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ABSTRACT
Before performing pattern matching, a typical misuse-NIDS
performs protocol analysis: it parses network traffic accord-
ing to the attack protocol and normalizes the traffic into
the form used by its signatures. For example, consider a
NIDS that attempts to identify an HTTP-based attack. The
NIDS must extract the URL from the raw traffic, convert
HEX encoded characters into their equivalent ASCII form if
necessary, and only then perform matching on the normal-
ized URL. Protocol analysis is time consuming, especially
in a NIDS that analyzes and normalizes all traffic just to
discover that the majority of the traffic does not match any
of its signatures.

We develop a technique called protomatching that com-
bines protocol analysis, normalization, and pattern match-
ing into a single phase. The goal of the protomatching sig-
natures is to exclude non-attack traffic quickly before the
NIDS performs any further time-consuming analysis. Pro-
tomatching is based on a novel signature with two proper-
ties. First, the signature ensures that the attack pattern
appears in the context that enables successful attack. This
saves the need for protocol analysis. Second, the signature
matches both encoded and normalized forms of an attack
and this saves the need for normalization.

We empirically show that a Snort implementation that
uses protomatching is up to 49% faster than an unmodified
Snort.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Metrics—invasive soft-
ware,unauthorized access.

General Terms
Security, Management.
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Intrusion detection, signatures, protocol analysis.
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1. INTRODUCTION
A misuse network intrusion detection system (NIDS) rec-

ognizes an attack via a signature, usually a string or a reg-
ular expression that matches a characteristic pattern of the
attack. For example, to identify an HTTP-based attack
called DNS-tools (CVE-2002-0613), which enables attackers
to modify DNS entries, Snort [32] checks whether the net-
work traffic contains the string “dnstools.php”. However,
not all traffic that contains this string is a real DNS-tools at-
tack. To correctly identify the DNS-tools attack, Snort must
ensure that the string “dnstools.php” is part of a URL in
an HTTP request.

To achieve such level of accuracy, Snort performs pro-
tocol analysis before pattern matching. It parses HTTP
traffic, finds the URL in any HTTP request, and looks for
“dnstools.php” only in those places. To the best of our
knowledge, commercial intrusion detection systems (e.g., [4,
5, 14, 44]) also perform protocol analysis for many com-
monly used protocols, such as FTP, HTTP, and SMTP.

During protocol analysis a NIDS also performs traffic nor-
malization. Some protocols, such as FTP or HTTP, enable
multiple encodings for the same payload. Most notoriously,
HTTP allows URLs to be encoded using lower- or upper-
case characters as well as hexadecimal ASCII values [9, 10].
A NIDS typically translates, or normalizes, the raw traffic
into the form used by its signatures. For example, Snort
translates hexadecimal encodings in a URL into lower-case
characters. A NIDS that does not normalize network traffic
is vulnerable to evasion attacks [12, 20, 23, 29, 46].

All common NIDS seem to use the methodology outlined
above, which we call analyze-normalize-match (ANM). First,
a NIDS encodes its signatures in a normalized form. Then,
during runtime, the NIDS parses the traffic according to the
protocol the attack uses and normalizes the traffic, if neces-
sary. Last, the NIDS matches the normalized traffic against
its normalized signatures.

Unfortunately, the ANM methodology incurs performance
penalty. An ANM-based NIDS inspects the traffic twice:
once during protocol analysis and once during matching.
An ANM-based NIDS wastes time analyzing and normaliz-
ing benign traffic only to discover later that this traffic does
not match any of its signatures. Indeed, our experiments re-
veal that Snort spends about 30% of its time analyzing and
normalizing benign HTTP requests. Dreger et al. [8] no-
ticed similar results for Bro [25] and recognized that HTTP
analysis is a serious bottleneck for sites with a high volume
of HTTP traffic.

We propose to replace ANM with a more efficient tech-
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System Size
(MB)

% speedup (compared to
default Snort configuration)

% speedup (compared to
custom configuration)

Original Snort (ANM) 7 – –
Snort+deterministic protomatcher (P–ANM) 30 45 25
Snort+hierarchical protomatcher (P–ANM) 13 49 27

Table 1: Summary of results on real HTTP traffic with all Snort’s HTTP signatures (999 signatures).

nique: protomatch—analyze-normalize-match (P–ANM). As
we explain below, the protomatching phase inspects the net-
work traffic exactly once, but still performs protocol analy-
sis, normalization, and pattern matching. The goal of the
protomatching phase is to quickly identify traffic, either nor-
malized or encoded, that can never match any signature
in the NIDS database. In comparison, traffic that might
match a signature, is further analyzed using a more compu-
tationally expensive technique, such as the ANM. A NIDS
that is based on the P–ANM methodology is efficient be-
cause it inspects 99% of the traffic only once, instead of
inspecting 100% of the traffic twice. Our experiments show
that a P–ANM-based Snort is up to 49% faster than Snort
that uses the ANM technique.

The first contribution of this paper is the concept of a
protomatching signature, a regular expression with two prop-
erties. First, the expression ensures that the characteristics
pattern of an attack appears in the context that is necessary
for the attack to succeed. For example, based on the HTTP
specification, we build a protomatching signature for the
DNS-tools attack that identifies the string “dnstools.php”
only if this string appears in a URL. Hence, a protomatching
signature saves the need for protocol analysis.

Second, a protomatching signature matches both normal-
ized and encoded versions of an attack. To do so, we rep-
resent alternate encodings as substitutions [13]: operations
that map a character to a regular expression describing all
possible encodings of that character. Then, we build a sig-
nature that matches all possible representations of an at-
tack. For example, we change the signature to match en-
coded variants, such as “GET dnstools.%70h%70”, in which
the character ’p’ is replaced with its hex encoding “%70”.

Since a protomatching signature is a regular expression,
we automatically compile it into a protomatcher : a deter-
ministic finite state machine that matches every possible
encoding of “dnstools.php” and ensures that this string
appears only in a URL of a valid HTTP method.

Ideally, we would like to construct a full-coverage proto-
matcher, a protomatcher that contains a protomatching sig-
nature for every signature in the NIDS database. While we
have built a full-coverage protomatcher for more than 50%
of the 1022 HTTP signatures in Snort’s database, we no-
ticed that a full-coverage protomatcher cannot fit in 2GB
of memory if it contains signatures that require complicated
regular expressions. Therefore, we developed the superset
protomatcher that requires a smaller memory footprint.

A superset protomatcher recognizes a superset of the traf-
fic matched by a full-coverage protomatcher. For example,
instead of recognizing the string “dnstools.php”, the su-
perset protomatcher recognizes the string “dnstools”. This
means three things. First, a superset protomatcher con-
sumes less memory. Second, since it recognizes a superset
of the traffic, it never misses traffic matched by the full-
coverage protomatcher. However, it might produce false
matches: traffic that matches the superset protomatcher but

does not match any of the NIDS signatures. Third, traffic
that does not match the superset protomatcher also does
not match any signature in the NIDS database, so it can be
immediately accepted as benign.

The superset protomatcher is the second contribution of
this paper and the core of the P–ANM technique. Traf-
fic, either normalized or encoded, that does not match the
superset protomatcher is immediately ignored because it is
benign. Traffic that does match the superset protomatcher
is forwarded to the second phase: the traditional ANM tech-
nique.

This two-phase design is time-efficient because the super-
set protomatcher accepts 99% of the benign traffic and rarely
utilizes the slower ANM-based path. This design fits into
memory because the combination of superset protomatcher
and the ANM-based matching consumes an order of magni-
tude less memory than a full-coverage protomatcher.

We discuss two possible protomatcher implementations.
First, we implemented a protomatcher as a deterministic
finite state machine. Second, to reduce the protomatcher
memory footprint, we implement it as a hierarchical proto-
matcher that is based on two automata: a matcher and a
normalizer. Unlike the ANM method that first fully ana-
lyzes and normalizes the traffic and then performs match-
ing, the hierarchical protomatcher performs protocol anal-
ysis and matching until it encounters an encoded represen-
tation. Then, it passes control to the normalizer, which
translates the encoding into a normalized form and returns
it to the matcher. The hierarchical protomatcher consumes
only 13MB and improves Snort’s performance by 49%, with
the default Snort configuration, and by 27% with our cus-
tomized configuration (Table 1).

In summary, this paper makes the following contribution:

1. The idea of a protomatching signature. We de-
veloped a signature that matches both encoded and
normalized variants of the attack and guarantees that
the attack pattern appears in the right context.

2. The idea of the superset protomatcher. We show
that when it is infeasible to build a protomatching-
signature for every signature in the NIDS database,
the idea of protomatching signatures can still be very
beneficial. We use shorter protomatching signatures
to build a superset protomatcher that filters 99% of
the benign traffic and therefore omits the need for ex-
pensive protocol analysis.

3. Feasibility study of the P–ANM methodology.
We implemented the P–ANM methodology in Snort.
We show that a deterministic protomatcher improved
Snort’s performance by 45% when we use Snort’s de-
fault configuration. Even after customizing Snort’s
configuration to maximize performance (Section 5),
our implementation performed 25% faster. The hier-
archical protomatcher consumed only 13MB and im-
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proved Snort’s performance by 49%, with the default
configuration, and by 27% with our customized con-
figuration (Table 1).

Since protomatcher-based Snort consumes more mem-
ory than the original Snort, it might suffer more cache
misses. We investigated a cache-poisoning attack in
which an attacker attempts to degrade the protomatcher’s
performance by forcing it to generate many cache misses.
While this attack degrades the protomatcher by 2%,
it degrades the performance of the original Snort by
4.5% (Section 5.3).

2. RELATED WORK
We review related work in the areas of protocol analysis

and traffic normalization, efficient pattern matching, and
intrusion detection for high-speed links.

Protocol analysis and traffic normalization. Typ-
ically, modern NIDS are based on the ANM methodology.
This can be easily seen in Snort [32] and Bro [25] because
their source code is available. Based on our discussions with
NIDS developers, user manuals we read, and our practi-
cal experience using proprietary NIDS, we believe that the
ANM methodology is also common in other commercial sys-
tems [4, 5, 44]. Since the ANM boosts task separation, it is
attractive from the software engineering viewpoint. In this
work, however, we challenge the ANM methodology on the
point of efficiency: we combine analysis, normalization, and
matching into a single protomatching phase.

Ptacek and Newsham [29] were the first to recognize that
a NIDS that does not perform normalization is susceptible
to evasion. To defend against evasion, Handley et al. [12] in-
vestigated normalization techniques for the TCP, IP, UDP,
and ICMP protocols. They proposed a normalizer that re-
verses transformations before the NIDS analyzes the traffic.
In this work, we focus on the normalization of higher level
protocols that support alternate encodings, such as HTTP,
TELNET, SMTP, or FTP.

The problem of alternate encodings is particularly painful
for HTTP traffic. HTTP allows three encodings of URLs:
alphabetic characters, HEX encoding, and UTF-8 [10]. While
the Apache web server supports only these encodings, the
IIS server supports five more encodings that are Microsoft-
specific [31]. This assortment of HTTP encodings compli-
cates HTTP normalization, a situation that has been exten-
sively exploited to evade detection systems [9, 20, 22, 23,
46]. In addition, Dreger et al. [8] found that the overhead
of HTTP traffic analysis can increase Bro [25] runtime by a
factor of five. Given the high cost of HTTP analysis, and the
fact that HTTP contributes more than 60% of the overall
traffic to many organizations [8], we chose to evaluate our
technology using a protomatcher for HTTP traffic.

Alternate encodings are not unique to HTTP. Attackers
have injected TELNET control characters in the middle of
FTP commands [30]. Furthermore, FTP [27] and SMTP [28]
commands are case insensitive. Even when protocol spec-
ifications do not allow multiple encodings, a protocol im-
plementation might allow it. For example, implementations
of many protocols encode the carriage-return line-feed se-
quence either as the sequence “\r\n” or as a single “\n”.
While we focus on HTTP encodings, we believe that alter-
nate encodings of data in other protocols can be handled
using a protomatcher-based design.

Fast pattern matching for NIDS. There is a signifi-
cant amount of work on efficient string matching for intru-
sion detection purposes. Researchers have proposed either
software-based [1, 3, 6, 11, 47] or hardware-based [18, 39, 45]
matching algorithms. This previous work does not address
the problem of matching in the presence of alternate encod-
ings and none of these algorithms mention protocol analysis
as part of the matching algorithm.

Recent research has suggested that strings alone are not
sufficient to accurately detect attacks. Instead, researchers
have proposed using regular expression matching [24, 48].
To match regular expressions, Sommer and Paxson [36] used
a DFA. However, unlike our work, they performed match-
ing on already-normalized traffic. They also noticed that
their DFA might not fit into memory, so they constructed
the relevant portions of their DFA during matching. They
acknowledge that this incremental approach degrades Bro’s
performance and might not be needed because their DFA
did not grow beyond 20MB. We construct our protomatcher
(our DFA) once and do not modify it further.

The pattern matching mechanism in Snort (since version
2.0 [32]) is based on a concept similar to protomatching.
First, Snort uses a fast set-wise string matching algorithm
(e.g., [1]) that identifies any rule that may match the traf-
fic. Then, if such rules have been identified, Snort invokes
a slower matcher that fully match the traffic against those
rules. This is the same pre-filtering principle that is the
core of the protomatching technique. However, unlike pro-
tomatching, Snort applies this two-stage process after it nor-
malizes the traffic while protomatching saves the normal-
ization phase. Indeed, this difference results in up to 49%
improvement in Snort performance.

Dealing with high-speed links. Vendors of commercial
NIDS advertise that their products can monitor high-speed
links of at least 1 Gbps (e.g., [5, 38]). However, anecdo-
tal evidence suggests that this is not always the case [42].
Schaelicke et al. [35] conducted an evaluation of several sys-
tems and emphasized pattern matching and protocol analy-
sis as the factors limiting NIDS performance.

To deal with high-speed links, researchers have suggested
a distributed NIDS that balances the network traffic such
that each sensor monitors a different portion of the pro-
tected network [16, 37]. Our work focuses on the perfor-
mance of a single sensor. Since protocol analysis and pat-
tern matching are usually done by each sensor, sensors that
use a protomatcher would further increase the throughput
of such distributed designs.

3. THE BASICS OF PROTOMATCHING
We illustrate the concepts behind protomatching. We first

formulate how the ANM methodology relates protocol anal-
ysis and matching. Then, we formulate the concept of a
protomatching signature. Last, we develop the concept of
the superset protomatcher, which is the basis of the P–ANM
methodology. Throughout this section we use the DNS-tools
attack as our running example.

The DNS-tools exemplary attack. The DNS-tools
attack allows attackers to bypass access to a popular DNS
administration tool and gain administrative privileges on
a DNS server (CVE-2002-0613 [41]). An attacker that
launches this attack typically uses an HTTP request as il-
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input : A string w, Lprotocol, N normalization
function, S a signature.

output: Returns match if and only if
(w∈Lprotocol) ∧ (N (w)∈L(S)).

//Input conforms to the attack protocol?
if w /∈ Lprotocol then1

return no-match2

//Compute normalized traffic

Compute w′ = N (w) ;3

//Normalized traffic matches signature?

if w′ ∈ L(S) then4

return match;5

else6

return no-match;7

Algorithm 1: The analyze, normalize, match (ANM)
method.

lustrated below, denoted R1:

R1: GET dnstools.php?section=hosts&

user logged in=true HTTP/1.1

Consider an attacker who wants to use the DNS-tools at-
tack and also wants to avoid detection by a NIDS. The at-
tacker first encodes parts of the substring “dnstools.php”
using hexadecimal encoding. For example, the attacker changes
one ‘o’ and one ‘p’ into their hexadecimal values, obtaining
the string “dnsto%4fls.ph%50”. Then, the attacker further
obfuscates the substring by mixing upper- and lower-case
characters, for example, by converting ‘h’ into ‘H’. The re-
sult of this process is the following request:

R2: GET dnsto%4fls.pH%50?section=hosts&

user logged in=true HTTP/1.1

The NIDS goal is to identify both R1 and R2 as instances
of the DNS-tools attack.

3.1 The ANM Methodology
We use Snort’s signature for the DNS-tools attack to il-

lustrate how the ANM methodology attempts to identify
both R1 and R2. Snort searches the URL of every incoming
HTTP request for the following regular expression over the
ASCII input Σ = {0 . . . , 255}:
Sdns = Σ� · “dnstools.php” · Σ+ · “user logged in=true”

Sdns matches R1, but does not match R2. Therefore, to
determine that R2 is a DNS-tools attack, Snort performs
the following steps. First, it parses R2 and verifies that it is
a valid HTTP request. Second, during this parsing, Snort
normalizes the URL in R2: Snort converts “%4f” into ‘o’,
“%50” into ‘p’, and ‘H’ into ‘h’. Last, it checks whether the
normalized URL matches Sdns.

Formalizing the ANM methodology. Let Lprotocol be
a language that defines valid messages of the attack proto-
col (e.g., the syntax of HTTP [10]). Let N : Σ� → Σ� be a
normalization function, a function that translates a string
into its normalized form. Let S be a signature (e.g., a regu-
lar expression), and denote the language that the signature
defines as L(S). Let w be the NIDS input (e.g., a TCP
stream).

The ANM method first checks that w conforms to the
syntax of the attack protocol, that is, whether w ∈ Lprotocol.

Second, ANM computes the normalized version of the in-
put, N (w). Last, the ANM method checks whether the
normalized input matches the signature language, that is,
N (w) ∈ L(S). Formally, the ANM method returns match if
and only if (w∈Lprotocol) ∧ (N (w)∈L(S)) (Algorithm 1).

It is easy to see why Algorithm 1 is inefficient. It performs
a membership check (Line 1) and computes N (w) (Line 3)
on every input, for example a network packet, regardless
of whether the input is benign or malicious. The P–ANM
methodology addresses exactly this inefficiency. P–ANM
attempts to determine whether a packet is benign using a
single membership check.

3.2 A Protomatching Signature for the DNS-
tools Attack

The basic idea behind protomatching is to convert pro-
tocol analysis and normalization into a single membership
check. First, we expand Sdns such that it accounts for all
possible encodings of the DNS-tools attack. Second, we ex-
pand Sdns such that it conforms to the HTTP specification.

Expanding Sdns to match all encodings of the DNS-
tools attack. This step is based on the observation that
alternate encodings are substitutions: operations that map
characters to regular expressions [13]. We process Sdns and
substitute each character that can be encoded in multiple
ways with a regular expression that describes all possible
variants of an attack, with respect to a given set of sub-
stitutions. These substitutions preserve language regularity,
producing a regular expression that matches both normal-
ized and encoded versions of an attack (see [33] for a proof
of this claim).

We illustrate a substitution for the alternate encodings
our attacker used to obfuscate R1: upper-/lower-case and
HEX encodings. Our implementation also handles encoding
called Uencode, which is unique to Microsoft IIS server. We
discuss other possible encodings in Section 4.1.

Consider the character ‘d’. Our substitution, denoted
N−1, maps ’d’ as follows:

N−1(d) = [d|D|%44|%64]
We denote the substitution N−1 because it computes the

inverse of the normalization function in the ANM technique
(Section 3.1). Instead of mapping encodings to a normalized
representation, N−1 maps the normalized representation to
an expression describing every possible encoding.

We replace each character that appears in a URL in Sdns

with its corresponding regular expression. We replace the
character ‘d’ in the string “dnstools” with the regular ex-
pression [d|D|%44|%64], then we replace the character ‘n’
with [n|N|%4e|%4E|%6e|%6E], and so on. In the end, we ob-
tain a signature similar to the expression PS1

dns (for brevity,
we omit the substitutions for characters beside ‘d’ and ‘n’):

PS1
dns = Σ� · [d|D|%44|%64] · [n|N|%4e|%4E|%6e|%6E]·

“stools.php” · Σ+ · “user logged in=true”

Formally speaking, PS1
dns = N−1(Sdns). As long as we

can express alternate encodings as regular substitutions, the
set of all possible variants of an attack is a regular lan-
guage [33].

Expanding PS1
dns to conform to HTTP specifica-

tion. PS1
dns integrates multiple encodings into a regular
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input : A string w, Lprotocol, N normalization
function, S a signature.

output: Returns match if and only if
w ∈ Lprotocol ∩ L(N−1(S)).

//1,2 are done once in a pre-computing phase

Pre-compute N−1(S) ;1

Pre-compute PS = Lprotocol ∩ L(N−1(S));2

if w ∈ PS then3

return match;4

else5

return no-match;6

Algorithm 2: Protomatching method.

expression, so it saves the need for a separate normalization
phase. Now, our goal is to convert PS1

dns to an expression
that also conforms to the HTTP specification, so we can
omit the protocol analysis phase.

The HTTP syntax is given in Backus-Naur form [26] in
the HTTP specification [10]. To the best of our knowledge,
whether the HTTP syntax can be expressed as a regular lan-
guage has yet to be investigated. However, below we propose
a regular expression that matches the HTTP Request-Line:
the HTTP method followed by a URL followed by the HTTP
version. We chose to model the Request-Line because it
appears in more than 85% of Snort signatures. Currently,
we construct the regular expressions for the HTTP protocol
manually. In the future, we plan to use automated tech-
niques [15] to construct a regular approximation directly
from the BNF representation of the HTTP syntax.

We convert PS1
dns into our final protomatching signature

(Section 4.1 details the conversion process):

PSdns = (Σ� ·“\n\n”)� ·“GET” · (SP)+(U)� · [d|D|%44|%64]·
[n|N|%4e|%4E|%6e|%6E] · “stools.php”·

(U)+ · “user logged in=true HTTP/1.1\n”
In the PSdns expression, ‘\n’ denotes a newline character,

SP denotes white space characters, and U denotes characters
that can appear in a URL according to the HTTP specifi-
cation (e.g., ‘\n’ cannot appear in a URL).

PSdns ensures that the string “dnstools.php”, is part of
a URL of a valid HTTP method. It ensures that (i) the
“GET” appears in the beginning of a line, (ii) only white
spaces separate the “GET” from the URL, (iii) only valid
characters appear in the URL, and (iv) the URL ends ac-
cording to the HTTP protocol. Therefore, when the traffic
we observe matches PSdns we can be sure that the string
“dnstools.php” (or any of its encoded versions) is part of
a URL in a valid HTTP method. In other words, our con-
version saves the need for protocol analysis.

Formalization of a protomatching approach. Algo-
rithm 2 uses a protomatching signature for matching. First,
the algorithm computes N−1(S) (Line 1). Second, the algo-
rithm computes Lprotocol∩N−1(S) (Line 2), which is our pro-
tomatching signature, denoted by PS. In particular, in our
example PSdns = LHTTP∩N−1(Sdns). Note that the expres-

sion for Lprotocol ∩L(N−1(Ŝ)) can be pre-computed because
it is independent of the input. Last, in Line 3 the algorithm
checks whether the input matches our protomatching signa-
ture. It is possible to formally prove that protomatching is
equivalent to the ANM methodology, that is, Algorithm 2 is
equivalent to Algorithm 1 [33].

input : A string w, Lprotocol, N normalization
function, S a signature.

output: Returns match if and only if
w ∈ Lprotocol ∩ L(N−1(S)).

Pre-compute Ŝ such that L(Ŝ) ⊇ L(S); //Compute1

superset signature (pre computation phase).

Pre-compute N−1(Ŝ); //Done once in a2

pre-computing phase

Pre-compute P̂S = Lprotocol ∩ L(N−1(Ŝ)) ; //Done once3

in a pre-computing phase

if w ∈ L(P̂S) then4

return the result of Algorithm 1 on5

(w, Lprotocol,N , S) ;
else6

return no-match;7

Algorithm 3: The protomatch, analyze, normalize,
match (P–ANM) method.

In Section 4.2 we discuss two techniques to convert a set
of protomatching signatures into a protomatcher: a deter-
ministic finite state machine that can be used at runtime
to detect whether the network traffic matches any of the
underlying signatures. Ultimately, our goal is to construct
a full-coverage protomatcher, a protomatcher that contains
a protomatching signature for every signature in the NIDS
database. The advantage of a full-coverage protomatcher is
its efficiency: it requires a single inspection of each network
byte during the membership check (Line 3 in Algorithm 2).

Unfortunately, a full-coverage protomatcher is difficult to
achieve. While we show that it is feasible to build a full-
coverage protomatcher for more than 500 Snort signatures
(Section 5.1), these signatures are short regular expressions.
They usually require matching of two strings: the HTTP
method and an additional string. However, researchers have
shown that accurate signatures require sophisticated expres-
sions [7, 24, 34, 36, 48]. For example, PSdns requires match-
ing three strings. Our experience shows that a protomatcher
for all of the HTTP signatures in Snort’s database requires
more than 2GB of memory.

3.3 A Superset Protomatching Signature
The goal of the superset protomatcher is to reduce the

memory footprint of the full-coverage protomatcher. It does
so, by trading matching efficiency for memory consumption.
Instead of using a signature like PSdns, it uses a less-specific,
or a superset, signature for the DNS-tools attack.

A superset signature omits some portions of the original
signature in the NIDS database. Hence, its corresponding
protomatcher consumes less memory. At the same time, a
superset signature causes false matches, cases in which the
traffic matches the signature but does not match the origi-
nal signature in the NIDS database. Hence, in cases where
the traffic matches a superset signature, we need to verify
whether or not the traffic also matches the original signa-
ture. In our implementation, this slower matching process
is based on the traditional ANM methodology.

This two-phase approach is the core of the P–ANM method-
ology. P–ANM is time-efficient because, under normal con-
ditions, most of the traffic is benign. It is memory effi-
cient because it splits the detection into two processes that
together consume less memory than a full-coverage proto-
matcher.
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Consider again the DNS-tools attack. Its superset signa-
ture can be:

Ŝdns = “GET” · Σ� · “dnstools.php”

We follow the steps from Section 3.2 and construct the
following superset protomatching signature (for brevity, we
omit encodings of characters beside ‘d’ and ‘n’ ):

P̂Sdns = (Σ� ·“\n\n”)� ·“GET” ·(SP)+(U)� ·[d|D|%44|%64]·
[n|N|%4e|%4E|%6e|%6E] · “stools.php”

There are several reasons to construct Ŝdns as we did above.

1. Ŝdns preserves false negative correctness of Sdns.
The language of Ŝdns is a superset of the language of
Sdns: that is, L(Ŝdns) ⊃ L(Sdns). This property re-
mains true even if we apply our substitutions, that is
N−1(Ŝdns) ⊃ N−1(Sdns). Therefore, a superset proto-
matcher recognizes any attack instance recognized by
the full-coverage protomatcher and some additional
traffic. By constructing Ŝdns as a superset of Sdns we
ensure lack of false negatives.

2. A protomatcher based on N−1(Ŝdns) consumes
exponentially less memory than a protomatcher
based on N−1(Sdns). The reason is that N−1(Ŝdns)
contains only two explicit substrings separated with
the general term Σ�. Essentially, every Σ� followed by
a string doubles the memory that a DFA consumes.
For example, to match user logged in=true in N−1(Sdns),
a DFA must identify that the input stream already
contains GET and dnstools.php, in that order. In a
DFA, such knowledge is expressed by adding states.
When we consider a set of signatures, each signature
doubles the size of the protomatcher, resulting in an
exponential growth of states.

3. The majority of benign traffic does not match
the superset protomatcher. Like other researchers [2,
19], we have noticed that 99% of the HTTP requests
in traffic we monitor does not match both Sdns and
Ŝdns. This seems intuitive because most HTTP traffic
does not target the organization’s DNS server.

4. PROTOMATCHING IMPLEMENTATION
We implemented the P–ANM methodology in Snort. We

chose Snort because it is widely used and its source code
as well as its signatures are publicly available. We describe
how to convert Snort HTTP signatures into protomatching
signatures and how to construct a protomatcher that can
match those signatures during runtime. We focus on HTTP
signatures because they account for 46% of all Snort sig-
natures, and because Snort performs HTTP analysis and
normalization that we would like to save.

While we use Snort, our protomatching signatures and
runtime protomatcher can be used in the context of other
NIDS. After all, our signatures are regular expressions that
conform to the HTTP specification and our protomatcher is
based on a finite state machine.

4.1 Automatically Converting Snort Signatures
into Protomatching Signatures

Snort enables two types of patterns in an HTTP signa-
ture: one that must appear in the attack URL, denoted

uri-content, and one that can appear anywhere in the
HTTP request, denoted content. We split Snort signatures
into four types, based on the combinations of these two pat-
terns (Table 2).

We constructed two signatures from each Snort signa-
ture: A full-coverage signature, used by our full coverage
protomatcher, and a superset signature, used by our su-
perset protomatcher. For Type 3 signatures, we used the
uri-content pattern as our superset signature. For Type 4
signatures, we used the longest pattern, under the assump-
tion that longer patterns would cause fewer false matches.
We leave other strategies to build superset signatures as fu-
ture work.

In our current implementation, we do not translate other
fields of a Snort’s signature into a regular expression. For
example, we ignore the depth and offset fields that specify
portions of the packet in which the pattern should be found.
Therefore, when a signature uses such a field (less than 10%
of the signatures use these fields), we always treat its corre-
sponding protomatching signature as a superset signature.

Expanding Snort signatures according to the HTTP
syntax. To convert a Snort signature into a protomatch-
ing signature, we first expand it according to the syntax of
HTTP. Before each pattern (e.g., a uri-content pattern),
we add a regular expression that matches a valid HTTP
method. In the case that we know the method necessary
for the attack to succuss, for example “GET”, we add only
this method. In all other cases, we add a regular expression
that matches either “GET”, “HEAD”, or “POST”. We believe
that these are the most common methods used in HTTP
attacks; clearly other methods can be added as needed.

We ensure that an HTTP method always appears in the
beginning of a line, as required by the HTTP specification.
Between the method and the pattern, we allow only charac-
ters that are permitted in a URL; for example, we disallow
white space characters. These expressions can be automat-
ically added as defined by the regular expressions denoted
by M, L, and P, in Table 2.

Alternate Encodings as substitutions. We imple-
mented three types of HTTP alternate encodings: upper-
/lower-case switching, HEX encoding, and the Microsoft-
specific U-encoding [9]. We denoted these transformations
as UL, HEX, and Uencode, respectively. The uri-content

pattern requires normalization of the Uencode, HEX, and UL

transformations, while the content pattern only requires
normalization of the UL transformation.

In general, like the HEX encodings, the Uencode maps a
character to a string containing the character’s hexadecimal
ASCII value, but does so using 4 instead of 2 bytes. We
chose these transformations because they have been widely
used for evasion [20, 23, 46] and represent transformations
used by two popular web servers: Apache and IIS. To embed
these multiple encodings into our protomatching signatures,
we just replaced each character in the uri-content pattern
with all of its possible encodings. Table 3 illustrates the
three encodings defined as substitutions, and a simple DFA
that identifies both encoded and normalized versions of the
character ‘o’.

UTF-8 is another transformation allowed by the HTTP
specifications [10], and the only other transformation sup-
ported by Apache. We do not foresee any problems in sup-
porting UTF-8. In the case of a protomatcher for Apache,
UTF-8 would replace the Uencode. In the case of a proto-
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Type Patterns
(re denotes
a regular
expression).

# of sig.
in Snort
database

Convert into a regular expression
M: HTTP method (e.g., “GET”, “HEAD”). S: White space. U: A valid URL character [10].
L: match beginning of a line i.e., Σ�·‘\n’ I−1: UL substitution (Table 3).
N−1: UL+HEX+Uencode substitutions (Table 3). Σ: {0 . . . 255}

1 uri = re1 749
full-coverage: L · M · S+ · U� · N−1(re1)
superset: L · M · S+ · U� · N−1(re1)

2 content = re1 130
full-coverage: L · M · S+ · Σ� · I−1(re1)
superset: Σ� · I−1(re1)

3
uri = re1,
content = re2

122
full-coverage: L · M · S+ · U� · N−1(re1) · U� · S · “HTTP”) ∩ (Σ� · I−1(re2) · Σ�)
superset: L · M · S+ · U� · N−1(re1)

4
content1 = re1,
. . . ,
contentn = ren

21
full-coverage: L · M · T

i Σ� · I−1(rei) · Σ�

superset: L · M · Σ� · I−1(re1)

Table 2: Converting Snort signatures into protomatching signatures.

matcher for IIS, UTF-8 would increase the size of a proto-
matcher, and it might be that only a hierarchical proto-
matcher would be feasible.

There are five other esoteric transformations only sup-
ported by the IIS server [31]. Since they have a distinctive
pattern, are rarely used, and their usage is highly suspicious,
we believe that the best way to handle those is through sig-
natures rather than normalization. For example, the double
HEX encoding encodes the character ‘%’ using the HEX en-
coding. That is, the substring “%2520” is first decoded into
“%20” and then into the space character. In this case, we
used the signature Σ� ·%25, as also done by Snort. For other
Microsoft-specific encodings the reader is referred to [31].

4.2 Converting Protomatching Signatures into
a Protomatcher

We describe two possible implementations for a proto-
matcher that can be used in practice to match our pro-
tomatching signatures, based on a deterministic finite state
machine and based on an hierarchical state machine. We
used both techniques to implement our protomatchers in our
experiments (Section 5). To handle possible false matches
of our superset protomatcher, we invoked Snort’s analyzer,
normalizer, and matcher. While this might not be the most
time-efficient method, it was sufficient to illustrate the ben-
efits of the P–ANM methodology.

Implementing a protomatcher using a determinis-
tic FSM. Recall that a protomatching signature is a reg-
ular expression. Since regular expressions are closed under
the union operation, there exists a single regular expression
that recognizes all signatures in parallel. We used publicly
available tools [21, 49] to construct this expression and then
to automatically convert it into a deterministic finite state
machine. We implemented the machine as an M×256 table
where M is the number of states and 256 is the size of our al-
phabet. The table represents a function f(i, j) = k, that is,
from state i with the input j the automaton moves to state
k. We incorporate this table into Snort during compilation
time.

Note that an implementation based on a deterministic
FSM is highly efficient because it inspects each network
byte exactly once. There is no need for any protocol analy-
sis or normalization. Ultimately, our goal is a full-coverage
protomatcher that only uses full-coverage signatures. Un-
fortunately, this was not always feasible because a deter-
ministic protomatcher based only on full-coverage signatures
consumed more than 2GB of memory when we added full-

coverage versions of signatures of Type 2, 3 and 4. Hence,
when a full-coverage protomatcher was infeasible, we con-
structed a superset protomatcher using the superset signa-
tures (Section 5.1).

The hierarchical protomatcher, implementing a proto-
matcher using an hierarchical FSM. As we show in
Section 5.1, a deterministic superset protomatcher is feasi-
ble but can consume more than 20MB of memory. Because
of its large size, the protomatcher might cause many cache
misses. Therefore, we investigated an implementation that
reduces the memory footprint of our protomatcher.

The hierarchical protomatcher is a memory-efficient im-
plementation of a protomatcher. It splits the protomatcher
into two machines: a matcher and a normalizer. The matcher
is responsible for protocol analysis and pattern matching.
The normalizer is responsible for handling multiple encod-
ings. Unlike the ANM method that first normalizes the
whole HTTP request, the hierarchical protomatcher con-
sults with the normalizer only when necessary. For example,
when a matcher encounters the character ’%’ in “dnsto%4fls”
(R2 in Section 3), it calls the normalizer that interprets the
string “%4f” and returns the character ’o’ to the matcher,
which continues with the matching process. Formally, the
normalizer is implemented as a transducer [40], a finite state
machine that outputs a symbol on each transition.

To implement a hierarchical protomatcher, we build a pro-
tomatching signature according to the rules in Table 2, but
we do not apply the N−1 substitution. Hence, in the hi-
erarchical protomatcher case, our protomatching signature
accounts only for the UL encoding, while the normalizer im-
plements the HEX and Uencode transformations.

The main advantage of a hierarchical protomatcher is its
memory efficiency, it consumes an order of magnitude less
memory that a deterministic protomatcher. The reason is
that a deterministic implementation inlines the normaliza-
tion of the HEX and Uencode encodings in every pattern,
while in the hierarchical implementation we abstract this
normalization as a function call.

We can use some of the memory we save to improve the
accuracy of the underlying superset protomatcher. We pin-
point superset signatures that cause a significant number of
false matches (Section 3.3) and convert them back to full
coverage signatures. Since we do so only for a few signa-
tures, we only increase the size of the hierarchical proto-
matcher to 6MB (Section 5.2.2), which is equivalent to the
size of Snort’s matcher. More importantly, this process sig-
nificantly reduces the number of false matches of the under-
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Name N−1(o) A DFA that identifies the HEX, Uencode, and UL substi-
tutions for the character ‘o’

HEX ([%6f|%6F|%4f|%4F])

S
%

Fo,O

4,6
u,U f,F0 0 4,6

Uencode ([%u006f|%u006F|%u004f|
%u004F|%U006f|%U006F|%U004f|%U004F])

UL ([o|O])

Table 3: Representing encodings as substitutions. The I−1 substitution is analogous to N−1 but without the
Uencode substitution.

lying superset protomatcher. We believe that such a sig-
nature refinement process can be automated. For example,
a NIDS can use an administrator responses to discover the
signatures that cause the most false matches. However, such
study is beyond the scope of this paper.

5. FEASIBILITY STUDY
We investigated the ability of the P–ANM methodology

to improve the performance of Snort (version 2.3.3). We
were interested in the following questions.

1. Is a protomatcher-based Snort feasible? Espe-
cially, we were interested in understanding the memory
consumption of various protomatchers and the time it
takes to construct them.

In Section 5.1, we show that a protomatcher-based
Snort is feasible. We show that, based on 999 pro-
tomatching signatures, our protomatchers consume up
to 22.09MB or 6.47MB, when implemented using the
deterministic or hierarchical implementations, respec-
tively.

2. How does a protomatcher affect Snort perfor-
mance? In Section 5.2, we compared the performance
of a protomatcher-based Snort to a vanilla Snort: the
original Snort that uses the ANM methodology.

In Section 5.2.1, we show that a protomatcher-based
Snort is 45% faster that a vanilla Snort. After we
tuned Snort to use a Wu-Manber pattern-matching al-
gorithm [47], our protomatcher-based Snort was still
25% faster. We show that, on real HTTP traffic, our
protomatcher classified more than 99% of the traffic as
benign. In other words, our protomatcher determined
that more than 99% of the traffic was benign without
utilizing the expensive analysis-normalizing-matching
phases.

In Section 5.2.2, we reduced the number of false matches
using an hierarchical protomatcher. We identified su-
perset signatures that cause the majority of false matches
and replaced them back with their full-coverage ver-
sions. We reduced the number of false matches by
more than 50% and improved our performance by an
additional 2% (or 4% without the Wu-Manber pattern
matching), beyond the 25% obtained with the deter-
ministic protomatcher.

3. How does the memory size of a protomatcher
affect its performance? Since a protomatcher con-
sumes more memory than a vanilla Snort, a proto-
matcher-based Snort might suffer more cache misses.
We investigated a cache-poisoning attack in which an
attacker attempts to degrade the protomatcher’s per-
formance by forcing it to generate many cache misses.

While this attack degrades the a protomatcher by 2%,
it degrades the performance of the vanilla Snort by
4.5%.

Experimental methodology. Our Snort distribution
contained 1022 HTTP signatures. We removed 23 (2.25%) of
them from the experiments because they caused thousands
of false alarms in our environment.

To compare the performance of our protomatcher-based
Snort to a vanilla Snort, we used traces of live HTTP traffic
that we collected from the gateway router of our department
web server. Each trace contained between five and seven
million packets with their full HTTP payload. Two traces,
T1 and T2, were collected during the day, starting at 9:00am
and 2:00pm, respectively. Trace T3 was collected during the
night, starting at 1:00am. All traces where collected during
September 2005. On average, 4% of the TCP packets in
each trace are requests.

Our performance metric is Snort’s Average per-Packet Pro-
cessing Time (ApPPT). We measured this time in CPU cy-
cles. We started counting cycles when Snort gets a packet
from libpcap [43] and stopped counting when Snort finishes
handling the packet and is ready to accept the next one.
We ran all our experiments on a Pentium 4, 3GHz, 1MB L2
cache, 2GB of memory, running Tao Linux 1.0.

5.1 Feasibility and Memory Consumption
We experimented with protomatchers containing different

numbers of signatures. First, we built full-coverage proto-
matchers, using full-coverage Type 1 signatures (Table 2).
Since we have 747 Type 1 signatures, we built protomatchers
with 100, 300, 500, and 747 signatures. Second, we tried to
add another 120 full-coverage Type 2 signatures. However,
this attempt failed because building a full-coverage proto-
matcher consumed more than 2GB of memory. Hence, we
switched to a superset protomatcher, using 120 Type 2 su-
perset signatures and 747 full-coverage signatures. Finally,
we added 132 Type 3 and Type 4 superset signatures, con-
structing a superset protomatcher with 999 signatures.

We build the protomatchers once using the deterministic
FSM and once using an hierarchical FSM. Building times
for the deterministic protomatchers span from 4 minutes
for the smallest to 92 minutes for largest, when constructed
with the UL, HEX, and Uencode transformations (Figure 1a).
Building times for an hierarchical implementation are con-
siderably lower. Recall that we implement a protomatcher
as a separate table (Section 4.2) and we incorporate the ta-
ble into Snort during the compilation process. Therefore,
from the administrator viewpoint, the only differences be-
tween a protomatcher-based Snort and a vanilla Snort, is
their compilation time. According to our measurements,
given a protomatcher as a header file, the compilation time
of a protomatcher-based Snort is longer by at most 10 min-
utes.
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Number of signatures 100 300 500 747 867 999
Type of signatures (Ta-
ble 2):

1 1 1 1 1,2 1,2,3,4

Protomatcher type: full-coverage full-coverage full-coverage full-coverage superset superset
Building time (min): 4 9 18 60 80 92
Memory size D-FSM (MB): 1.79 3.46 11.30 19.06 22.09 18.92
Memory size H-FSM (MB): 0.29 0.71 1.34 2.03 3.03 6.47

(a) Summary of feasibility study: building times and memory sizes are for protomatchers built using the UL, HEX, and
Uencode transformations (Section 4.1).
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Figure 1: Performance comparison of a protomatcher-based Snort with a vanilla Snort. (D-FSM and H-FSM
denote a deterministic and hierarchical protomatcher, respectively.)

Figure 1a also presents the memory consumption of proto-
matchers that support normalization for the UL, HEX, and
Uencode transformations. Protomatchers based on a deter-
ministic implementation consume up to 22.09MB, or less
than 1% of our workstation memory. Protomatchers based
on the hierarchical implementation consume an order of
magnitude less memory.

Figure 1b presents the memory consumption of proto-
matchers that support different types of normalization: the
UL+HEX+Uencode that we used in our ApPPT experiment
(Section 5.2.1), a UL+HEX protomatcher that is suitable to
use with the Apache web server, and a UL protomatcher for
comparison purposes. The HEX+UL protomatcher is about
half the size of its HEX+UL+Uencode counterpart, indicating
the heavy memory consumption imposed by the Uencode

normalization. In comparison, the UL protomatchers con-
sume less than 3MB, or half the size of Snort’s matcher.

Note that the protomatcher with 867 signatures consumes
more memory than a protomatcher with 999 signatures. The
reason is that sometimes adding a signature reduces the
number of states in an automaton. Consider, for example,
an automaton with a signature Σ� · cgi bin/perl to which
we add the signature Σ� · perl. When we add the latter
signature we reduce the number of states because the new
automaton does not need to ensure the existence of substring
“cgi bin/”.

In summary, our results show that a protomatcher-based
NIDS is feasible. The memory consumption of our proto-
matchers is reasonable. Since construction of a protomatcher
is done in a separate process, one can build a protomatcher
without halting Snort. Then, incorporating a protomatcher
into Snort just increases the compilation time by 10 minutes.

5.2 Performance Improvements
We first compared the ApPPT of our protomatcher-based

Snort to a vanilla Snort. Then we investigated the capability
of a protomatcher to quickly filter benign traffic.

5.2.1 Improved ApPPT
We ran our protomatcher-based and vanilla Snorts on our

three traces and measured the ApPPT. Our protomatcher
normalizes the UL, HEX and Uencode transformations. We
report the results against a vanilla Snort configured with the
Wu-Manber pattern matching algorithm. By default, Snort
uses the Aho-Corasick algorithm [1]. When compared to
the Aho-Corasick algorithm, our protomatcher-based Snort
further improved the performance by additional 10%-15%
above the numbers reported below.

Up to 25% improvement of Snort’s ApPPT. The
ApPPT of Snort with a superset protomatcher containing
999 signatures is lower by up to 25%, 19%, and 18% on T1,
T2, and T3, respectively (Figure 1c). Note the steep increase
in Snort ApPPT as we add Type 3 and 4 signatures (the
867 and 999 marks). Inherently, matching complex regular
expressions is a time consuming task. This illustrates the
benefits of the P–ANM approach: the majority of the traf-
fic does not match any signature and a protomatcher saves
expensive analysis, normalization, and matching times.

Recall that an hierarchical protomatcher is less efficient
than a deterministic protomatcher, because it must imple-
ment communication between the matcher and the normal-
izer. However, our hierarchical protomatcher further im-
proved the ApPPT by 2%, on average (compare the “Hier-
archical” and “Deterministic” lines in Figure 3). With 999
signatures the hierarchical protomatcher improved Snort’s
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Figure 3: Effects of a cache-poisoning attack on the
T3 trace. The hierarchical protomatcher exhibits the
best ApPPT across all traces.

ApPPT by 27%, 21%, and 23% on T1, T2, and T3, respec-
tively. The reason for this improvement is the smaller size
of the hierarchical protomatcher, which reduced the number
of cache misses. Therefore, Snort with a hierarchical proto-
matcher can handle up to 27% more traffic than a vanilla
Snort.

Separate normalization is expensive. Although only
4% of the packets contain HTTP requests, our superset
protomatcher improved Snort’s ApPPT by up to 25%. This
illustrates the large toll of normalization on the performance
of a NIDS. The benefit from the superset protomatcher in-
creases as we add complex signatures, that is, Type 3 and
4 (Table 3) signatures, to the system. This is evident in
Figure 1c and Figure 3.

5.2.2 Utilization of the P–ANM Methodology
On average, a protomatcher classified 99% of the

HTTP requests as benign. The superset protomatcher
with 999 signatures classified as benign 99%, 98.8%, and
99% of the HTTP requests in T1, T2, and T3, respectively.
The ability of a protomatcher to quickly accept benign traf-
fic, either normalized or encoded, is the core of its efficiency.

However, our superset protomatchers still produce false
matches (Section 3.3). For example, our superset proto-
matcher with 999 signatures matches 885 HTTP requests in
T1 while Snort produces only 417 alerts (Compare “Snort”
and “Deterministic protomatcher” bars in Figure 2). Since
the hierarchical protomatcher is a compact implementation
of a protomatcher, it provides plenty of opportunity to fur-
ther reduce the number of false matches.

We discovered three Type 4 signatures that caused more
than 50% of the false matches across all the three traces. We
changed these signatures from superset signatures back to
their full-coverage signatures. This increased the size of the
hierarchical protomatcher from 3MB to 6MB (Figure 1b)
but also decreased the number of false matches by more
than 50% in the case of a hierarchical protomatcher with
999 signatures (compare “Deterministic protomatcher” and
“Specialized hierarchical protomatcher” bars in Figure 2).

5.3 Sensitivity to Cache Poisoning Attack
A protomatcher is oblivious to the content of the input:

the time it spends on a packet with n bytes is always equal
to the time it takes to perform n table lookups. One way to
degrade the performance of a protomatcher is to increase the
table lookup time. To achieve this, we investigated a cache
poisoning attack in which we increase the table lookup time
by causing cache misses. We study one type of such attack,
using URL HEX encoding. Of course, this initial study does
not imply that our protomatcher is robust against all cache
poisoning attacks; such a study is beyond the scope this pa-
per. However, our study does show that our current proto-
matcher implementation can effectively sustain our chosen
attack.

Our cache poisoning attack attempts to cause cache misses
by forcing a protomatcher to visit more states. To do so,
we encode all URLs in our traces using only hexadeci-
mal representation. For example, we change a URL like
www.example.com into %77%77%77%2e. . . %2e%63%67%6d. Note
that the hexadecimal representation visits three times more
states than the normalized request. This technique gener-
ates traffic that accesses real web pages, so it is less likely to
be noticed. Note that our attack changes the character dis-
tribution inside URLs, so it could be detected using anomaly
detection techniques [17]. However, currently Snort does not
use such techniques.

We assumed that the attack would have a larger effect on
a protomatcher-based Snort than on vanilla Snort. Recall
that Snort normalizes all URLs before matching. Hence, in
the vanilla Snort case, we assumed the same cache behav-
ior during matching. Furthermore, Snort’s normalizer con-
sumes less that 2KB, so it easily fits into L1 cache. Hence,
we assumed no significant difference in the cache behavior
between the encoded and original traces during normaliza-
tion. In the protomatcher case, however, we assumed that
the cache misses would increase by a factor of three. Since
we did not take any effort to increase the spatial locality of
the protomatcher states, we believe that this is a reasonable
assumption.

Figure 3 presents the effects of our cache poisoning attack.
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Two observations should be noted:

1. The attack increases the ApPPT of all three systems
(in Figure 3, compare “Snort-encoded” and “Snort”,
“Deterministic-encoded” and “Deterministic”, and “Hi-
erarchical-encoded” and “Hierarchical”). This increase
is expected because the encoded URLs are three times
longer than the original ones.

2. Snort is more affected by the attack than our proto-
matcher-based implementation. Snort’s ApPPT in-
creased by 4.5% (compare the “Snort-encoded” and
“Snort” lines). In comparison, the ApPPT of Snort
with a deterministic protomatcher only increased by
2% (compare the “Deterministic-encoded” and “De-
terministic” lines).

This result is surprising since it contradicts our as-
sumptions above. There might be two reasons for this
result. First, the attack was ineffective in increasing
the number of cache misses. It means that a more so-
phisticated cache poisoning attack is needed. Second,
the attack was effective, but cache performance is only
a minor component of the ApPPT. Further investiga-
tion of these issues is left for future work.

6. CONCLUSION AND FUTURE WORK
We formulated the concept of a protomatcher: a deter-

ministic finite automaton that performs protocol analysis,
normalization, and matching. We studied the performance
of a protomatcher-based Snort and showed that it is both
feasible and beneficial. We envision two main research di-
rections that extend our work.

To become widely accepted, protomatching should be fur-
ther automated. Currently, we manually convert a full-
coverage signature into a superset one. We also manu-
ally refine a protomatcher to reduce the number of its false
matches. We plan to investigate ways to automate these
tasks in the future.

We also plan to further study the resiliency of protomatch-
ing and the P–ANM methodology against resource-consumption
attack. Attackers may attempt to induce a protomatcher
to generate many false matches. Such an attempt would
excessively utilize the four phases in the P–ANM method-
ology, which would become more expensive than the three
phases in the ANM methodology. Therefore, it is important
to develop a mechanism that chooses the least expensive
methodology based on the current network load.

We presented only an initial study on a protomatcher re-
siliency against cache poisoning attack. This issue should be
study further. For example, it will be interesting to develop
a cache-aware protomatcher whose states are organized in a
way that increases their locality in memory.
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