

Resource-Adaptive Real-Time New Event Detection

Gang Luo Chunqiang Tang Philip S. Yu
IBM T.J. Watson Research Center

{luog, ctang, psyu}@us.ibm.com

ABSTRACT

In a document streaming environment, online detection of the
first documents that mention previously unseen events is an open
challenge. For this online new event detection (ONED) task,
existing studies usually assume that enough resources are always
available and focus entirely on detection accuracy without
considering efficiency. Moreover, none of the existing work
addresses the issue of providing an effective and friendly user
interface. As a result, there is a significant gap between the existing
systems and a system that can be used in practice. In this paper, we
propose an ONED framework with the following prominent
features. First, a combination of indexing and compression methods
is used to improve the document processing rate by orders of
magnitude without sacrificing much detection accuracy. Second,
when resources are tight, a resource-adaptive computation method
is used to maximize the benefit that can be gained from the limited
resources. Third, when the new event arrival rate is beyond the
processing capability of the consumer of the ONED system, new
events are further filtered and prioritized before they are presented
to the consumer. Fourth, implicit citation relationships are created
among all the documents and used to compute the importance of
document sources. This importance information can guide the
selection of document sources. We implemented a prototype of our
framework on top of IBM’s Stream Processing Core middleware.
We also evaluated the effectiveness of our techniques on the
standard TDT5 benchmark. To the best of our knowledge, this is
the first implementation of a real application in a large-scale stream
processing system.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: information filtering

General Terms: Algorithms, Experimentation

Keywords: online new event detection, document streaming

1. INTRODUCTION

In a document streaming environment, documents come from
one or more sources. New event detection (NED) is the task of
capturing the first documents that mention previously unseen events.
This task has practical applications in several domains, where useful
information is buried in a large amount of data that grows rapidly
with time. Such domains include intelligence gathering, financial

market analyses, and news analyses. Applications in those domains
are often time-critical and the use of an online new event detection
(ONED) system is highly desired. For instance, the US government
is building a massive computer system that can monitor news, blogs,
and emails for anti-terrorism purposes [13, 22], and ONED is an
essential component of this system.

Figure 1. Events in a document stream. Different shapes
correspond to different events. Filled shapes represent the
documents that need to be captured.

Recently, ONED has attracted much attention [2, 3, 7, 11, 19, 21,
23, 29, 37, 38]. In order to provide a standard benchmark for
comparing different algorithms, National Institute of Standards and
Technology (NIST) has organized a Topic Detection and Tracking
(TDT) program [34], where ONED is one of the main tasks.
Despite all the efforts, there is still a significant gap between the
state-of-the-art ONED systems and a system that can be used in
practice.

Most of the existing ONED systems compare a new document D
to all the old documents that arrived in the past. If the similarity
values between D and the old documents are all below a certain
threshold, D is predicted to mention a new event. This method has
quadratic time complexity with respect to the number of documents
and is rather inefficient. For example, in the latest TDT5
competition [34], many systems spent several days on processing
just 280,000 news articles, whose total size is less than 600MB.
This processing speed is orders of magnitude slower than a typical
document arrival rate.

In practice, an ONED system can monitor a large number of
document sources. For example, Google news has 4,500 sources
[16] and Yahoo! news [36] has more than 5,000 sources. In the
intelligence gathering system that is being developed by the US
government [13, 22], document sources cover an even wider
spectrum, including emails, instant messages, web bulletin boards,
and blogs. Therefore, a practical ONED system needs to handle a
high document arrival rate without resorting to an excessive amount
of hardware resources. Moreover, due to the bursty nature of
document streams, an ONED system should be able to operate
gracefully even if it runs out of resources. These performance issues,
however, have not been addressed in previous studies.

Figure 2 shows the architecture of a traditional ONED system,
where the output documents are put into a queue, waiting to be
consumed. The consumer can be either a person or a computer
program that does further deep analysis (e.g., machine translation of
foreign documents). The processing speed of the consumer can be
much slower than the peak output rate of the ONED system. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006...$5.00.

time

new events

example, the state-of-the-art machine translation speed is measured
by the number of words per second [24].

Figure 2. A traditional online new event detection system.

None of the existing ONED systems has considered the
following user interface issues: (1) When the consumer is
overloaded and cannot keep pace with the output rate of the ONED
system, less important documents need to be dropped from the
queue (or moved to a low-priority queue) so that the consumer can
focus on important documents. (2) Depending on the concrete
requirement of the consumer, documents can be sorted in the queue
according to different criteria (e.g., importance or arrival time) so
that desired documents are processed by the consumer first.

In this paper, we propose a comprehensive framework for ONED
that covers a large design space. Within this framework, we propose
a system that improves upon existing systems from four
perspectives to address the above-mentioned problems. First,
various indexing and compression methods are used to increase the
document processing rate by orders of magnitude without
sacrificing much detection accuracy. Second, when resources are
tight, our system focuses on the important documents and attempts
to maximize the benefit that can be gained from the limited
resources. Third, when the new event arrival rate is beyond the
processing capability of the consumer of the ONED system, our
system avoids overwhelming the user by further filtering and
prioritizing new events before presenting them to the consumer.
Fourth, the importance of document sources is computed, which can
be used to guide the selection of document sources.

The main challenge in improving efficiency and effectively using
the limited resources is to minimize the amount of saved
information without losing much information that is critical for the
detection accuracy. Regarding to providing a friendly user interface,
the main challenge is to decide the relative importance of different
documents. For this purpose, we use the intermediate computation
results of ONED to determine which documents’ contents are
repeated by the other documents that arrive later, and automatically
create implicit citation relationships among all the documents.
Those documents with a large number of citations are considered
important. At the same time, citations among documents are merged
together to obtain linking relationships among document sources,
which are used to compute the importance of document sources.

We implemented a prototype of our framework on top of IBM’s
Stream Processing Core (SPC). As described in Jain et al. [17] in
detail, SPC is a stream processing middleware that provides an
application execution environment for processing elements (or
applications) developed by users to filter and analyze data streams.
To the best of our knowledge, this is the first implementation of a
real application in a large-scale stream processing system. Our
evaluation on the TDT5 benchmark shows that our techniques can
(1) improve the document processing rate by two orders of
magnitude (reducing the processing time for the entire document set
from more than three days to less than 12 minutes), (2) maximize
the benefit that can be gained from the limited resources, (3)
provide an effective user interface, and (4) produce an importance

ranking of document sources that matches with our real world
experience.

The rest of the paper is organized as follows. Section 2 introduces
a baseline system. Section 3 presents our general framework for
ONED. Section 4 describes the techniques for improving efficiency.
Section 5 shows the resource-adaptive computation methods.
Section 6 discusses the user interface issues. Section 7 describes the
document source ranking method. Section 8 investigates the
performance of our techniques. We discuss related work in Section
9 and conclude in Section 10.

2. A BASELINE SYSTEM

To set the stage for the discussion of our techniques, we first
describe a baseline ONED system in this section. This baseline
system is similar to the ONED system reported in Braun and
Kaneshiro [8], which achieved the best detection accuracy in the
latest TDT5 competition. Our improvements presented in the next
several sections are based on this baseline system.

Following the convention of information retrieval literature [30],
we define vocabulary as the set of all the distinct words. A term is a
word. A first-story document is a document that describes a
previously unseen event.

The baseline system uses a variant of the state-of-the-art Okapi
formula [28, 30] to compute both term weights and the similarity
values of document pairs. We first give a brief summary of Okapi.
In Okapi, both documents and queries are represented as vectors.
Each element of a vector is the weight of a term in the vocabulary.
Terms that are important to a document are assigned large weights.
Terms that do not appear in the document have weights zero. The
relevance between a document D and a query Q is computed as the
inner product of D’s vector and Q’s vector. The intuition behind
Okapi is that the more times a term t appears in a document D and
the fewer times t appears in other documents (i.e., the less popular t
is in other documents), the more important t is for D. Also, the
effect that longer documents have more words needs to be
compensated by normalizing for document lengths.

Consider a document set S. For each term t in the vocabulary and
a document D∈S, Okapi uses the following formulas:
(f1) term frequency (tf) weight

tfavdldlbbk

tfkwtf +×+−
+

=
])1[(

)1(

1

1 ,

(f2) inverse document frequency (idf) weight

5.0
5.0ln

+
+−

=
df

dfNwidf
.

Here tf is t’s frequency (i.e., number of occurrences) in D, N is the
total number of documents in S, df is the number of documents in S
that contain t, dl is the length of D in bytes, and avdl is the average
length (in bytes) of all the documents in S. b and k1 are two
predetermined constants. Typically, as suggested in Singhal [30],
b=0.75 and 2.11 =k .

Consider a query Q. For each document D∈S, Okapi defines its
score (i.e., the degree of relevance for answering Q) as the sum of
term weights of all the terms that appear in both D and Q. Each
term weight is computed using the tf weight for D, the tf weight for
Q, and the idf weight. In the case of ONED, we need to compute the
similarity value between two documents D1∈S and D2∈S. Hence,
we change Okapi slightly to fit our purpose: the similarity value
between D1 and D2 is computed as the inner product of D1’s vector
and D2’s vector. More specifically, for either document Di (i=1, 2),

source S1
source S2

source Sn
…

online
new
event

detection
system

output
queue consumer

a tf weight
itfw ,
 is computed. The term weight is defined according

to (f3). The similarity value is computed according to (f4), where
the sum is over all the terms that appear in both D1 and D2.
(f3) term weight

idftftft wwww ××= 2,1,
,

(f4) ∑
∈

=
21

21
,

,
DDt

tDD wsimilarity .

In the above computation, the similarity value is not normalized to
[0, 1], as Okapi has already made normalization for document
lengths.

Next, we present the details of the baseline system. As standard
pre-processing operations in information retrieval, for each
document, (1) stemming is performed using the standard Porter
stemmer [26], and (2) stopwords are removed by using the standard
SMART stopword list [32]. In a document streaming environment,
the document set S keeps changing as new documents continue to
arrive. As mentioned in Braun and Kaneshiro [8], the computation
of the tf and idf weights can be based on a static document set S'
(such as the TDT4 document set) that has characteristics similar to
S. For a term that does not exist in S', its df is treated as one.
Compared to the method that incrementally updates the statistics N,
avdl, and df, this static method has lower overhead while the
detection accuracy remains roughly the same [8].

When a new document D arrives, D is first pre-processed and its
information is saved in memory. Then D is compared to all the old
documents that arrived in the past. If all the similarity values
between D and the old documents are below a threshold T, D is
predicted to mention a new event. In this case, D is put into the
output queue, waiting to be consumed. Otherwise if the similarity
value between D and an old document Dold is above T, D is
predicted to mention the same event as Dold and thus not considered
as a first-story document.

3. A GENERAL FRAMEWORK

In this section, we propose a comprehensive framework for
ONED, as shown in Figure 3. This framework defines a fairly large
design space and is much more general than the traditional ONED
system shown in Figure 2. It contains several components. An
ONED system can be obtained by instantiating each component
with a concrete policy. All the techniques described in the following
sections are policy examples.

Figure 3. A general framework for online new event detection.

Next, we describe the components in this framework. The source

selection component determines the document sources from which
documents are received. Documents from these selected sources are
fed to the ONED component, where first-story documents are
identified. The identified first-story documents are sent to an output
queue Qo, waiting to be processed by the consumer of the ONED
system.

When resources are tight, the resource allocation component
determines how to maximize the benefit that can be gained from the
limited resources. When the consumer is overloaded and cannot
keep pace with the output rate of the ONED system, the output load
shedding component determines which documents in Qo should be
dropped or moved to a low-priority queue (waiting there until the
consumer becomes free). The document ranking component
determines the order in which documents in Qo are presented to the
consumer.

The source ranking component takes the information generated
by the ONED component as input to compute the relative
importance of document sources. This importance information is
sent back to the source selection component to guide the selection
of document sources. Other applications can also use this
importance information for their own purposes, e.g., online
advertisement. In the following sections, we elaborate on the
individual components in this framework.

4. TECHNIQUES FOR IMPROVING
EFFICIENCY

In this section, we describe our techniques for improving the
efficiency of the ONED component. The baseline system described
in Section 2 has two shortcomings regarding to efficiency. First, as
new documents continue to arrive, the number of previously arrived
documents keeps increasing, and eventually the memory will not be
able to hold the information for all the old documents. However,
due to the real-time nature of ONED, generally all the data
structures that are used should be kept in memory to avoid
expensive I/Os. Second, it is expensive to compare a new document
with all the old ones. To reduce both storage and computation
overhead, we limit both the number of saved documents and the
number of terms kept for each saved document without sacrificing
much detection accuracy. Here saved documents refer to the ones
whose information is saved in memory.

4.1 Reducing the Number of Saved Documents

Typically, the discussion of an event lasts for a finite amount of
time in news articles, and a new document is unlikely to mention
the same event as a document that is fairly old. Hence, documents
that are too old are not very useful and we only keep in memory the
information of those old documents that are within a sliding
window of the last W days. Here W is a predetermined constant.
Once an old document expires from this sliding window, its
information is thrown away immediately. Our experiments in
Section 8.1 show that a good value for W is usually between 24 and
32 days.

Typically, an event is mentioned by a large number of documents.
Only one of these documents is the first-story document. For
example, in the TDT5 document set, for the 250 specified events,
on average each event is mentioned by 40 documents [34]. All the
documents that mention the same event tend to be similar to each
other. Therefore, it is an overkill to compare a new document with
all the old documents that mention the same event. Instead, we only
keep the information of the first-story documents. When a new
document D arrives, D is compared with the old first-story
documents. If D is predicted to be a first-story document that
mentions a new event, D’s information is saved in memory.
Otherwise D is discarded.

source S1
source S2

source Sn
…

online
new
event

detection

output
load

shedding

consumer

document
ranking

source
ranking

source
selection

other applications

resource
allocation

output queue

4.2 Reducing the Number of Saved Terms
All the terms in a document D can be sorted in descending order

of their tf×idf values. In general, those terms with large tf×idf
values are important to D. As has been observed in Allan et al. [3],
in computing the similarity value of two documents, we only need
to use those important terms of the two documents, as those terms
contribute to most of the similarity value. A similar effect has been
observed in a general information retrieval environment [27, 31, 33].
Hence, for each saved document, we only keep the top-K terms with
the largest tf×idf values rather than all the terms. Here K is a
predetermined constant. Only the top-K terms are used to compute
the similarity values of document pairs. Our experiments in Section
8.1 show that K can be as small as 100 without severely degrading
the detection accuracy.

4.3 Pre-Filtering

To reduce the overhead of computing similarity values, a pre-
filtering technique is used. Our idea is to use a low-overhead
method to quickly filter out most of the documents that mention
different events from the new document. In this way, we can
substantially reduce the number of similarity values that need to be
computed. Consider two documents D1 and D2. If D1 and D2
mention the same event E, their top terms tend to have some
overlap. That is, some term(s) describing E is likely to appear in the
top terms of both D1 and D2. Thus, top terms can be used to quickly
filter out unnecessary computations. More specifically, we have a
predetermined constant M (M≤K). Before computing the similarity
value of D1 and D2, we first check whether the top-M terms of D1
and D2 intersect. If so, we continue to compute the similarity value
of D1 and D2. Otherwise, we predict that D1 and D2 mention
different events and do not compute their similarity value. Our
experiments in Section 8.1 show that M=10 is usually sufficient to
achieve a good pre-filtering ratio without losing much detection
accuracy.

4.4 Building Indices

Figure 4. Index data structures.

We build indices to avoid unnecessary processing of the
documents that have been pre-filtered out. Each term in the
vocabulary has a term id. Each document has a doc id
corresponding to its arrival time. As shown in Figure 4, two indices
are kept for all the saved documents: a forward index and an
inverted index. The forward index has an entry for each saved
document. These entries are sorted in descending order of

documents’ arrival time. This allows us to quickly identify and drop
the information of those documents that have expired from the
sliding window of the last W days (see Section 4.1). For each saved
document, the corresponding entry keeps the document length dl
and the top-K terms associated with their term frequencies tf (see
Section 4.2). These terms are sorted in ascending order of their term
ids. Consequently, the similarity value of two documents can be
computed through an efficient “merge” of their term lists.

For each saved document, only its top-M terms are tracked by the
inverted index. The inverted index has an entry for each term in the
vocabulary. The entry for term t is a posting (linked) list of the doc
ids of all the documents whose top-M terms contain t. These doc ids
are sorted in descending order so that merging posting lists can be
done efficiently. Since typically M<<K, the document-term
information in the inverted index is only a subset of that in the
forward index. When a new document D arrives, we only scan the
M posting lists that correspond to D’s top-M terms. These M
posting lists are merged together to find the doc ids of the candidate
documents that may mention the same event as D. This is the pre-
filtering technique described in Section 4.3. Then for each such
candidate document Dc, the forward index is used to compute the
similarity value of D and Dc. The similarity value computation is
performed at the same time that candidate doc ids are generated. In
this way, if the similarity value of D and an old document is greater
than the threshold T, D is predicted to be a non-first-story document
and the processing for D stops immediately. Otherwise if D is
predicted to be a first-story document, D’s information can be easily
added into the inverted index, as D’s doc id is larger than the doc
ids of the saved documents.

4.5 Parallel Processing

The above discussion assumes the use of a single computer. Our
framework can be naturally extended to use a cluster (say, C) of
computers to process incoming documents at a higher rate. The
concrete method is as follows. All the saved documents are
partitioned into C sets (e.g., using round-robin partitioning [15]).
When a new document D arrives, it is parsed on one computer to
obtain its term frequency list. Then this information is sent to all the
computers to compare D with the saved documents. If any
computer predicts that D is not a first-story document, the whole
ONED system considers D as a non-first-story document and
throws D away. Otherwise D is considered as a first-story document
and its information is saved on a computer according to the
document partitioning schema.

5. RESOURCE-ADAPTIVE
COMPUTATION

In this section, we describe the resource-adaptive computation
methods. If the arrival rate of new documents is high (e.g., due to
the bursty nature of document streams), the ONED system may
become overloaded in two ways: (1) the CPU cannot process all the
incoming new documents, or (2) the memory cannot hold the
information for all the identified first-story documents within the
last W days. In the first case, we need to adjust the parameters (e.g.,
W, T, and M) of our techniques to increase the throughput of the
ONED system. In the second case, the information of some saved
documents must be removed from memory. In both cases, the goal
of the resource utilization component in Figure 3 is to minimize the
loss in detection accuracy.

inverted index
and dictionary

term id term df
…

…

term id term df

term id term df

forward index

…

…

doc id dl

doc id dl term id
tf

… term id
tf

doc id dl

doc id … doc id

5.1 CPU-Bound Case
We first consider the case that the ONED system is not fast

enough to handle all the incoming new documents. As will be
shown in Section 8.1, decreasing the parameter values (W, T, and M)
of our techniques can increase the throughput of the ONED system.
For example, the smaller the W, the fewer old documents are
included for comparison with the incoming new documents. The
smaller the M, the fewer incoming new documents can pass the pre-
filter and get compared with the old documents. Hence, we can
intelligently shed the input load by adaptively varying the amount
of processing applied to incoming new documents based on the load.

Our ONED system has a FIFO queue Qi (the subscript i stands
for input) that can hold at most V documents. When a new
document D arrives, if the ONED system is busy, D is first put into
Qi, waiting to be processed by the ONED system. When Qi
becomes close to full, the ONED is overloaded. In this case, we
have multiple methods for improving the system throughput, all at
the expense of sacrificing the detection accuracy of the ONED
system:
(1) Method 1 (dropping new documents): The incoming new

document is simply dropped.
(2) Method 2 (adjusting W): Let Wd represent the default initial

value of the sliding window size W. Whenever Qi becomes
close to full, W is decreased by 5%. When the number of
documents in Qi drops below V/2, W is increased by 5% if
W<Wd.

(3) Method 3 (adjusting T): The same as method 2 except that
we adjust T, the threshold for the similarity value.

(4) Method 4 (adjusting M): The same as method 2 except that
we adjust M, the number of top terms used for pre-filtering.

(5) Method 5 (adjusting W, T, and M): Whenever Qi becomes
close to full, one of W, T, and M is decreased by 5% in a
round-robin fashion, e.g., first W, then T, then M, and so on.
When the number of documents in Qi drops below V/2, one of
W, T, and M is increased by 5% in a round-robin fashion if the
value of this parameter is smaller than its default initial value.

We compare the performance of these methods in Section 8.2.

5.2 Memory-Bound Case

Next, we consider the case that the memory is used up and the
information of some saved documents must be removed from
memory. We introduce a definition that will be frequently used in
the rest of the paper:

Implicit citation (or simply citation): When a non-first-story
document Dnf arrives, if Dnf mentions the same event as an existing
first-story document D, we say that D is cited by Dnf once.

Intuitively, to minimize the loss in detection accuracy, we need to
keep in memory the information of those documents that will be
cited by a large number of documents in the future. If we treat
memory as a cache and citations as cache hits, this becomes a cache
management problem. Hence, we can use a traditional cache
management algorithm such as LRU to manage all the saved
documents in memory. We will compare the LRU policy with the
following policies in Section 8.2:
Random policy: Randomly remove the information of saved
documents from memory.
Time policy: Always remove the information of the oldest
documents from memory.

6. USER INTERFACE ISSUES
In this section, we discuss the user interface issues.

6.1 Output Load Shedding
In practice, the processing rate of the consumer can be slower

than the output rate of the ONED system, particularly when a burst
of first-story documents arrive. In this case, some documents need
to be dropped from the output queue Qo so that the consumer will
not become overloaded. The output load shedding component
strives to minimize this impact by dropping less important
documents from Qo.

Intuitively, the importance of a document D is measured by the
importance of the event E mentioned by D, and the importance of E
is related to the number of documents mentioning E. We use the
following method to judge the importance of a first-story document
D. The total number of citations that D have received so far and will
receive in the future is called the final citation number of D, which
is denoted as Cfinal(D) and reflects the importance of D. As a
companion concept, the number of citations that D have received so
far is called the current citation number of D, which is denoted as
Ccurrent(D).

The main idea of our output load shedding method is as follows.
To avoid overwhelming the consumer, the size of the output queue
Qo is fixed. Documents are removed from Qo when they are
consumed by the consumer. When Qo becomes full, some document
must be dropped from Qo before a new document can be inserted
into Qo. Intuitively, for the documents in Qo, their current citation
numbers partially reflect their importance. Hence, we keep track of
the current citation numbers of the documents in Qo. One naive
policy is to drop from Qo those documents with small current
citation numbers. This policy, however, is unfair. Newly arrived
documents tend to have small current citation numbers but they can
be important if they will receive a large number of citations in the
future. Thus, it is not desirable to always drop newly arrived
documents in favor of those documents that arrived a long time ago.
To address this problem, Qo is split into two parts: the new part
Qo_new and the old part Qo_old. A newly arrived document D first
stays in Qo_new to accumulate citations. When D moves from Qo_new
to Qo_old, its current citation number has become close to its final
citation number and can roughly reflect its importance. Documents
in Qo_old with small current citation numbers are considered as less
important and thus the candidates to be dropped from Qo.

The concrete output load shedding method works as follows. For
each document in the output queue Qo, we use a counter to keep
track of its current citation number. When a document D is first
inserted into Qo, D’s counter is initialized to zero. As described in
Section 2, when a new document Dnew arrives at the ONED system,
Dnew is compared with the saved documents in memory. If the
similarity value between Dnew and a saved document Dold is above
the threshold T, Dnew is predicted to mention the same event as Dold.
That is, Dold is cited by Dnew once. In this case, if Dold still exists in
Qo, Dold’s counter is incremented by one.

The resource utilization method described in Section 5.2 is
revised slightly. The documents in the output queue Qo is a subset
of the saved documents in memory. When memory overflows, the
information about the documents in Qo is never removed from
memory, as this information is needed to keep track of the current
citation numbers of the documents in Qo.

The output queue Qo can hold at most N documents, where N is a
constant specified by the consumer of the ONED system. Qo
contains two parts: the new part Qo_new and the old part Qo_old. Qo_new

is a FIFO queue and can hold at most p×N documents, where p is a
predetermined constant (10 ≤≤ p). Qo_old can hold at most (1-p)×N
documents. All the documents in Qo_old are sorted in ascending
order of their current citation numbers. The optimal value of p
depends on both N and the document set. It can be determined using
a training document set that has similar characteristics as the actual
document set. Each time a first-story document D is identified, D is
inserted into Qo_new. If Qo_new is full, the oldest document in Qo_new is
moved to Qo_old. If Qo_old becomes full, the document in Qo_old that
has the smallest current citation number is dropped.

Note that it is not desirable to use the LRU algorithm to manage
Qo_old, because our optimization criterion is the citation number
rather than the cache hit ratio. LRU can incorrectly drop the
documents with large citations numbers if their last citations
happened a long time ago. Our key observation is that a good policy
should consider both document arrival time and current citation
number. Our algorithm is one of the policies that consider these two
factors. We leave it as a subject for future work to investigate other
alternatives.

6.2 Document Ranking

When presenting results to the consumer, the document ranking
component can sort the documents in the output queue according to
a criterion different from that used in the output load shedding
method. This allows the consumer to process the desired documents
first.

For this purpose, we keep a pointer queue Qr (the subscript r
stands for rearrangement) that contains N pointers. Each pointer
links to a different document in the output queue Qo. These pointers
are sorted according to the policy that is specified by the document
ranking component. Documents in Qo are presented to the consumer
in the order that their pointers are sorted in Qr.

The document ranking policy depends on the concrete
requirement of the consumer. One policy is to sort all the pointers in
Qr in ascending order of the corresponding documents’ arrival time.
Consequently, the consumer always processes the oldest document
first.

A second policy is to sort all the pointers in Qr in descending
order of the corresponding documents’ importance (i.e., current
citation numbers) so that the consumer can see the currently-most-
important document first. This policy may introduce starvation, as
documents that arrive later and quickly accumulate a large number
of citations can always jump ahead of a document that arrived
earlier but does not receive citations any more.

One solution to address this problem is to break Qr into two
queues: the new queue Qr_new and the old queue Qr_old, as shown in
Figure 5. All the pointers in Qr_new are sorted in descending order of
the current citation numbers of the corresponding documents. All
the pointers in Qr_old are sorted in ascending order of the arrival time
of the corresponding documents. When a document D is first
inserted into the output queue Qo, the pointer to D is in Qr_new. After
D has stayed in Qo for a certain amount of time Tc, where Tc is a
constant specified by the consumer, the pointer to D is moved to Qr-

_old. Both the currently-most-important document (with the largest
current citation number) whose pointer is in Qr_new and the oldest
document whose pointer is in Qr_old are presented to the consumer
simultaneously. The consumer determines which of these two
documents to process first. This gives the oldest documents in Qo a
chance of being seen by the consumer rather than getting starved.

Figure 5. One arrangement of the output queue Qo.

7. RANKING DOCUMENT SOURCES

For many applications, it is desirable to know the importance of
document sources [12]. For example, due to its limited processing
power, a system may only want to process documents from those
importance sources rather than all the available sources. In this
section, we describe a document source ranking algorithm. The
source ranking component uses this algorithm and the information
generated by the ONED component to compute the importance of
document sources.

Intuitively, a document source is important if it is often the first
source to report important events. An important event is mentioned
by a large number of documents. Hence, a document source is
important if it emits a large number of first-story documents, and
many of these first-story documents are frequently cited by the
other documents. Our key observation is that the citations among
documents create implicit “links” among document sources. In
other words, the citations among documents can be merged together
to obtain linking relationships among document sources. Then a
PageRank-style algorithm [25] can be used to compute the
importance of document sources. Note that PageRank and other
similar algorithms [20, 25] use explicit links among web pages to
compute the importance of web pages, whereas our algorithm uses
automatically created, implicit links to compute document source
importance.

Figure 6. Three document sources citing each other.

The concrete document source ranking algorithm works as
follows. Suppose there are n document sources: S1, S2, …, and Sn.
We keep a matrix An×n. Initially, ∀i, j (ni ≤≤1 , nj ≤≤1):

0, =jiA . Each time the ONED system discovers that a document

from source Si (ni ≤≤1) cites a document from source Sj
(nj ≤≤1),

jiA ,
 is incremented by one. That is,

jiA ,
 is the

number of times that Si cites Sj, as shown in Figure 6. Matrix Bn×n is
a normalized version of An×n in the sense that each row of B sums to
one. That is,

∑
=

=
n

k
kijiji AAB

1
,,,

.

Bi, j represents the fraction of Si’s citations that go to Sj.

S1

S2 S3

A1, 1

A2, 2 A3, 3

A1, 2
A1, 3

A3, 1

A2, 1

A2, 3

A3, 2

document
document

document
…

document
document

document
…

Qo

consumer
pointer

pointer

pointer

pointer

…

…

pointer
pointer

Qr_old

Qr_new

Qr

Figure 7. Normalized detection cost
vs. W .

0.6

0.7

0.8

0.9

1.0

1.1

1 6 11 16 21 26 31 36 41 46
W (days)

no
rm

al
iz

ed
 d

et
ec

tio
n

co
st

T=100
T=80
T=60

Figure 8. System throughput vs. W .

0

200

400

600

800

1000

1200

1 6 11 16 21 26 31 36 41 46
W (days)

sy
st

em
 th

ro
ug

hp
ut

(#

do
cs

/s
ec

on
d)

T=100
T=80
T=60

Let Rn be the importance column vector of all the n document
sources. That is, Ri (ni ≤≤1) represents the importance of source Si.
Intuitively, if a source Si (ni ≤≤1) is important, the source Sj
(nj ≤≤1) that Si frequently cites is also important. Also, the
importance of a source is influenced by the importance of other
sources according to the citation frequencies. If we regard Bi, j as the
proportion of Si’s importance that contributes to the importance of
Sj, we have

∑
=

×=
n

j
ijji BRR

1
,

.

In matrix form, this is
RBR T ×= .

Hence, R is the dominant eigenvector of BT that corresponds to
eigenvalue one.

In general, to ensure that matrix B is ergodic, we can use a
method similar to the random surfer model in the PageRank
algorithm [25] so that ∀i, j (ni ≤≤1 , nj ≤≤1): Bi, j≠0. Then R is
guaranteed to be computable using a power method [25]. The
computation of R only needs to be performed periodically whereas

jiA ,
’s need to be updated continuously. This allows us to keep

track of the changes in source importance without incurring much
computation overhead.

8. PERFORMANCE EVALUATION

We implemented a prototype of our framework on top of IBM’s
SPC stream processing middleware [17]. Our implementation uses
two processing elements (PEs) that consume and produce streams
of data through input and output ports, respectively. One PE
produces the document stream and sends it to another PE that
implements ONED. To the best of our knowledge, this is the first
implementation of a real application in a large-scale stream
processing system.

The latest TDT5 benchmark [34] was used to evaluate the
performance of our techniques. This standard benchmark for NED
contains 278,109 pieces of news that came from seven news
agencies between April and September 2003. These news agencies
include Associated Press, Agence France Presse, Xinhua, New
York Times, Ummah, LA Times/Washington Post, and CNN. Each
news source is treated as a news stream. Our measurements were
performed on two computers, each with one 1.6GHz processor,
1GB main memory, one 75GB disk, and running Linux.

For an ONED system, the miss probability Pmiss is the probability
that a first-story document is incorrectly predicted as a non-first-
story document. The false alarm probability PFA is the probability
that a non-first-story document is incorrectly predicted as a first-
story document. In TDT [34], the performance of an ONED system
is measured in terms of the normalized detection cost CDet that is
defined as follows:

)}1(,min{
)1(

argarg

argarg

ettFAettMiss

ettFAFAettMissMiss
Det PCPC

PPCPPC
C

−××

−××+××
= ,

where CMiss=1 and CFA=0.1 are preset costs. Ptarget=0.02 is the a
priori probability of a target (i.e., first-story document). The smaller
the normalized detection cost, the better the quality of the
predictions made by an ONED system.

8.1 Techniques for Improving Efficiency

In this section, we evaluate the performance of our techniques for
improving efficiency. Our techniques use a few parameters. The

default parameter values are as follows: T=100 (the threshold for
similarity value), W=29 (the sliding window size in days), K=250
(the number of top terms kept in each saved document), and M=10
(the number of top terms used for pre-filtering purpose). We
perform a sensitivity analysis, using a set of experiments to evaluate
the impact of parameter values on the quality of the predictions
made by the ONED system and the document processing speed. In
each experiment, we varied the value of one parameter while
keeping the other parameters unchanged. In all these experiments,
the memory was always large enough to hold all the identified first-
story documents in the last W days.

W (Sliding Window Size)

The first experiment concerns W, the size of the sliding window.

Only old documents within the last W days are saved. The default
value of W is 29. We varied W from 1 to 46. Figure 7 shows the
impact of W on the normalized detection cost. (Note: to make
figures in Section 8 more readable, the y-axis does not always start
from zero.) If W is too large, many old, useless documents are saved.
This makes it difficult to correctly identify the first-story documents.
If W is too small, not enough old documents are saved to conserve
useful information. Hence, many non-first-story documents are
incorrectly predicted as first-story documents. Especially, there is a
big jump of the normalized detection cost when W changes from 2
to 1, as a large number of events are reported within two
consecutive days but not in a single day. The normalized detection
cost reaches its smallest value when W=29 and becomes larger as W
deviates from 29. The safe range for W is between 24 and 32. When
W is within this range, our method can make good predictions.

Figure 8 shows the impact of W on the throughput of our ONED
system. This throughput is measured by the number of documents
that can be processed per second, where each piece of news is a
document. The larger the W, the more documents are saved and the
more old documents are included for comparison with the incoming
new documents. Hence, the system throughput decreases as W
increases.

Figure 9. Normalized detection cost
vs. T .

0.6

0.7

0.8

0.9

1.0

1.1

40 60 80 100 120 140 160
T

no
rm

al
iz

ed
 d

et
ec

tio
n

co
st

W=29
W=26
W=20

Figure 10. System throughput vs. T .

0

200

400

600

800

1000

40 60 80 100 120 140 160
T

sy
st

em
 th

ro
ug

hp
ut

(#

do
cs

/s
ec

on
d)

W=29
W=26
W=20

Figure 11. Normalized detection cost
vs. K .

0.6

0.7

0.8

0.9

1.0

1.1

50 100 150 200 250 300 350 400
K

no
rm

al
iz

ed
 d

et
ec

tio
n

co
st

M=10
M=15
M=19

Figure 13. System throughput vs. M .

0

200

400

600

800

3 5 7 9 11 13 15 17 19 21 23 25
M

sy
st

em
 th

ro
ug

hp
ut

(#

do
cs

/s
ec

on
d)

T=100
T=110
T=120

Figure 12. Normalized detection cost
vs. M .

0.6

0.7

0.8

0.9

1.0

1.1

3 5 7 9 11 13 15 17 19 21 23 25
M

no
rm

al
iz

ed
 d

et
ec

tio
n

co
st

T=100
T=110
T=120

T (Threshold for Similarity Value)

The second experiment concerns the threshold T for the similarity

value. The default value of T is 100. We varied T from 40 to 160.
Figure 9 shows the impact of T on the normalized detection cost. If
T is too small, many first-story documents are incorrectly predicted
as non-first-story documents and thus the false alarm probability is
large. If T is too large, many non-first-story documents are
incorrectly predicted as first-story documents and thus the miss
probability is large. The normalized detection cost reaches its
smallest value when T=100 and becomes larger as T deviates from
100.

Figure 10 shows the impact of T on the throughput of our ONED

system. The larger the T, the more documents are predicted and
saved as first-story documents, and the more old documents are
included for comparison with the incoming new documents. Hence,
the document processing speed decreases as T increases.

K (Number of Top Terms Kept in Each Saved Document)

The third experiment concerns K, the number of top terms kept in
each saved document. The default value of K is 250. We varied K
from 50 to 400. Figure 11 shows the impact of K on the normalized
detection cost. If K is too small, not enough information is captured
in the computed similarity values and the detection accuracy will
degrade. Hence, the normalized detection cost increases as K
decreases. After K becomes larger than 100, the detection accuracy
is not very sensitive to the value of K. When K≥250, the computed
similarity values have captured enough information and increasing
K more does not help much in improving the normalized detection
cost.
M (Number of Top Terms Used for Pre-filtering)

The fourth experiment concerns M, the number of top terms used
for pre-filtering. The default value of M is 10. We varied M from 3
to 25. Figure 12 shows the impact of M on the normalized detection
cost. If M is too small, many old, relevant documents are not
included for comparison with the incoming new documents. Hence,
many first-story documents are incorrectly filtered out as non-first-

story documents. If M is too large, many old, useless documents are
compared with the incoming new documents. This makes it difficult
to correctly identify the first-story documents. The normalized
detection cost reaches its smallest value when M=10 and becomes
larger as M deviates from 10.

Figure 13 shows the impact of M on the throughput of our ONED

system. The larger the M, the more old documents are included for
comparison with the incoming new documents. Hence, the
document processing speed decreases as M increases.

Using our techniques for improving efficiency, it takes 684
seconds (less than 12 minutes) to process all the documents in the
TDT5 data set. In contrast, the baseline system described in Section
2 uses 285,908 seconds (more than three days) to process all the
documents in the TDT5 data set. Compared to the baseline system,
our techniques improve the efficiency by two orders of magnitude
(418 times).

In the TDT5 competition, among all the participants, Stottler

Henke Associates Inc. achieved the best normalized detection cost
0.7155 [8]. Using the default parameter values, our prototype
achieves a normalized detection cost of 0.758. This number is only
slightly (0.758/0.7155-1=6%) worse than the best result in the
TDT5 competition.

Figure 15. Normalized detection cost
vs. q .

0.7

0.8

0.9

1.0

1.1

0% 20% 40% 60% 80% 100%
q

no
rm

al
iz

ed
 d

et
ec

tio
n

co
st

LRU policy
random policy
time policy

Figure 14. Normalized detection cost vs. u .

0.7

0.8

0.9

1.0

100% 110% 120% 130% 140% 150% 160% 170%
u

no
rm

al
iz

ed
 d

et
ec

tio
n

co
st

drop new docs
adjust W, T, and M
adjust W
adjust T
adjust M

In summary, with a minor degradation in detection accuracy, our
method can significantly increase the document processing rate.
Each parameter has a not-very-small safe range, within which our
method can make good predictions. That is, the quality of the
predictions is insensitive to parameter changes. However, when the
parameter value is outside of this safe range, the quality of the
predictions will degrade.

8.2 Resource-Adaptive Computation

In this section, we evaluate the performance of our resource-
adaptive computation algorithms.

CPU-Bound Case

Let Rarrival denote the document arrival rate, and Tmax denote the
maximum throughput of the ONED system when the default
parameter values of our techniques are used. The load factor is
defined as u=Rarrival/Tmax. The ONED system is overloaded when
u>1. In our ONED system, the input queue Qi can hold at most
V=100 documents. (The results for other values of V are similar and
hence omitted.)

We varied the load factor u from 100% to 170%. Figure 14
shows the impact of u on the normalized detection cost for the five
methods that improve throughput (see Section 5.1). Among these
five methods, dropping new documents performs the worst. In most
cases, adjusting W performs the best or close to the best. This is
because among the three parameters W, T, and M, varying W tends
to have the least impact on the normalized detection cost (see
Figures 7, 9, and 12).

Memory-Bound Case

Let Mactual denote the number of identified first-story documents
in the last W days that can be held in memory. That is, Mactual
represents the memory size. In the TDT5 document set, at any time,
our ONED system always identifies no more than Mfull=7,500 first-
story documents in the last W=29 days. (The TDT5 document set
has only seven document sources. In a real world ONED system
that monitors a large number of document sources, we would expect
Mfull to be much larger than 7,500 and hence memory overflow is
much more likely to occur.) q=Mactual/Mfull roughly reflects the
portion of identified first-story documents in the last W days that
can be held in memory.

As mentioned in Section 5.2, when memory overflows, we can
use the LRU algorithm, the random policy, or the time policy, to
manage all the saved documents in memory. We varied q from 7%
to 100%. Figure 15 shows the impact of q on the normalized
detection cost. The smaller the memory, the less useful information
can be held in memory and the worse the detection accuracy. Hence,
the normalized detection cost increases as q decreases. It is natural

that when q<100%, the LRU policy always works better than the
other two policies.

Compared to random old documents, those documents that are
very old are much less likely to mention the same event as the new
document and thus removing their information from memory will
have a smaller impact on the detection accuracy. Therefore, when
q<100%, the time policy always works better than the random
policy. When q is close to 100%, the performance difference among
the three policies is minor. However, once q becomes less than 90%,
the LRU policy exhibits significant performance advantages over
the other two policies.

8.3 Output Load Shedding

In this section, we evaluate the performance of our output load
shedding algorithm. Our algorithm uses two parameters. The
default parameter values are as follows: N=1000 (the size of the
output queue) and p=0.9 (the portion of Qo that is Qo_new). For the
consumer of the ONED system, let r denote the ratio of its
consuming rate to the output rate of the ONED system. In our tests,
the default value of r is 0.5.

Recall that Cfinal(D) denotes the final citation number of a first-
story document D. We define the importance of D as f(Cfinal(D)),
where f(x) is a real non-decreasing function of x. We use the
average importance value of the first-story documents that are
processed by the consumer as the performance metric of an output
load shedding policy. The larger the average importance value, the
better the output load shedding policy.

The method described in Section 6.1 uses two queues Qo_new and
Qo_old and hence is called the two-queue policy. When the output
queue Qo becomes full, we compare the two-queue policy with the
following two policies:
Random policy: Drop a random document from Qo.
Time policy: Drop the oldest document from Qo.

Two functions are used: f1(x)=x and f2(x)=ln(x+1). We perform a
sensitivity analysis, using a set of experiments to evaluate the
impact of parameter values on the average importance value. In
each experiment, we varied the value of one parameter while
keeping the other parameters unchanged. In all these experiments,
the consumer always consumes the oldest document in the output
queue first. (We also tested other consuming policies and the results
are similar.)

N (Size of the Output Queue)
The first experiment concerns N, the size of the output queue. We
varied N from 50 to 550. Figures 16 and 17 show the impact of N
on the average importance value when functions f1(x) and f2(x) are
used, respectively.

Figure 16. Average importance value
vs. N (f 1 (x)=x).

5

6

7

8

9

10

50 150 250 350 450 550
N

av
er

ag
e

im
po

rta
nc

e
va

lu
e two-queue policy

random policy
time policy

Figure 17. Average importance value
vs. N (f 2 (x)=ln(x+1)).

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

50 150 250 350 450 550
N

av
er

ag
e

im
po

rta
nc

e
va

lu
e two-queue policy

random policy
time policy

Figure 18. Average importance value
vs. r (f 1 (x)=x).

0

4

8

12

16

20

0.1 0.3 0.5 0.7 0.9
r

av
er

ag
e

im
po

rta
nc

e
va

lu
e

two-queue policy
random policy
time policy

Figure 19. Average importance value vs.
r (f 2 (x)=ln(x+1)).

0.4

0.8

1.2

1.6

2.0

2.4

0.1 0.3 0.5 0.7 0.9
r

av
er

ag
e

im
po

rta
nc

e
va

lu
e

two-queue policy
random policy
time policy

Figure 20. Average importance value
vs. p (f 1 (x)=x).

5

6

7

8

9

0% 20% 40% 60% 80% 100%
p

av
er

ag
e

im
po

rta
nc

e
va

lu
e two-queue policy

random policy
time policy

Figure 21. Average importance value
vs. p (f 2 (x)=ln(x+1)).

1.0

1.1

1.2

1.3

1.4

1.5

0% 20% 40% 60% 80% 100%
p

av
er

ag
e

im
po

rta
nc

e
va

lu
e two-queue policy

random policy
time policy

When dropping documents from the output queue, neither the
random policy nor the time policy considers the importance values
of the documents and hence the dropped documents have random
importance values. Thus, the random policy and the time policy
have roughly the same performance, which is not influenced by N
much. In contrast, the two-queue policy considers the importance
values of the documents and performs much better than the other
two policies. The larger the N, the more documents that the two-
queue policy can consider in making output load shedding decisions
and hence the better the decisions. Thus, the average importance
value of the two-queue policy increases with N. The above
observations apply to both f1(x) and f2(x).

r (Ratio of the Consuming Rate to the Output Rate)

The second experiment concerns r, the ratio of the consumer’s
consuming rate to the output rate of the ONED system. We varied r
from 0.1 to 0.9. Figures 18 and 19 show the impact of r on the
average importance value when functions f1(x) and f2(x) are used,
respectively. Due to the same reason discussed above, the random
policy and the time policy have roughly the same performance,
which is not influenced by r much. The two-queue policy performs
much better than the other two policies. The smaller the r, the fewer
documents are consumed by the consumer of the ONED system and
hence the more selective the two-queue policy can be in choosing
these documents. Thus, the average importance value of the two-
queue policy increases as r decreases.

p (Portion of Qo that is Qo_new)

The third experiment concerns p, the portion of Qo that is Qo_new.
In the two-queue policy, we varied the parameter p from 2% to 98%.
Figures 20 and 21 show the impact of p on the average importance
value when functions f1(x) and f2(x) are used, respectively. Due to
the same reason discussed above, the random policy and the time
policy have roughly the same performance, which is not influenced
by p. The two-queue policy performs much better than the other
two policies. When p is very small, Qo_new is small.

Hence, a document does not have much chance to accumulate
citations before it is moved to Qo_old. Then in Qo_old, young
documents tend to have fewer citations than old documents and get
dropped from the output queue first when the consumer is
overloaded. This deteriorates the average importance value of the
two-queue policy, as such young documents can be important ones
if they will receive a lot of citations in the future. When p is very
large, few documents are stored in Qo_old. Then the two-queue
policy does not have many candidates to choose when making
output load shedding decisions. This also deteriorates the quality of
the decisions made by the two-queue policy. The average
importance value of the two-queue policy reaches its maximum
value when p=90% and decreases as p deviates from 90%.

Figure 22. Highest rank of all the
AP partitions vs. s .

1

2

3

4

1 2 3 4 5
s

hi
gh

es
t r

an
k

of
 a

ll
th

e
A

P
pa

rti
tio

ns

8.4 Ranking Document Sources

Table 1. Document source ranking.
source rank eigenvalue
Associated Press 1 1
Agence France Presse 2 0.9912
Xinhua 3 0.5568
New York Times 4 0.1981
Ummah 5 0.0586
LA Times/Washington Post 6 0.0373
CNN 7 0.0156

In this section, we evaluate the performance of our document

source ranking algorithm. The TDT5 document set has seven
document sources. Table 1 shows the computed ranking of all these
sources after the entire document set has been processed. All the
sources are sorted in decreasing order of their eigenvalues. We
acknowledge that ultimately the judgment of the importance of
document sources is a subjective issue, just like the evaluation of
Web page ranks provided by Google’s PageRank algorithm.
Moreover, unlike some well-understood (but yet controversial)
rankings such as school ranking, there is no authoritative ranking of
international news agencies. Despite these difficulties in evaluation,
we consider the computed source order reasonable and consistent
with our real-world experience. Associated Press (AP) is the largest
news agency in the world and has the highest rank. Agence France
Presse is the third largest news agency in the world and ranked the
second in the sorted list. Xinhua is the most authoritative news
agency in P.R. China. It is often the first one in reporting important
news related to China. As the world is gaining more and more
interest in China, those news related to China are widely cited by
the other news agencies. Hence, Xinhua is ranked the third among
all the seven sources. Companies such as CNN are major players in
the public media market but not the most important news agencies,
because they employ few news reporters and produce only a low
volume of news. Most news appearing on their media are purchased
from other news agencies and not included in the TDT5 document
set. Therefore, it is not surprising that these companies are ranked
low in the sorted list.

We performed a second experiment to show the effect that our
computed document source ranking considers not only the number
of first-story documents but also the number of citations received by
a first-story document. In Table 1, AP is the most important
document source. We split the AP documents into s equal-sized AP
partitions and treat each partition as a separate document source.
We compute a new ranking after replacing the original AP source
with the s AP partitions. We varied s from 1 to 5. The results show
that for a fixed s, all the AP partitions have similar (consecutive)
ranks. Figure 22 shows the highest rank of all the AP partitions. The
larger the s, the fewer first-story documents are emitted from an AP
partition while the average number of citations received by a first-
story document remains the same. Hence, the highest rank of all the
AP partitions drops gradually as s increases, which matches with
our expectation.

9. RELATED WORK

ONED has been studied before [2, 3, 7, 11, 19, 21, 23, 29, 37, 38].
However, there is a gap between the existing ONED systems and a
system that can be used in practice. This paper attempts to close this
gap.

Sentence-level novelty detection has been studied in the TREC
Novelty Track [35] and [1, 4]. Zhang et al. [39] proposes
performing NED in an information filtering environment.
Extending our techniques to these two environments is an
interesting area for future work.

Bharat et al. [6, 9, 10, 14] consider the problem of finding near-
duplicate documents on the Web. In our case, we focus on finding
documents that mention the same event and these documents are
usually not near-duplicates of each other.

Based on the real-time resource availability information, Arnt et
al. [5] proposes dynamically composing the information retrieval
techniques that are used to answer queries. In our case, when either
memory overflows or the consumer of the ONED system is
overloaded, those documents that are regarded as less important for
detection or presentation purposes are thrown away.

The output queue is a buffer between the ONED system and the
consumer. Breaking a buffer into two parts has been proposed in the
2Q buffer management algorithm [18]. 2Q focuses on improving
buffer hit ratio while our output load shedding algorithm focuses on
dropping less important documents.

Tu et al. [40] use a control theory based approach to perform load
shedding in data stream management systems. They treat all data
tuples equally and the goal is to keep the average tuple processing
delay below a threshold. In contrast, we explicitly differentiate the
importance of documents and the goal is to minimize the loss in
detection accuracy.

Ranking news sources has been considered in Corso et al. [12].
The ranking method in Corso et al. [12] does not consider the
arrival time of news. If two news sources S1 and S2 report the same
set of news while S1 always reports before S2, the method in Corso
et al. [12] will give the same rank to S1 and S2. In contrast, our
document source ranking algorithm considers the timeliness that
events are reported by document sources and will rank S1 higher
than S2.

10. CONCLUSION

This paper proposes a comprehensive framework for online new
event detection and improves an ONED system from four
perspectives: efficiency, resource-adaptive computation, user
interface, and document source ranking. We implemented a
prototype of our framework on top of a stream processing
middleware. Our experiments with the standard TDT5 benchmark
show that the proposed techniques can improve the document
processing rate by two orders of magnitude without sacrificing
much detection accuracy. When resources are tight, our techniques
can maximize the benefit that can be gained from the limited
resources. When the consumer of the ONED system is overloaded,

our techniques automatically drop less important documents and
only present the most important ones to the consumer. Moreover,
the computed importance ranking of document sources matches
with our real world experience.

11. ACKNOWLEDGEMENTS

We would like to thank Jiuxing Liu and Xiaoqiang Luo for
helpful discussions.

12. REFERENCES
[1] J. Allan, R. Gupta, and V. Khandelwal. Temporal Summaries of

News Topics. SIGIR 2001: 10-18.
[2] J. Allan, V. Lavrenko, and H. Jin. First Story Detection in TDT

is Hard. CIKM 2000: 374-381.
[3] J. Allan, R. Papka, and V. Lavrenko. On-Line New Event

Detection and Tracking. SIGIR 1998: 37-45.
[4] J. Allan, C. Wade, and A. Bolivar. Retrieval and Novelty

Detection at the Sentence Level. SIGIR 2003: 314-321.
[5] A. Arnt, S. Zilberstein, and J. Allan et al. Dynamic Composition

of Information Retrieval Techniques. J. Intell. Inf. Syst. 23(1):
67-97, 2004.

[6] K. Bharat, A.Z. Broder, and J. Dean et al. A Comparison of
Techniques to Find Mirrored Hosts on the WWW. IEEE Data
Eng. Bull. 23(4): 21-26, 2000.

[7] T. Brants, F. Chen. A System for New Event Detection. SIGIR
2003: 330-337.

[8] R. Braun, R. Kaneshiro. Exploiting Topic Pragmatics for New
Event Detection in TDT-2004. TDT-2004 Workshop.

[9] A. Z. Broder. Identifying and Filtering Near-Duplicate
Documents. CPM 2000: 1-10.

[10] Y. Bernstein, J. Zobel. Redundant Documents and Search
Effectiveness. CIKM 2005: 736-743.

[11] F. Chen, A. Farahat, and T. Brants. Story Link Detection and
New Event Detection are Asymmetric. HLT-NAACL 2003.

[12] G.M. Corso, A. Gulli, and F. Romani. Ranking a Stream of
News. WWW 2005: 97-106.

[13] M. Clayton. US Plans Massive Data Sweep. The Christian
Science Monitor, February 09, 2006.
http://www.csmonitor.com/2006/0209/p01s02-uspo.html,
2006.

[14] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding
Replicated Web Collections. SIGMOD Conf. 2000: 355-366.

[15] D.J. DeWitt, J. Gray. Parallel Database Systems: The Future of
High Performance Database Systems. CACM 35(6): 85-98,
1992.

[16] Google News Homepage. http://news.google.com, 2006.
[17] N. Jain, L. Amini, and H. Andrade et al. Design,

Implementation, and Evaluation of the Linear Road
Benchmark on the Stream Processing Core. SIGMOD Conf.
2006: 431-442.

[18] T. Johnson, D. Shasha. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm.
VLDB 1994: 439-450.

[19] G. Kumaran, J. Allan. Text Classification and Named Entities
for New Event Detection. SIGIR 2004: 297-304.

[20] J.M. Kleinberg. Authoritative Sources in a Hyperlinked
Environment. JACM 46(5): 604-632, 1999.

[21] X. Li, B.W. Croft. Novelty Detection Based on Sentence Level
Patterns. CIKM 2005: 744-751.

[22] E. Lipton. Software to Monitor Overseas Opinions of U.S. The
New York Times, October 4, 2006.
http://news.zdnet.com/2100-9588_22-6122641.html, 2006.

[23] Z. Li, B. Wang, and M. Li et al. A Probabilistic Model for
Retrospective News Event Detection. SIGIR 2005: 106-113.

[24] C.D. Manning, H. Schütze. Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[25] L. Page, S. Brin, and R. Motwani et al. The PageRank Citation
Ranking: Bringing Order to the Web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[26] M.F. Porter. An Algorithm for Suffix Stripping. Program 14(3):
130-137, 1980.

[27] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered Document
Retrieval with Frequency-Sorted Indexes. JASIS 47(10): 749-
764, 1996.

[28] S.E. Robertson, S. Walker, and M. Hancock-Beaulieu. Okapi
at TREC-7: Automatic Ad Hoc, Filtering, VLC and Interactive.
TREC 1998: 199-210.

[29] N. Stokes, J. Carthy. Combining Semantic and Syntactic
Document Classifiers to Improve First Story Detection. SIGIR
2001: 424-425.

[30] A. Singhal. Modern Information Retrieval: A Brief Overview.
IEEE Data Eng. Bull. 24(4): 35-43, 2001.

[31] T. Sakai, K.S. Jones. Generic Summaries for Indexing in
Information Retrieval. SIGIR 2001: 190-198.

[32] SMART Stopword List.
http://www.lextek.com/manuals/onix/stopwords2.html, 2005.

[33] C. Tang, S. Dwarkadas. Hybrid Global-Local Indexing for
Efficient Peer-to-Peer Information Retrieval. NSDI 2004: 211-
224.

[34] TDT Homepage. http://www.nist.gov/speech/tests/tdt.
[35] TREC Novelty Track. http://trec.nist.gov/tracks.html, 2004.
[36] Yahoo! News Homepage. http://news.yahoo.com, 2006.
[37] Y. Yang, T. Pierce, J.G. Carbonell. A Study of Retrospective

and On-Line Event Detection. SIGIR 1998: 28-36.
[38] Y. Yang, J. Zhang, J.G. Carbonell et al. Topic-conditioned

Novelty Detection. KDD 2002: 688-693.
[39] Y. Zhang, J.P. Callan, T.P. Minka. Novelty and Redundancy

Detection in Adaptive Filtering. SIGIR 2002: 81-88.
[40] Y. Tu, S. Liu, S. Prabhakar et al. Load Shedding in Stream

Databases: A Control-Based Approach. VLDB 2006: 787-798.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

