowest experiments (those using the basic Rete algorithm and 100,000 rules)
would require only hours, not days. The test set sizes were chosen by estimating a number of
problems which would satisfy these constraints.

Training Test Rules Learned on
System Problems Problems Training Problems
Assembler 300 10 105,015
Dispatcher 6,550 50 113,938
Merle 160 10 105,699
Radar 7,500 100 105,207
SCA-Fixed 200,000 500 154,251
SCA-Random 120,000 500 119,902
Sched 3,000 100 116,968

Table E.1: Number of problems in the training and test sets for, and number of rules learned
by, each system.

1For the Radar system, the number of rules learned di�ered slightly from one run to the next, due to di�erent

random (guessed) decisions the system made when it lacked certain knowledge. In each run, the number was

just over 105,200; the number in the table is from one particular run.
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Before Learning After Learning
Time Time
per Total per Total
DC Time DC Time

System DCs (msec.) (sec.) % Match DCs (msec.) (sec.) % Match
Assembler 34,940 23.0 805.0 51.5 1,590 1,032.1 1,641.0 94.9
Dispatcher 46,615 50.0 2,330.2 37.7 7,782 418.0 3,253.0 84.2
Merle 49,048 25.6 1,255.5 27.7 27,730 478.8 13,278.3 95.4
Radar 4,957 8.2 40.5 37.7 5,840 276.4 1,614.1 90.9
SCA-Fixed 10,503 5.2 54.6 22.9 4,656 575.1 2,677.8 97.6
SCA-Random 10,503 5.4 56.6 23.5 8,582 262.7 2,254.3 95.6
Sched 28,765 11.9 342.7 38.3 12,388 446.4 5,530.6 96.7

Table E.2: Results of the experiments when using the basic Rete matcher.

Before Learning After Learning
Time Time
per Total per Total
DC Time DC Time

System DCs (msec.) (sec.) % Match DCs (msec.) (sec.) % Match
Assembler 34,940 21.6 756.3 44.4 1,590 109.8 174.6 55.8
Dispatcher 46,620 41.8 1,949.6 22.8 7,809 73.5 574.2 10.9
Merle 49,048 19.5 958.5 13.1 27,730 22.5 624.2 15.7
Radar 4,957 6.5 32.4 25.1 5,840 26.2 152.9 11.3
SCA-Fixed 10,503 5.3 55.4 22.8 4,656 14.3 66.5 17.8
SCA-Random 10,503 5.2 55.0 26.6 8,582 13.2 113.0 24.7
Sched 28,765 9.6 276.0 30.4 12,388 17.2 213.7 21.1

Table E.3: Results of the experiments when using Rete/UL.

Table E.2 shows the results of the experiments when the systems use the basic Rete match
algorithm. The second column shows the total number of decision cycles each system required
to solve all the test problems, before learning on the training set. (A decision cycle is one \basic
step" in Soar's problem-solving, similar to the number of search nodes expanded in many search-
based problem solvers.) The third column shows the average CPU time per decision cycle, and
the fourth column shows the total CPU time required for the test problems. The �fth column
shows what percentage of this total CPU time was spent in the matcher. The next four columns
of the table give this same information, but for after learning on the training set | i.e., solving
the test problems when using the 100,000 or more rules learned on the training set. Note that
before learning, most of the systems spend only about 20{40% of their time in match, while after
learning, most spend over 90% of their time in match. Thus, with the basic Rete algorithm, the
cost of matching grows to dominate the overall system run time.
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Basic Rete Rete/UL
Cognitive Computational Net Cognitive Computational Net

System E�ect E�ect E�ect E�ect E�ect E�ect
Assembler 21.97 0.02 0.49 21.97 0.20 4.33
Dispatcher 5.99 0.12 0.72 5.97 0.57 3.40
Merle 1.77 0.05 0.09 1.77 0.87 1.54
Radar 0.85 0.03 0.03 0.85 0.25 0.21
SCA-Fixed 2.26 0.00 0.02 2.26 0.37 0.83
SCA-Random 1.22 0.02 0.03 1.22 0.40 0.49
Sched 2.32 0.03 0.06 2.32 0.56 1.29

Table E.4: Summary of cognitive, computational, and net e�ects of learning when using di�erent
match algorithms.

Table E.3 is similar to Table E.2, but gives the results for when the systems use Rete/UL.2

Note that in this case, even with 100,000 or more rules after learning, the match cost does not
dominate the overall system run time, as the last column shows.

Table E.4 summarizes the e�ects of learning in these systems, when using di�erent match
algorithms. For each system and for each matcher (basic Rete and Rete/UL), it shows the
cognitive, computational, and net e�ects of learning. The cognitive e�ect is the ratio of the
number of decision cycles required to solve all the test problems before learning to the number
required after learning | i.e., the factor by which the learning on the training set reduces the
number of decision cycles required for the test set. The computational e�ect is the ratio of the
time per decision cycle before learning to the time per decision cycle after learning. A number
less than one here indicates that each decision cycle takes longer after learning than before.
Finally, the net e�ect is the ratio of the total CPU time required to solve the test set before
learning to the total CPU time required after learning. This is the overall speedup factor due
to learning, and is equal to the product of the cognitive and computational e�ects. A number
less than one here indicates that the system is slower after learning than before.

Most of the cognitive e�ects in Table E.4 are larger than one | learning generally reduces
the number of decision cycles Soar takes to solve problems. The exception to this is Radar,
where it increases the number of decision cycles slightly. Radar takes slightly more decision
cycles to make a prediction when it has a relevant episode in its episodic memory than when it
does not (in which case it predicts quickly by just guessing randomly). The training set causes
the system to build up its episodic memory; this increases its classi�cation accuracy, since it has
to guess less often, but increases the number of decision cycles it requires on average.

The computational e�ects in Table E.4 are all less than one | the time per decision cycle is
always larger after learning, at least in these systems. Several things can cause this:

2The number of decision cycles for Dispatcher is slightly di�erent with Rete/UL than Rete. This is because

Dispatcher sometimes makes decisions that depend on which of several complete production matches was found

�rst. Even when they are all found in one match cycle, a sequential match algorithm always detects them in

some order; changing the match algorithm can change the order. This di�erence could be avoided by having

both matchers sort the matches they �nd each cycle.
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Factor by which learning increases the:
Total Time Non-Match Time Match Time WMEs Match Time

System Per DC Per DC Per DC Per DC Per WME
Assembler 5.07 4.03 6.38 1.22 5.25
Dispatcher 1.76 2.03 0.84 1.03 0.82
Merle 1.15 1.12 1.39 0.94 1.47
Radar 4.01 4.75 1.80 1.03 1.74
SCA-Fixed 2.71 2.88 2.12 1.71 1.24
SCA-Random 2.51 2.58 2.33 1.03 2.27
Sched 1.80 2.04 1.25 0.76 1.63

Table E.5: Factoring the computational e�ect into match and nonmatch components, and the
match component into WMEs per DC and time per WME.

1. The larger number of rules in the system after learning can increase the match cost.

2. The learned rules can change the (external or internal problem-solving) behavior of the
system. This can change the distribution of WMEs in working memory, thereby changing
(either increasing or decreasing) the match cost.

3. The number of changes to working memory per decision cycle can change. This changes
the number of times the match algorithm is invoked, thereby changing (either increasing
or decreasing) the match cost per decision cycle.

4. The learned rules can change the cost of other (non-match) operations in the system.

With the basic Rete algorithm, (1) is obviously the crucial one which causes the time per decision
cycle to increase dramatically after learning. What about with Rete/UL? Since our focus is on
match cost, (4) is outside the scope of this thesis. We can factor this out by looking at just the
time spent in the matcher per decision cycle, rather than the total time per decision cycle. The
result of this is shown in Table E.5; its second, third, and fourth columns show the factor by
which learning increases the total time per decision cycle, the non-match time per decision cycle,
and the match time per decision cycle, respectively, when using Rete/UL. (The second column
is the reciprocal of the computational e�ect shown in the next to last column of Table E.4.) The
�fth column of Table E.5 shows the change in WME changes per decision cycle; this is e�ect
(3) above. After factoring this out, we are left with the change in match time per change to
working memory, shown in the last column of Table E.5; this is the result of e�ects (1) and (2).

Unfortunately, no distinct pattern emerges from this table. The computational e�ect is
at least partly due to non-match costs in all the systems, but the magnitudes of the match
and non-match components vary widely among the systems. Learning increases the number of
working memory changes per decision cycle in �ve of the systems, but decreases it in the other
two. In the Assembler system, the match cost per WME increases substantially after learning;
this is probably mainly due to a change in the distribution of WMEs | if it were mainly due
to the increase in the number of rules, then a similar (�5-fold) increase in match cost would
probably have shown up when we held the working memory distribution �xed (see Figure 5.8
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on page 112), but none did. On the other hand, in one system (Dispatcher), the match cost per
WME actually decreases after learning; this cannot be due to e�ect (1) | additional rules can
only increase match cost, not decrease it | so this must be due to a change in the distribution
of WMEs in working memory.
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