
Sequential Pattern Mining with Constraints on Large
Protein Databases

Joshua Ho, Lior Lukov, Sanjay Chawla

School of Information Technologies, University of Sydney
Sydney NSW 2006 Australia

joshua.ho@student.usyd.edu.au, lior@it.usyd.edu.au, chawla@it.usyd.edu.au

Abstract

Sequential pattern mining in protein databases has
the potential of efficiently discovering recurring
structures that exist in protein sequences. This in
turn may provide an understanding of the functional
role of proteins which support such structures. In this
paper we generalize a well known sequential pattern
mining algorithm, SPAM [1], by incorporating gap
and regular expression constraints along the lines
proposed in SPIRIT [2]. However the advantages of
using a depth-first algorithm like SPAM is that (a)
it allows us to push the constraints deeper inside the
mining process by exploiting the prefix antimonotone
property of some constraints, (b) It uses a simple
vertical bitmap data structure for counting and (c) it
is known to be efficient for mining long patterns.

Our work onextending SPAM is motivated by its role
in two concrete applications: (1) as a “feature fac-
tory” for a secondary structure classification problem
in integral membrane proteins and (2) as an under-
lying engine for answering secondary stucture queries
on protein databases. A detailed set of experiments
confirm that the incorporation of gap and regular ex-
presssion constraints allows us to extract more specific
and biologically relevant information.

1 Introduction

In the post-genomic era scientists are constantly fac-
ing the challenge of effectively managing, querying and
mining useful information from the vast amouont of
biological sequence data that is now readily available.
Analysis and knowledge retrieval from large biologi-
cal sequence database is a common theme in many
bioinformatics application, like gene finding, sequence
homology search and protein secondary structure pre-
diction.

International Conference on Management of Data
COMAD 2005b, Hyderabad, India, December 20–22, 2005
c©Computer Society of India, 2005

In this paper, we concentrate on two distinct but
related biological applications that involve mining of
large protein databases: extraction of features for ac-
curate transmembrane helix prediction and answering
secondary structure queries. We propose that these
two problems can be solved efficiently using sequen-
tial pattern mining techniques that incorporate user-
specified constraints. We begin with a brief overview
of the two bioinformatics problem followed by a review
of the different sequential pattern mining algorithms
that are available.

1.1 Extracting Transmembrane Helix Fea-
tures

Integral Membrane Proteins (IMPs) control a broad
range of events essential to the proper functioning of
cells, tissues and organisms, and are the most common
target of prescription drugs [3]. Despite their biologi-
cal importance, there are only a small number of IMPs
whose 3D structure information is available. Predict-
ing the secondary structure of IMPs using machine
learning techniques is an active area of research within
bioinformatics. IMPs consist of transmembrane helix
regions and non-transmembrane regions. The machine
learning task is to identify the location of these regions
based on primary structure of proteins, i.e., the given
sequence of amino acids. This makes the identification
of helical regions as an instance of the sequential classi-
fication problem. In our previous work [4] we have used
the framework of Conditional Random Fields (CRFs)
[5] to predict the location of transmembrane helical
regions.

The abstract secondary structure classification
problem can be stated as follows. We denote with
x the given observation sequence of amino acids and
with y the corresponding unobserved sequence from
the set {1, 0} where 1 denotes a transmembrane he-
lical region and 0 a non-transmembrane region. The
relationship between the sequence x and y is modeled

by the conditional probability formula

P (y|x) =
1
Z

exp(
n∑

i=1

αiFi(x, y)) (1)

The success of the classification task is crucially
dependent on the availability of a “good” set of fea-
tures F ′is. The F ′is capture the relevant biological in-
formation which characterize the properties of trans-
membrane helical regions. The F ′i can also be viewed
as constraints on the conditional probability distri-
bution P (y|x). We want to use sequential pattern
mining in order to discover which constraints or fea-
tures dominate the different secondary structure re-
gions. Thus we see sequential pattern mining with
constraints as a “Feature Factory” which will give bi-
ologists the flexibility to generate candidate features
and then test their effectiveness through the model
specified in Equation 1.

1.2 Querying Protein Secondary Structure
Database

The secondary structure is the local three dimensional
structure of a protein sequence. There are mainly
three type of secondary structures: alpha helix, beta
sheet and loop region. The secondary structures is
important in determining the 3D structure and the
function of a protein [6].

The problem of posing secondary structure query
on protein databases was described by Hammel and
Patel [7]. The problem essentially states that given
a protein database with each amino acid labeled with
their secondary structure, find all the sequences that
match a particular secondary structure pattern. A la-
beled protein sequence is of the following format:

GQISDSIEEKRGFFSTKRKKIEESDSSTTRKR...
hllllllllllhhheeeellllllllleeeee...

The label h stands for alpha helix, e for beta sheet
and l for loop region. The task is to retrieve all se-
quences that matches a query secondary structure pat-
tern. An example of valid secondary structure query
is <l 3 5><? 0 *><h 6 6>, which finds protein that
contain a helix of length 3 to 5, followed at some point
(with any number of gap) a loop of length 6. Hammel
and Patel [7] make use of some segmentation technique
to break up secondary structure labels into segments
to allow for fast query. Currently, performance and
flexibility are the main issues in devising a query en-
gine. One challenge is to allow mixture of primary and
secondary structure in the same query. In this paper,
we present a sequential pattern mining approach to
tackle this problem.

1.3 Sequential Pattern Mining

Both of the biological problems involve mining some
kind of patterns in a large protein database. There-

fore, we propose the use of the well characterized se-
quential pattern mining apporach to solve the prob-
lems. The support-confident sequential pattern min-
ing problem was originally proposed by Agrawal and
Srikant [8] in 1995. The problem was originally de-
scribed for market basket analysis for customer trans-
action database. Since then, a number of Apriori [9]
based algorithms have been invented [10, 2, 1, 11, 12].
GSP [10] generalized the problem by introducing the
idea of time constraint, sliding time window and tax-
onomy. Subsequently, more researches have been done
on pushing user-specified constraints into the sequence
mining process to reduce the search space and gain
output-selectivity. Ng et al [13] have explored the
antimonotonic and succinct constraints and demon-
strated how they can be used to prune the search
space. SPIRIT [2] was the first family of algorithms
that pushes regular expression constraints in sequen-
tial pattern mining. Constraints with prefix-monotone
property was exploited in the context of mining with
projected databases [11]. Sequential pattern mining
for biological sequences has been explored by Wang
et al [14]. They have deviced a scalable algorithm
for mining general biological sequences (DNA and pro-
tein). However, they did not consider their algorithm
in terms of solving specific biological problems and this
is what we address.

One of the simplest and fastest algorithms for se-
quential pattern is called SPAM [1] which make use of
a depth-first search strategy, efficient candidate prun-
ing mechanism as well as a vertical bitmap data struc-
ture. Despite the space inefficiency, SPAM was shown
to outperform other sequential pattern mining algo-
rithms in runtime especially on large databases with
long sequential patterns. Since runtime performance is
essential for mining large protein databases and mem-
ory availability is usually not a big problem for most
of the current databases, SPAM was chosen. The
problem with SPAM is that it does not support pat-
tern mining with user-specified constraints, which is
essential for both of our biological applications. In
transmembrane helix features extraction, being able
to specify the minimum and maximum gap for out-
put feature pattern is essential. The ability to specify
regular expression constraints is also helpful in select-
ing desired features’ pattern. In querying secondary
structure on protein databases, the regular expression
constraint is used for posing queries.

1.4 Our Contribution and Paper Organization

There are two main contributions of this paper. First,
we have successfully incorporated the gap and regular
expression constraints to SPAM. This modified SPAM
algorithm is generic and can be applied to other se-
quential pattern mining problems. Second, we demon-
strated the use of our modified SPAM algorithm to
extract high quality transmembrane helix features as

tid
cid 1 2 3 4 5

1 {a,c} {a} {a} {b} {d}
2 {a} {c} {c} {b} {d}
3 {a} {c} {b} {d}
4 {a,b} {b} {b,c} {c,d}

Figure 1: Example of a transaction database

cid sequence
1 ({a,c},{a},{a},{b},{d})
2 ({a},{c},{c},{b},{d})
3 ({a},{c},{b},{d})
4 ({a,b},{b},{b,c},{c,d})

Figure 2: Sequence view of the example transaction
database

well as propose a framework for answering secondary
structure queries using SPAM.

In particular, a three-phase framework for trans-
membrane helix features extraction using SPAM is
implemented as a software called Pex-SPAM (Protein
Features EXtractor using SPAM). Our experimental
results indicate that mining for transmembrane fea-
tures with maximum gap constraint of five or below
can significantly eliminate useless features.

The first part of the paper discusses how the gap
and regular expression constraints are incorporated
into SPAM. This includes section 2 which formally de-
fines the problem of sequential pattern mining with
constraints, and section 3 which describes how the con-
straints are pushed into SPAM. Section 4 includes a
detailed discussion on how the modified SPAM is used
to generate protein transmembrane helix features. The
three-phase archtitecture of Pex-SPAM is discussed in
this section. Section 5 presents experimental evalua-
tion of the modified SPAM algorithm. It also demon-
strates the use of Pex-SPAM to gain biological insight
from the protein sequences. The proposed use of Pex-
SPAM in protein secondary structure query is pre-
sented in section 6. The paper concludes in section
7 with a summary and directions for future research.

2 Problem Definition

Let I = {i1, i2, ..., in} be the set of items. We
call a subset X ⊆ I an itemset. A sequence s =
(s1, s2, ..., sm) is an ordered list of itemsets, where
si ⊆ I, i ⊂ {i, ..., m}. A sequence sa = (a1, a2, ..., an)
is contained in another sequence sb = (b1, b2, ..., bm) if
there exist integers 1 ≤ i1 < i2 < ... < in ≤ m such
that a1 ⊆ bi1 , a2 ⊆ bi2 , ..., an ⊆ bin . If sequence sa is
contained in sequence sb, then we call sa a subsequence
of sb and sb a supersequence of sa.

A transaction database D is a set of tuple
(cid, tid,X) where cid is the customer id, tid is the
transaction id which represent the number of the trans-

action made by a particular customer and X is the
itemset. The composite key (cid, tid) is a primary key
in the database. A transaction database can be viewed
as sequence database (cid, s) where s is a sequence of
itemset purchased by a customer in sequential order.
Figure 1 is an example transaction database and Fig-
ure 2 is its equivalent sequence database. This example
database is used throughout section 2 and 3 to moti-
vate our solution. The support of a sequence sa in a
database D is defined as the percentage of sequences
s ∈ D that contains sa and is denoted by supD(sa).
For example, supD({a}{c}{c}) = 0.5 because it is con-
tained in half of the sequences (customer 2 and 4).
Given a minimum support threshold minSup, a se-
quence sa is called a frequent sequential pattern on D
if supD(sa) ≥ minSup.

A more restrictive class of sequential patterns can
be specified by including gap and regular expression
constraints during the mining The gap constraints
are also called time constraints in [10]. These con-
straints restrict the number of gap between sets of
transactions that a frequent sequential pattern can
have. Sequence sa =< a1, . . . , an > is a subsequence
of sb =< b1, . . . , bm > with maxGap (minGap) if
there exist integers j1 < j2 < . . . < jn such that
a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , an ⊆ bjn and jk − jk−1 − 1 ≤
(≥) maxGap(minGap).

A regular expression (regex) constraint R is ex-
pressed in terms of its equivalent finite state machine
AR. We adapt the following definitions from [2]. A
sequence s is legal w.r.t. R if every state transition in
AR is defined following the sequence of transitions for
the elements of s starting from the initial state of AR.
A sequence s is valid w.r.t. R if s is legal w.r.t. R and
the final state of AR is an accept state. In our prob-
lem, we say a sequence s satisfies a regex constraints
R if s is valid with respect to R.

2.1 Problem Statement

SPAM with Constraints: Given a sequence
database D, minSup and constraint set C =
{minGap, maxGap, regex}, find all the sequences
s which have sup(s) ≥ minSup and satisfy all con-
straints in C.

3 Applying Constraints to SPAM

3.1 Overview of SPAM

The main idea of SPAM is to combinatorially generate
all candidate sequences in the manner of a depth first
traversal through a lexicographic tree of sequences.
Each node of the tree represents a frequent sequen-
tial pattern sa found so far. Supersequences of sa can
be generated by the sequence-extension step (S-step)
or the itemset-extension step (I-step). In S-step, a
supersequence is generated by appending an itemset

Figure 3: The bitmap representation of the database

with one item at the end of sa. In I-step, a super se-
quence is generated by appending one item at the end
of the last itemset of sa. A newly generated sequence is
pruned if its support is less than than minSup. In order
to reduce the search space, two Apriori-based pruning
techniques, called S-step pruning and I-step pruning,
are used. In essence, both pruning techniques work
like this: if sequence s is extended with item i which
result in an infrequent sequence, SPAM will not ex-
tend item i to any supersequence of s because it must
be infrequent based on the Apriori principal.

The most powerful feature of SPAM is its bitmap
data structure for efficient support counting [1]. A
vectical bitmap of item i represents the occurence of i
in all transactions among all customers. Each vertical
bitmap is partitioned into n sections where n is the nu-
mebr of customer. Each section contains m bits where
m is the number of transactions made by that cus-
tomer. Each bit contain a boolean value that is set to
one if i appears in that transaction or zero otherwise.
The support of a sequence is the number of sections
in its vertical bitmap that contains at least one bit of
one. Figure 3 shows the bitmap representation of the
database in Figure 1.

3.2 Pruning Strategy

Constraints can be applied to prune out branches of
the search tree which cannot produce frequent sequen-
tial patterns that satisfy the constraints. We observe
that the sequences are built incrementally with each
sequence in the direct parent node being the prefix
[12] of the sequences of its child nodes. Therefore,
we exploit the prefix-antimonotonic property of the
constraints. A constraint c is prefix-antimonotonic if
every sequence s satisfies c implies every prefix of s
also satisfies c. This property is particularly impor-

Figure 4: S-step with no gap constraints

tant in pruning the search tree because a sequence sa

that cannot satisfy a prefix-antimonotonic property c
implies none of the supersequence of sa generated by
either S-step or I-step can satisfy c because they all
contain sa as prefix. Gap contraints are enforced at the
bitmap level during the S-step and regular expression
constraint is applied by using its relaxed constraint
which is prefix-antimonotonic.

3.3 Pushing Gap Constraints

The way in which the minGap and maxGap con-
straints can be pushed into SPAM is by providing a
different transformation function for the S-Step at the
bitmap level.

In the original SPAM algorithm, S-step for extend-
ing sequence ({a}) with sequence ({b}) involves two
steps. First, let k to be the first index of one in every
section of the vertical bitmap of ({a}), then set the
bits position 1,2,...,k to be zero and every bit after po-
sition k to be one. The resulting bitmap after this step
is called the transformed bitmap ({a})s. In the second
step, the transformed bitmap of ({a}) is ANDed with
the vertical bitmap of ({b}). This operation yields the
vertical bitmap of sequence ({a}, {b}). This procedure
is based on the observation that a sequential pattern
can only be found if {b} appear anywhere after the
first occurrence of {a}. See Figure 4 for example.

Here we describe a way to push minGap and max-
Gap constraints into SPAM at the bitmap level. With
minGap and maxGap constraints, the transformation
step is modified to restrict the number of position that
{b} can appear after {a}. Essentially, for any po-
sition p with bit one in the original bitmap section
of {a}, we transform only the bits between position
(p+minGap+1) to the bit at position (p+maxGap+1)
inclusively to one and all other bits are set to zero. If

Figure 5: S-step with minGap=1 and maxGap=1

the maxGap is set ot infinity (no maxGap constraint),
all bits between (p + minGap + 1) till the end of the
bitmap are set to one. If the transformation proce-
dure encounters a bit that has been set to one (from
the previous pass) and the current pass indicate that it
should be set to zero, one is assigned to this bit because
this position is valid for S-Step extension (See Fig. 5).
This can be summerized in the following pseudocode.

Constraints-transform(sa)
bma ←bitmap of sa

bmtrans
a ←empty bitmap

For each (bitmap section bmsa ⊆ bma)
if (maxGap = ∞)

k ←index of the first 1
transform bit 0 to (p+minGap) to be 0
transform bit (p+minGap+1) till the end to be 1

else
pset ← φ
For (i ← 1 to |bmsa|)

if (bmsa[i] = 1)
pset ← pset ∪ i

For each (p ∈ pset)
For (i ← (p + minGap + 1) to

(p + maxGap + 1))
bmstrans

a [i] ← 1
return bmtrans

a

As we can see, the gap constraints are enforced at
the bitmap level in conjunction with support count-
ing. Pei et al [11] proved that the gap constraints
are antimonotomic, therefore they must also be prefix-
antimonotonic. As a result, we can prune all nodes
with sequences that do not satisfy the gap constraints
because all its decendants must contain sequence that
does not satisfy the gap constraints.

3.4 Pushing Regular Expression Constraints

In our discussion, we denote the regular expression
(regex) constraint as R. It is easy to see that regex
constraint are not prefix-antimonotonic. For example,
the pattern ({a},{c},{b},{d}) is a valid sequence with
respect to regular expression <a+[b|c]2d>. However,
its prefix ({a},{c},{b}) is not valid w.r.t. the regu-
lar expression because the accept state in AR cannot
be reached by this sequence. However, we observe that
the prefix ({a},{c},{b}) is legal w.r.t. R. Therefore, we
propose the use of a relaxed constraint of R to prune
the search tree when dealing with the regex constraint.
Lets first suppose we have a constraint R′ that is de-
fined as:

Definition 1: Let R′ be a constraint such that
sequence s satisfies R′ if s is legal w.r.t. R.

Next, we will show that R′ is a relaxed constraint [2]
of R. In general, consider constraint C ′ that generates
a set of output sequences P ′, and constraint C that
generates a set of output sequences P . We say C ′ is a
relaxed constraint of C iff P ⊆ P ′.

Lemma 1 R′ is a relaxed constraint of R.

Proof: By definition, all sequences that is valid w.r.t.
R must be legal w.r.t. R′. Therefore, all sequences
generated under the constraint R must also be gener-
ated under constraint R′.

Now, lets examine the prefix-antimonocity of con-
straint R′.

Lemma 2 R′ is a prefix-antimonotonic constraint.

Proof: If there exists a prefex α of a legal sequence s
that is not legal w.r.t. R, there must be at least one
transition in α that is not defined which implies the
transition path of s must not be complete. This con-
tradict the premise that s is legal. Therefore, sequence
s that satisfies the constraint R′, all prefix of s must
also satisfies R′.

Using the nice prefix-antimonotonicity of R′, we
propose the following pruning strategy: at each s-step
and i-step, prune all nodes containing sequence that
violates the relaxed constraint R′. At the end of the
tree building process, enforce the full regex constraint
by traversing the search tree once more to retrieve the
sequences that is valid w.r.t. R.

symbol meaning
a,b,c item

[a|b|c] either one of a, b or c
a+ one or more occurence of a
a2 exactly two occurences of a

Table 1: Example of regular expression

During the tree building step in SPAM, the initial
node is assigned with the initial state of the finite

Figure 6: Finite State Machine for regular expression
<a+[b|c]2d>

state machine AR. For every possible S-step on se-
quence sa with current state m the algorithm checks
if the newly appended item {i} can cause a transition

m
i→ n where n is a state in the AR. If it can, the new

node (sa, {i}) is created and is assigned with the state
n. Otherwise, the node (sa, {i}) is pruned. An ex-
ample search tree using the database in Figure 1 with
minSup=50%, no gap constraints and applied regex
constraint <a+[b|c]2d> is shown in Figure 7.

Figure 7: Running SPAM with no gap constraint and
regex constraint of <a+[b|c]2d>

3.5 Overall Algorithm

With the addition of the gaps and regular expression
constraints, a sequence can be pruned even if it has
support greater than or equal to minSup if it does not
satisfy any constraint. This raises a problem for S-step
and I-step pruning in which the pruning techniques
are based on only minSup. Our approach to preserve
the S-step and I-step is to do support counting twice.
The first round of support counting do not include any
constraint and thus prune the search tree with only
minSup. The information of this step is used for S-
step and I-step pruning. The second round of support

counting incoporates the contraints and prune all child
nodes that contain sequence that does not satisfy the
constraints. The pseudocode for the modified SPAM
algorithm is as follows:

SPAM-Constraints(Database D, Regex R)
stinit ←initial state of R
I ←set of all items in D
F ← φ
For each (i ∈ I)

DFS-Constraints(({i}),I,I,stinit)
For each (n in the tree)

if(n is valid w.r.t R)
F ← F ∪ n

Return F

DFS-Constraints(node n=(s1, ..., sk),Sn,In, stcurr)
Stemp ← φ
Itemp ← φ
For each (i ∈ Sn)

if((s1, ..., sk, {i}) is frequent)
Stemp ← Stemp ∪ {i}

For each (i ∈ Stemp)
if(stcurr

i→ stnext is legal AND (s1, ..., sk, {i})
with minGap, maxGap is frequent)

DFS-Constraints((s1, ..., sk, {i}), Stemp,
all elements in Stemp greater than i,stnext)

For each (i ∈ In)
if((s1, ..., sk ∪ {i}) is frequent)

Itemp ← Itemp ∪ {i}
For each (i ∈ Itemp)

if(stcurr
i→ stnext is legal)

DFS-Constraints((s1, ..., sk ∪ {i}), Stemp,
all elements in Itemp greater than i,stnext)

4 Features Extraction using SPAM

One of the goals of this paper is to describe the way
in which SPAM is used to extract features for accu-
rate transmembrane helix prediction for IMPs. In our
framework, the input is an annotated protein sequence
database D that consists of a collection of protein se-
quences and their corresponding labels. For example,
one instance of the database may be:

MDLLYMAAAVMMGLAAIGIGILGGKFLEGAIPLLRTQFFIKLL
0000011111111111111111000000000000000111111

The first line is the protein sequence. Each character
represents an amino acid residue. Each amino acid
residue is labeled 1 if it appears in the transmem-
brane helix region, otherwise it is labeled 0. Therefore,
transmembrane regions are the set of contiguous sub-
sequences of protein that are labeled 1. There are two
transmembrane helix regions in the sequence shown
above.

There are twenty amino acids in nature and each
amino acid possesses a number of biochemical prop-
erties (Hydrophobic, Charged, Small, Aliphatic, Aro-
matic, Polar, Tiny, Positive and Negative). For exam-
ple, amino acid residue valine (V) is Small, Aliphatic
and Hydrophobic. Usually, an amino acid is associ-
ated with a number of these properties. Since the
amino acid properties are the ultimate determining
factor of the protein’s structure and function, abil-
ity to extract sequential patterns of amino acid prop-
erty is also important. Using a mix of amino acid
properties and amino acid residues in the process of
sequential pattern mining allow the process to be
more generic since we are able to consider patterns
like ({hydrophobic}{L}{I}{polar}{charge}{L}) which
may be far more interesting than just amino acid se-
quences.

We have identified three phases in protein trans-
membrane helix features extraction:(1)pre-processing,
(2)features extraction and (3)features verification.
This framework is implemented as a software called
Pex-SPAM. The overview of the Pex-SPAM system is
summarized in Figure 8.

Figure 8: The three-phase architecture of Pex-SPAM

4.1 Pre-processing Phase

In this phase, the users have to select the regions that
they are interested in and the pre-processor would se-
lect those regions and regard them as one input se-
quence for SPAM. If we are interested in looking at fre-
quently occuring patterns within the transmembrane
region (i.e. transmembrane feature), the pre-processor
will traverse through all the protein sequences and
make each transmembrane region a customer, with
each amino acid converted to a transaction of one item-
set. For example The transmembrane region FFIKLL
will be converted to a customer with associated se-
quence ({F}{F}{I}{K}{L}{L}). A sequence database
formed by considering a particular region r is denoted
Dr. Its complementary database Dnon−r contains all
the regions other than r. The transaction database of

the transmembrane regions is denoted as Dtrans and
its reciprocal database Dnon−trans contains all the se-
quences in the non-transmembrane regions.

Amino acid properties can be incorporated into the
sequence database after choosing the type of feature
to be extracted. Each itemset i = {aa} is substi-
tuted by {aa, prop1, prop2, ..., propn} where aa is an
animo acid residue with n properties prop1 to propn.
For example, The itemset {V} is replaced with item-
set {V, small, aliphatic, hydrophobic}. This enables
the extraction of patterns that contain a combina-
tion of amino acid residues and their properties. If
substitution is disabled, only sequences of amino acid
resides are mined. If only the amino acid proper-
ties {prop1, prop2, ..., propn} are substituted, only se-
quences of amino acid properties are mined. This give
rise to an extra level of output selectivity.

4.2 Feature Extraction Phase

This is the core component of Pex-SPAM where the
features are actually extracted. We use our modified
version of SPAM. The details of this modified SPAM
were described in section 3.

4.3 Post-processing Phase

Although the number of output features can be sig-
nificantly reduced using appropriate constraints (e.g.
minSup, minGap, maxGap and regex), the number of
output features may still be quite large. Also, users
may want to view the features in order of how promis-
ing the features are. The most promising features are
likely to satisfy the following criteria: (1) Long se-
quence length, (2) high amino-acid/property ratio, (3)
high support in region r and (4) low support in re-
gion non-r. Pex-SPAM allows the users to filter and
sort the output features in order to identify the most
promising features.

4.3.1 Filtering

The set of output sequences are filtered according to
their length |s| and support sup(s). User can define
the minimum sequence length and minimum support
that a feature should have. Also, regular expression
constraints can also be applied in this step to further
restrict the output space and increase the features’
specificity. After sorting the features according to the
score (see below), features can be filtered by their or-
der. For example, a user can filter out most of the
sequences except the top ten sequences.

4.3.2 Sorting

In order to measure how promising a potential fea-
ture is compared to other features, a score is assigned
to each sequential pattern outputed from the features

extraction phase. The score for any sequence s is cal-
culated as follow:

score(s) = A× |s|+ B × apr(s) + C × sup(s) (2)

All A, B and C are non-negative constant
coefficients. The function apr(s) returns the
ratio of amino acid over amino acid proper-
ties. For example, suppose we have a sequence
s =({A,L},{I},{V},{hydrophobic,L,I}). There are
three itemsets that contain only amino acid residue
and one itemset that contain at least one property
therefore apr(s)=3/1=3. This means sequence receive
a higher score when they consist of a large number of
animo acid residues and a small number of amino acid
property since having the amino acid residue is more
specific. If the denominator is zero, apr(s) is defined
to be the number of itemsets. Therefore, long spe-
cific sequences with high support receive the highest
scores. The sequences are then sorted in descending
order of score. The sequences with the highest scores
are candidates for promising features.

In reality we are not only interested in sequential
patterns that appears very frequently in the regions r,
but also want to ensure that these sequences do not
appear often in regions non-r Therefore, the last step
of features verification is to calculate the support of
sequences in Dnon−r for each pattern extracted with
Dr using the same set of constraints and minSup=1%.
Then, each of the patterns is assigned with a Unique-
ness score which represent how unique this pattern is
in relation to the other part of the protein regions. It
is formulated as follows:

U(s) =
SupDr (s)

SupDnon−r (s)
(3)

For example, sequence sa was extracted in the fea-
ture extraction phase and received a high score ac-
cording to the scoring function (2). If its support
in the transmembrane database SupDtrans(sa) is 0.4
and its support in the non-transmembrane database is
SupDnon−trans(sa) is 0.02. Then, U(sa) is 0.4/0.02=20
which means the chance of finding pattern sa in the
transmembrane regions is 20 times higher than non-
transmembrane regions and is thus a good candidate
for a transmembrane feature. As a result, the se-
quences with high U(s) are the most important fea-
tures.

5 Experimental Evaluation

Pex-SPAM was implemented as a Java standalone ap-
plication. We evaluated Pex-SPAM by running it on a
real-world protein dataset. All experiments were per-
formed on a 1.8GHz Intel Pentium 4 machine with
256MB main memory running Microsoft XP and J2SE
Runtime Environment 1.5.

The dataset we used was taken from the same
dataset as described in [4]. It consists of 124 sequences

of significantly non-similar IMPs for which the trans-
membrane regions were experimentally confirmed. On
average, there are four transmembrane helix regions
per sequence and each region is twenty five amino acids
long.

In the rest of this section, we present some exper-
imental result on how runtime performance and out-
put size is affected with different levels of constraints.
Then we discuss how biologically relevant sequential
features can be extracted by Pex-SPAM, particularly
emphasizing the use of gap and regular expression con-
straints. Furthermore, a complete space complexity
analysis of SPAM is presented to show that the mem-
ory requirements for SPAM are acceptable for real bi-
ological applications.

5.1 Runtime and Output Size

The runtime efficiency of SPAM has been extensively
evaluated by [1] and was shown to outperform other
similar algorithms, like SPADE [15] and PrefixSpan
[12] on large dataset for long patterns. Since our main
focus of this paper was the incorporation of gap and
regular expression constraints into SPAM, the experi-
ments we performed concentrate on the runtime per-
formance gain and reduction of output size by running
SPAM with different level of constraints.

Figure 9 shows the runtime performance of different
level of maximum gap constraints with varying min-
imum support on a dataset that contains 269 trans-
membrane regions. From our biological knowledge,
we know that transmembrane regions are on aver-
age 25-30 amino acid long and the longest sequen-
tial feature is about six amino acid long. Therefore
a maximum gap of (30/6) = 5 is a reasonable limit
for any biologically relavent sequential feature. There-
fore, we only consider maxGap from 0 to 5 and com-
pared it with the case where there is no gap constraints
(maxGap=∞,the original SPAM algorithm). At high
minimum support (≥ 30%) there is not much differ-
ence in runtime performance. At low minimum sup-
port, a runtime benefit is clear by using stringent max-
imum gap constraints.

The second experiment looks at the effect of vary-
ing size of the input dataset with minimum support of
20% (Fig. 10). The result shows that runtime scales
linearly with respect to the number of input transmem-
brane regions no matter how strong the maximum gap
constraint is. However, a strong gap constraint can
reduce the constant coefficient and hence improve the
runtime performance for large input dataset.

Reducing the output space to gain features speci-
ficity was the main motivation to introduce gap con-
straints into SPAM. Experiments were performed to
examine the relationship between the strength of the
gap constraints and the resulting number of output
patterns extracted. In this set of experiments, a
dataset with 269 transmembrane regions was mined

Figure 9: Runtime performance with varying minGap
with 269 transmembrane regions

Figure 10: Runtime performance with varying number
of input transmembrane regions

with minimum support of 20% and varying number of
minimum gap (Fig. 11) and maximum gap (Fig. 12).

Figure 11 clearly shows that the output size is signif-
icantly reduced by increasing minGap from 0 to 5. In
Figure 12 the output size increases exponentially when
maxGap is increased from 0 to 5. At maxGap=5 the
curve has a stationary point beyond which the rate of
growth decreases till the size of the output flattens out
beyound maxGap=10.

Both experiments confirm that most trans-
membrane features, with minimum support of
20%, have a gap of five or below.. This is a
very important finding in extracting transmembrane
features as it justifies our motivation of incorporating
the gap constraints into SPAM. Without the gap con-
straints, in particular the maxGap constraint, more
than half of the output sequential features extracted
by SPAM may not be biologically relevant.

5.2 Exploring biochemical properties of pro-
tein regions

Transmembrane and nontransmembrane regions are
known to be dominated with hydrophobic and polar
residues respectively[16]. Therefore one would expect

Figure 11: minGap vs output size

Figure 12: maxGap vs output size

to find long patterns of contiguous hydrophobic (po-
lar) residues in such regions. We confirm this ex-
perimental finding with Pex-SPAM. In the first ex-
periment, we ran Pex-SPAM on a dataset of 126 se-
quences with 526 transmembrane regions and 628 non-
transmembrane regions. Using the regex constraint
</hyd*> and minGap=maxGap=0 and minSup=1%,
we compare the support level of different number con-
tiguous hydrophobic residues on the transmembrane
and the non-transmembrane regions. We only used
amino acid property in this experiment as our interest
is on the general pattern. The result is summarized
in Figure 13. Essentially the uniqueness of the pat-
tern grows exponentially as the number of contigous
hydrophobic residues increases.

In general features that have a uniqueness score
greater than five are likely to increase the accuracy of
the transmembrane helix prediction. The best meth-
ods for transmembrane helix prediction can achieve a
per-residue accuracy of 83% which means it can cor-
rectly predict an amino acid residue for being in the
transmembrane region or in the non-transmembrane
region 83% of the time [4]. In order to improve the
accuracy of prediction, we need to use features that
appear in the transmembrane region about 80% more
often than in the non-transmembrane region.

Figure 13: suptrans

supnon−trans
with varying number of con-

tiguous hydrophobic residues. It is clear that long hy-
drophobic residue sequences dominate the transmem-
brane regions

Figure 14: suptrans

supnon−trans
with varying number of con-

tiguous polar residues

In order to achieve uniqueness score greater than 5,
we need to have at least eight contiguous hydrophobic
residues (see Fig. 13). A similar experiment was per-
formed using regular expression constraint of </pol*>
and the result is shown in Figure 14. We observe that
the longest number of contiguous polar residues is half
of that of the hydrophobic residues. Both computa-
tional experiments confirm that long contiguous hy-
drophobic residues and long contiguous polar residues
are good features to distinguish transmembrane and
nontransmembrane regions.

5.3 Extracting Features

Extending our previous result, we are now interested
in finding some general transmembrane helix features
based on amino acid properties. We now know that
long contiguous hydrophobic protein segments are
needed to obtain high uniqueness score but long pat-
terns tend to have low support. We decided to extract
contiguous amino acid property patterns of length 9,
which were found as long enough together with satis-
fing high uniqueness score.. Pex-SPAM was executed

with regex contraint </prp9>, minGap=maxGap=0
(i.e. any 9 contiguous amino acid properties) and min-
Sup=1%. The list of features extracted with the high-
est uniqueness score are shown in Table 2.

feature uniqueness
(hyd7 sml hyd) 6.72

(hyd5 sml hyd3) 6.63
(hyd8 sml) 6.61

(hyd6 sml hyd2) 6.58

Table 2: Example of some generic transmembrane fea-
tures. hyd=hydrophobic, sml=small

This gives rise to an interesting finding that
hyd*sml*hyd* is possibly an important pattern in the
transmembrane regions. Although there are amino
acid residues that are both hydrophobic and small,
but the small amino acid in the patterns in Table 2
is probably not hydrophobic as the pattern (hyd9) has
low uniqueness score. Therefore, another round of fea-
tures mining was performed. This time we looked for
specific amino acid patterns. We defined a regular ex-
pression </hyd*/sml*/hyd*> and tested it without
using any amino acid property. The features with the
best uniqueness score is listed in Table 3. Among those
patterns, amino acid T and V are small and V is also
hydrophobic.

feature uniqueness
(IITL) 11.1

(ITVL) 5.7
(ITLV) 5.4
(LITL) 5.1

Table 3: Example of some specific transmembrane fea-
tures

The pattern (IITL) is a good feature for predicting
protein transmembrane helix region as the chance of
finding this pattern in the transmembrane region is 11
times higher than in the non-transmembrane region.
Therefore, using this feature should improve the pre-
diction accuracy.

5.4 Space Complexity Analysis

The biggest disadvantage of SPAM is that it is quite
space inefficient. The use of SPAM is thus a space-
time tradeoff. Ayres et al [1] gave an analysis of the
memory consumed by the input database of SPAM.
Let D be the total number of customer, C be the
average number of transactions per customer and N
be the total number of items across all transactions.
The amount of memory required to store the input
database in the bitmap data structure is (D×C×N)/8
bytes. Extending this analysis, we discuss the total
amount of memory needed for the entire data min-
ing process. For each S-step and I-step, a new verti-
cal bitmap for the extended sequence is created and

stored. If the sequence is deemed infrequent, the node
is pruned and the bitmap is destroyed to free up the
memory. Therefore, the maximum amount of mem-
ory needed for the algorithm is the amount of memory
needed to store the complete search tree after mining
process. The total amount of memory occupied by the
tree is (D×C ×P)/8 bytes where P is the total num-
ber of output patterns. Thus, the estimated amount
of memory (in byte) occupied by SPAM is:

memory ≈ D × C × (N + P)
8

(4)

For example, suppose we want to extract trans-
membrane features from a large protein database of
10000 sequences of IMPs with each containing 10
transmembrane regions. On average, there are 30
amino acid per transmembrane region. We know
there are 20 amino acid and we consider 10 different
amino acid properties, therefore 30 possible items are
present. Furthermore, suppose we have 1000 output
sequences. The estimated amount of memory taken
up is [100000×30× (30 + 1000)]/8 = 386250000 bytes
which is aproximately 370 MB, which is very reason-
able for a database nowadays. The main point is to
show that the whole data mining process of SPAM
can be be done within main memory on a modern ma-
chine which can avoid I/O delay. Therefore, althought
SPAM is space insefficient, it is still suitable for protein
transmembrane helix features extraction

6 Pex-SPAM as Query Engine for Pro-
tein Secondary Structure

Another application of Pex-SPAM is its use as an
underlying engine for protein secondary structure
queries. Our sequential pattern mining approach is
able to handle more complex queries that contain both
primary and secondary structures. For example, on
top of the class of queries as shown in [7], We are able
to pose query like <h 3 8><C 5 7><? 0 *><G 3
4>. In the query, C stands for amino acid cystein and
G for glycine. This section describes how this can be
achieved.

We extend Pex-SPAM to handle secondary struc-
ture query in the following minner: In the pre-
processing phase, each protein sequence is regarded as
one customer and the secondary structure label of an
amino acid is regarded as the property of that amino
acid. Therefore, after the pre-processing phase, the
input sequence database will contain sequences that
looks like: ({G,h}{Q,l}{S,l}{D,l}{S,l}...).

In the features extraction phase, the input query is
first converted to a regular expression constraint for
SPAM. Gaps specified in the input query is converted
to minGap and maxGap constraints. They are ap-
plied locally only at the location specified. For exam-
ple, query <h 2 3><? 0 *><G 5 5><e 3 4> is con-
verted to regular expression <[h2|h3][G5][e3|e4|e5]>.

Globally, minGap=0 and maxGap=0, except the po-
sition after [h2|h3], which should have minGap=0 and
maxGap=∞. After SPAM is run, each leaf node of
the sequence tree contains a bitmap of a particular se-
quence that match the query. Since gap constraints,
can be handled efficiently using the bitmap data struc-
ture, we believe that our approach can handle queries
with gaps more efficiently than the previous approach.

In the third phase, instead of performing features
verification, we perform a linear search on the bitmap
of matching sequences. A sequence matches the query
if it contains at least one 1 in its corresponding bitmap
section. The complete set of output sequences is the
union of all sequences retrived from each bitmap (Fig.
15). This union operation can be efficiently imple-
mented using hash table.

Figure 15: Proposed framework for answering sec-
ondary structure query using Pex-SPAM

Althought this query system has not been imple-
mented yet, the framework for using Pex-SPAM as a
secondary structure query engine is established. The
theoretical runtime of this proposed query engine is
the runtime of SPAM plus O(D × C × P) where D is
the number of input protein sequences, C is the aver-
age number of amino acid per protein sequence and P
is the number of matching patterns.

The theoretical amount of space taken up in this
case can also be estimated by equation (4). Lets
consider running a query on a real database like
swiss-prot, which consists of about 200000 protein
sequences and the average sequence length is 400
(http://au.expasy.org/sprot/relnotes/relstat.html).
The number of possible item in this case is 23 (20
amino acid and 3 secondary structure labels). The
expected number of output sequences in this case is
very low as the query is used as the regular expression
constraints for Pex-SPAM. Therefore, let’s assume

that we have maximum of 100 matching patterns.
The total amount of memory used up in this query
is approximately [200000 × 400 × (23 + 100)]/8 bytes
which is 1.23 GB. This memory requirement is very
reasonable for real database query engine. Since
SPAM is time efficient and the memory trade off is
acceptable in a real biological database the application
of Pex-SPAM in secondary structure queries should
be further studied.

7 Conclusion

Motivated by the need of mining protein transmem-
brane helix features for protein sequence classification
and secondary structure queries, we modified a time-
efficient sequential pattern mining algorithm, SPAM,
to consider gaps and regular expression constraints.

A three phase framework of protein transmembrane
helix features extraction was described and imple-
mented into a software called Pex-SPAM. The effect
of different level of contraints on runtime performance
and output size is evaluated. Our experimental re-
sults show that introducing gap constraints in extract-
ing transmembrane helix feature is essential for mining
biologically relavent patterns. We also show that the
use of combination of gap and regular expression con-
straints is important in the process of extracting high
quality transmembrane helix features.

We also suggest a way to use Pex-SPAM as an un-
derlying query engine for answering queries based on
protein secondary structure. Our proposed approach
would harness the efficient bitmap data structure, and
would be able to consider both protein primary and
secondary structure together.

Despite the space-inefficiency of SPAM, we have
shown that the amount of memory taken up by both
applications is modest. Given the excellent runtime of
SPAM for large databases, Pex-SPAM system is ideal
for our bioinformatics problem.

References

[1] Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequen-
tial pattern mining using a bitmap representation. In:
KDD. (2002) 429–435

[2] Garofalakis, M.N., Rastogi, R., Shim, K.: Spirit: Se-
quential pattern mining with regular expression con-
straints. In Atkinson, M.P., Orlowska, M.E., Val-
duriez, P., Zdonik, S.B., Brodie, M.L., eds.: VLDB’99,
Proceedings of 25th International Conference on Very
Large Data Bases, September 7-10, 1999, Edinburgh,
Scotland, UK, Morgan Kaufmann (1999) 223–234

[3] Leite, J., Amoscato, A., Cascio, M.: Coupled prote-
olytic and mass spectrometry studies indicate a novel
topology for the glycine receptor. J Biol Chem 275
(2000) 13683–13689

[4] Lukov, L., Chawla, S., Church, W.B.: Conditional
random fields for transmembrane proteins prediction.
In: Proceedings of the 19th Pacific-Asia Conference

on Knowledge Discovery and Data Mining (PAKDD).
(2005) 151–161

[5] McCallum, A.: Efficiently inducing features of condi-
tional random fields. In: Proceedings of 19th Confer-
ence on Uncertainty in Artificial Intelligence. (2003)

[6] Branden, C., Tooze, J.: Introduction to Protein Struc-
ture. Garland Publishing, USA (1999)

[7] Hammel, L., Patel, J.M.: Searching on the secondary
structure of protein sequences. In: Proceedings of the
28th VLDB Conference, Hong Kong, China. (2002)
634–645

[8] Agrawal, R., Srikant, R.: Mining sequential patterns.
In Yu, P.S., Chen, A.L.P., eds.: Proceedings of the
Eleventh International Conference on Data Engineer-
ing, March 6-10, 1995, Taipei, Taiwan, IEEE Com-
puter Society (1995) 3–14

[9] Agrawal, R., Srikant, R.: Fast algorithms for min-
ing association rules in large databases. In Bocca,
J.B., Jarke, M., Zaniolo, C., eds.: VLDB’94, Pro-
ceedings of 20th International Conference on Very
Large Data Bases, September 12-15, 1994, Santiago
de Chile, Chile, Morgan Kaufmann (1994) 487–499

[10] Srikant, R., Agrawal, R.: Mining sequential patterns:
Generalizations and performance improvements. In
Apers, P.M.G., Bouzeghoub, M., Gardarin, G., eds.:
Advances in Database Technology - EDBT’96, 5th In-
ternational Conference on Extending Database Tech-
nology, Avignon, France, March 25-29, 1996, Proceed-
ings. Volume 1057 of Lecture Notes in Computer Sci-
ence., Springer (1996) 3–17

[11] Pei, J., Han, J., Wang, W.: Mining sequential pat-
terns with constraints in large databases. In: CIKM
’02: Proceedings of the eleventh international con-
ference on Information and knowledge management,
New York, NY, USA, ACM Press (2002) 18–25

[12] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto,
H., Chen, Q., Dayal, U., Hsu, M.C.: Mining sequen-
tial patterns by pattern-growth: The prefixspan ap-
proach. IEEE Transactions on Knowledge and Data
Engineering 16 (2004) 1424–1440

[13] Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.:
Exploratory mining and pruning optimizations of con-
strained association rules. In Haas, L.M., Tiwary, A.,
eds.: SIGMOD 1998, Proceedings ACM SIGMOD In-
ternational Conference on Management of Data, June
2-4, 1998, Seattle, Washington, USA, ACM Press
(1998) 13–24

[14] Wang, K., Xu, Y., Yu, J.X.: Scalable sequential
pattern mining for biological sequences. In: CIKM
’04: Proceedings of the thirteenth ACM conference on
Information and knowledge management, New York,
NY, USA, ACM Press (2004) 178–187

[15] Zaki, M.J.: Spade: An efficient algorithm for mining
frequent sequences. Machine Learning 42 (2001) 31–
60

[16] Wallin, E., Tsukihara, T., Yoshikawa, S., von Heinjne,
G., Elofsson, A.: Architecture of helix bundle mem-
brane proteins: An analysis of cytochrome c oxidase
from bovine mitochondria. Protein Science 6 (1997)
808–815

