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ABSTRACT 

In a document streaming environment, online detection of the 
first documents that mention previously unseen events is an open 
challenge. For this online new event detection (ONED) task, 
existing studies usually assume that enough resources are always 
available and focus entirely on detection accuracy without 
considering efficiency. Moreover, none of the existing work 
addresses the issue of providing an effective and friendly user 
interface. As a result, there is a significant gap between the existing 
systems and a system that can be used in practice. In this paper, we 
propose an ONED framework with the following prominent 
features. First, a combination of indexing and compression methods 
is used to improve the document processing rate by orders of 
magnitude without sacrificing much detection accuracy. Second, 
when resources are tight, a resource-adaptive computation method 
is used to maximize the benefit that can be gained from the limited 
resources. Third, when the new event arrival rate is beyond the 
processing capability of the consumer of the ONED system, new 
events are further filtered and prioritized before they are presented 
to the consumer. Fourth, implicit citation relationships are created 
among all the documents and used to compute the importance of 
document sources. This importance information can guide the 
selection of document sources. We implemented a prototype of our 
framework on top of IBM’s Stream Processing Core middleware. 
We also evaluated the effectiveness of our techniques on the 
standard TDT5 benchmark. To the best of our knowledge, this is 
the first implementation of a real application in a large-scale stream 
processing system. 
 
Categories and Subject Descriptors  
H.3.3 [Information Search and Retrieval]: information filtering 

General Terms: Algorithms, Experimentation 
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1.  INTRODUCTION 

In a document streaming environment, documents come from 
one or more sources. New event detection (NED) is the task of 
capturing the first documents that mention previously unseen events. 
This task has practical applications in several domains, where useful 
information is buried in a large amount of data that grows rapidly 
with time. Such domains include intelligence gathering, financial 

market analyses, and news analyses. Applications in those domains 
are often time-critical and the use of an online new event detection 
(ONED) system is highly desired. For instance, the US government 
is building a massive computer system that can monitor news, blogs, 
and emails for anti-terrorism purposes [13, 22], and ONED is an 
essential component of this system. 
 

 
 
 

 
Figure 1. Events in a document stream. Different shapes 
correspond to different events. Filled shapes represent the 
documents that need to be captured. 
 

Recently, ONED has attracted much attention [2, 3, 7, 11, 19, 21, 
23, 29, 37, 38]. In order to provide a standard benchmark for 
comparing different algorithms, National Institute of Standards and 
Technology (NIST) has organized a Topic Detection and Tracking 
(TDT) program [34], where ONED is one of the main tasks. 
Despite all the efforts, there is still a significant gap between the 
state-of-the-art ONED systems and a system that can be used in 
practice. 

Most of the existing ONED systems compare a new document D 
to all the old documents that arrived in the past. If the similarity 
values between D and the old documents are all below a certain 
threshold, D is predicted to mention a new event. This method has 
quadratic time complexity with respect to the number of documents 
and is rather inefficient. For example, in the latest TDT5 
competition [34], many systems spent several days on processing 
just 280,000 news articles, whose total size is less than 600MB. 
This processing speed is orders of magnitude slower than a typical 
document arrival rate. 

In practice, an ONED system can monitor a large number of 
document sources. For example, Google news has 4,500 sources 
[16] and Yahoo! news [36] has more than 5,000 sources. In the 
intelligence gathering system that is being developed by the US 
government [13, 22], document sources cover an even wider 
spectrum, including emails, instant messages, web bulletin boards, 
and blogs. Therefore, a practical ONED system needs to handle a 
high document arrival rate without resorting to an excessive amount 
of hardware resources. Moreover, due to the bursty nature of 
document streams, an ONED system should be able to operate 
gracefully even if it runs out of resources. These performance issues, 
however, have not been addressed in previous studies. 

Figure 2 shows the architecture of a traditional ONED system, 
where the output documents are put into a queue, waiting to be 
consumed. The consumer can be either a person or a computer 
program that does further deep analysis (e.g., machine translation of 
foreign documents). The processing speed of the consumer can be 
much slower than the peak output rate of the ONED system. For 
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example, the state-of-the-art machine translation speed is measured 
by the number of words per second [24]. 

 
 
 
 
 
 

Figure 2. A traditional online new event detection system. 
 

None of the existing ONED systems has considered the 
following user interface issues: (1) When the consumer is 
overloaded and cannot keep pace with the output rate of the ONED 
system, less important documents need to be dropped from the 
queue (or moved to a low-priority queue) so that the consumer can 
focus on important documents. (2) Depending on the concrete 
requirement of the consumer, documents can be sorted in the queue 
according to different criteria (e.g., importance or arrival time) so 
that desired documents are processed by the consumer first.  

In this paper, we propose a comprehensive framework for ONED 
that covers a large design space. Within this framework, we propose 
a system that improves upon existing systems from four 
perspectives to address the above-mentioned problems. First, 
various indexing and compression methods are used to increase the 
document processing rate by orders of magnitude without 
sacrificing much detection accuracy. Second, when resources are 
tight, our system focuses on the important documents and attempts 
to maximize the benefit that can be gained from the limited 
resources. Third, when the new event arrival rate is beyond the 
processing capability of the consumer of the ONED system, our 
system avoids overwhelming the user by further filtering and 
prioritizing new events before presenting them to the consumer. 
Fourth, the importance of document sources is computed, which can 
be used to guide the selection of document sources. 

The main challenge in improving efficiency and effectively using 
the limited resources is to minimize the amount of saved 
information without losing much information that is critical for the 
detection accuracy. Regarding to providing a friendly user interface, 
the main challenge is to decide the relative importance of different 
documents. For this purpose, we use the intermediate computation 
results of ONED to determine which documents’ contents are 
repeated by the other documents that arrive later, and automatically 
create implicit citation relationships among all the documents. 
Those documents with a large number of citations are considered 
important. At the same time, citations among documents are merged 
together to obtain linking relationships among document sources, 
which are used to compute the importance of document sources. 

We implemented a prototype of our framework on top of IBM’s 
Stream Processing Core (SPC). As described in Jain et al. [17] in 
detail, SPC is a stream processing middleware that provides an 
application execution environment for processing elements (or 
applications) developed by users to filter and analyze data streams. 
To the best of our knowledge, this is the first implementation of a 
real application in a large-scale stream processing system. Our 
evaluation on the TDT5 benchmark shows that our techniques can 
(1) improve the document processing rate by two orders of 
magnitude (reducing the processing time for the entire document set 
from more than three days to less than 12 minutes), (2) maximize 
the benefit that can be gained from the limited resources, (3) 
provide an effective user interface, and (4) produce an importance 

ranking of document sources that matches with our real world 
experience. 

The rest of the paper is organized as follows. Section 2 introduces 
a baseline system. Section 3 presents our general framework for 
ONED. Section 4 describes the techniques for improving efficiency. 
Section 5 shows the resource-adaptive computation methods. 
Section 6 discusses the user interface issues. Section 7 describes the 
document source ranking method. Section 8 investigates the 
performance of our techniques. We discuss related work in Section 
9 and conclude in Section 10. 
 
2.  A BASELINE SYSTEM  

To set the stage for the discussion of our techniques, we first 
describe a baseline ONED system in this section. This baseline 
system is similar to the ONED system reported in Braun and 
Kaneshiro [8], which achieved the best detection accuracy in the 
latest TDT5 competition. Our improvements presented in the next 
several sections are based on this baseline system. 

Following the convention of information retrieval literature [30], 
we define vocabulary as the set of all the distinct words. A term is a 
word. A first-story document is a document that describes a 
previously unseen event. 

The baseline system uses a variant of the state-of-the-art Okapi 
formula [28, 30] to compute both term weights and the similarity 
values of document pairs. We first give a brief summary of Okapi. 
In Okapi, both documents and queries are represented as vectors. 
Each element of a vector is the weight of a term in the vocabulary. 
Terms that are important to a document are assigned large weights. 
Terms that do not appear in the document have weights zero. The 
relevance between a document D and a query Q is computed as the 
inner product of D’s vector and Q’s vector. The intuition behind 
Okapi is that the more times a term t appears in a document D and 
the fewer times t appears in other documents (i.e., the less popular t 
is in other documents), the more important t is for D. Also, the 
effect that longer documents have more words needs to be 
compensated by normalizing for document lengths.  

Consider a document set S. For each term t in the vocabulary and 
a document D∈S, Okapi uses the following formulas: 
(f1) term frequency (tf) weight 
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Here tf is t’s frequency (i.e., number of occurrences) in D, N is the 
total number of documents in S, df is the number of documents in S 
that contain t, dl is the length of D in bytes, and avdl is the average 
length (in bytes) of all the documents in S. b and k1 are two 
predetermined constants. Typically, as suggested in Singhal [30], 
b=0.75 and 2.11 =k . 

Consider a query Q. For each document D∈S, Okapi defines its 
score (i.e., the degree of relevance for answering Q) as the sum of 
term weights of all the terms that appear in both D and Q. Each 
term weight is computed using the tf weight for D, the tf weight for 
Q, and the idf weight. In the case of ONED, we need to compute the 
similarity value between two documents D1∈S and D2∈S. Hence, 
we change Okapi slightly to fit our purpose: the similarity value 
between D1 and D2 is computed as the inner product of D1’s vector 
and D2’s vector. More specifically, for either document Di (i=1, 2), 
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a tf weight 
itfw ,
 is computed. The term weight is defined according 

to (f3). The similarity value is computed according to (f4), where 
the sum is over all the terms that appear in both D1 and D2. 
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In the above computation, the similarity value is not normalized to 
[0, 1], as Okapi has already made normalization for document 
lengths. 

Next, we present the details of the baseline system. As standard 
pre-processing operations in information retrieval, for each 
document, (1) stemming is performed using the standard Porter 
stemmer [26], and (2) stopwords are removed by using the standard 
SMART stopword list [32]. In a document streaming environment, 
the document set S keeps changing as new documents continue to 
arrive. As mentioned in Braun and Kaneshiro [8], the computation 
of the tf and idf weights can be based on a static document set S' 
(such as the TDT4 document set) that has characteristics similar to 
S. For a term that does not exist in S', its df is treated as one. 
Compared to the method that incrementally updates the statistics N, 
avdl, and df, this static method has lower overhead while the 
detection accuracy remains roughly the same [8]. 

When a new document D arrives, D is first pre-processed and its 
information is saved in memory. Then D is compared to all the old 
documents that arrived in the past. If all the similarity values 
between D and the old documents are below a threshold T, D is 
predicted to mention a new event. In this case, D is put into the 
output queue, waiting to be consumed. Otherwise if the similarity 
value between D and an old document Dold is above T, D is 
predicted to mention the same event as Dold and thus not considered 
as a first-story document. 
 
3.  A GENERAL FRAMEWORK 

In this section, we propose a comprehensive framework for 
ONED, as shown in Figure 3. This framework defines a fairly large 
design space and is much more general than the traditional ONED 
system shown in Figure 2. It contains several components. An 
ONED system can be obtained by instantiating each component 
with a concrete policy. All the techniques described in the following 
sections are policy examples. 

 
 
 
 
 
 
 
 
 
Figure 3. A general framework for online new event detection. 

 
Next, we describe the components in this framework. The source 

selection component determines the document sources from which 
documents are received. Documents from these selected sources are 
fed to the ONED component, where first-story documents are 
identified. The identified first-story documents are sent to an output 
queue Qo, waiting to be processed by the consumer of the ONED 
system.  

When resources are tight, the resource allocation component 
determines how to maximize the benefit that can be gained from the 
limited resources. When the consumer is overloaded and cannot 
keep pace with the output rate of the ONED system, the output load 
shedding component determines which documents in Qo should be 
dropped or moved to a low-priority queue (waiting there until the 
consumer becomes free). The document ranking component 
determines the order in which documents in Qo are presented to the 
consumer. 

The source ranking component takes the information generated 
by the ONED component as input to compute the relative 
importance of document sources. This importance information is 
sent back to the source selection component to guide the selection 
of document sources. Other applications can also use this 
importance information for their own purposes, e.g., online 
advertisement. In the following sections, we elaborate on the 
individual components in this framework. 
 
4. TECHNIQUES FOR IMPROVING 
EFFICIENCY 

In this section, we describe our techniques for improving the 
efficiency of the ONED component. The baseline system described 
in Section 2 has two shortcomings regarding to efficiency. First, as 
new documents continue to arrive, the number of previously arrived 
documents keeps increasing, and eventually the memory will not be 
able to hold the information for all the old documents. However, 
due to the real-time nature of ONED, generally all the data 
structures that are used should be kept in memory to avoid 
expensive I/Os. Second, it is expensive to compare a new document 
with all the old ones. To reduce both storage and computation 
overhead, we limit both the number of saved documents and the 
number of terms kept for each saved document without sacrificing 
much detection accuracy. Here saved documents refer to the ones 
whose information is saved in memory. 
 
4.1 Reducing the Number of Saved Documents 

Typically, the discussion of an event lasts for a finite amount of 
time in news articles, and a new document is unlikely to mention 
the same event as a document that is fairly old. Hence, documents 
that are too old are not very useful and we only keep in memory the 
information of those old documents that are within a sliding 
window of the last W days. Here W is a predetermined constant. 
Once an old document expires from this sliding window, its 
information is thrown away immediately. Our experiments in 
Section 8.1 show that a good value for W is usually between 24 and 
32 days. 

Typically, an event is mentioned by a large number of documents. 
Only one of these documents is the first-story document. For 
example, in the TDT5 document set, for the 250 specified events, 
on average each event is mentioned by 40 documents [34]. All the 
documents that mention the same event tend to be similar to each 
other. Therefore, it is an overkill to compare a new document with 
all the old documents that mention the same event. Instead, we only 
keep the information of the first-story documents. When a new 
document D arrives, D is compared with the old first-story 
documents. If D is predicted to be a first-story document that 
mentions a new event, D’s information is saved in memory. 
Otherwise D is discarded. 
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4.2 Reducing the Number of Saved Terms 
All the terms in a document D can be sorted in descending order 

of their tf×idf values. In general, those terms with large tf×idf 
values are important to D. As has been observed in Allan et al. [3], 
in computing the similarity value of two documents, we only need 
to use those important terms of the two documents, as those terms 
contribute to most of the similarity value. A similar effect has been 
observed in a general information retrieval environment [27, 31, 33]. 
Hence, for each saved document, we only keep the top-K terms with 
the largest tf×idf values rather than all the terms. Here K is a 
predetermined constant. Only the top-K terms are used to compute 
the similarity values of document pairs. Our experiments in Section 
8.1 show that K can be as small as 100 without severely degrading 
the detection accuracy. 
 
4.3 Pre-Filtering 

To reduce the overhead of computing similarity values, a pre-
filtering technique is used. Our idea is to use a low-overhead 
method to quickly filter out most of the documents that mention 
different events from the new document. In this way, we can 
substantially reduce the number of similarity values that need to be 
computed. Consider two documents D1 and D2. If D1 and D2 
mention the same event E, their top terms tend to have some 
overlap. That is, some term(s) describing E is likely to appear in the 
top terms of both D1 and D2. Thus, top terms can be used to quickly 
filter out unnecessary computations. More specifically, we have a 
predetermined constant M (M≤K). Before computing the similarity 
value of D1 and D2, we first check whether the top-M terms of D1 
and D2 intersect. If so, we continue to compute the similarity value 
of D1 and D2. Otherwise, we predict that D1 and D2 mention 
different events and do not compute their similarity value. Our 
experiments in Section 8.1 show that M=10 is usually sufficient to 
achieve a good pre-filtering ratio without losing much detection 
accuracy. 
 
4.4 Building Indices 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Index data structures. 
 

We build indices to avoid unnecessary processing of the 
documents that have been pre-filtered out. Each term in the 
vocabulary has a term id. Each document has a doc id 
corresponding to its arrival time. As shown in Figure 4, two indices 
are kept for all the saved documents: a forward index and an 
inverted index. The forward index has an entry for each saved 
document. These entries are sorted in descending order of 

documents’ arrival time. This allows us to quickly identify and drop 
the information of those documents that have expired from the 
sliding window of the last W days (see Section 4.1). For each saved 
document, the corresponding entry keeps the document length dl 
and the top-K terms associated with their term frequencies tf (see 
Section 4.2). These terms are sorted in ascending order of their term 
ids. Consequently, the similarity value of two documents can be 
computed through an efficient “merge” of their term lists. 

For each saved document, only its top-M terms are tracked by the 
inverted index. The inverted index has an entry for each term in the 
vocabulary. The entry for term t is a posting (linked) list of the doc 
ids of all the documents whose top-M terms contain t. These doc ids 
are sorted in descending order so that merging posting lists can be 
done efficiently. Since typically M<<K, the document-term 
information in the inverted index is only a subset of that in the 
forward index. When a new document D arrives, we only scan the 
M posting lists that correspond to D’s top-M terms. These M 
posting lists are merged together to find the doc ids of the candidate 
documents that may mention the same event as D. This is the pre-
filtering technique described in Section 4.3. Then for each such 
candidate document Dc, the forward index is used to compute the 
similarity value of D and Dc. The similarity value computation is 
performed at the same time that candidate doc ids are generated. In 
this way, if the similarity value of D and an old document is greater 
than the threshold T, D is predicted to be a non-first-story document 
and the processing for D stops immediately. Otherwise if D is 
predicted to be a first-story document, D’s information can be easily 
added into the inverted index, as D’s doc id is larger than the doc 
ids of the saved documents. 
 
4.5 Parallel Processing 

The above discussion assumes the use of a single computer. Our 
framework can be naturally extended to use a cluster (say, C) of 
computers to process incoming documents at a higher rate. The 
concrete method is as follows. All the saved documents are 
partitioned into C sets (e.g., using round-robin partitioning [15]). 
When a new document D arrives, it is parsed on one computer to 
obtain its term frequency list. Then this information is sent to all the 
computers to compare D with the saved documents. If any 
computer predicts that D is not a first-story document, the whole 
ONED system considers D as a non-first-story document and 
throws D away. Otherwise D is considered as a first-story document 
and its information is saved on a computer according to the 
document partitioning schema. 
 
5.  RESOURCE-ADAPTIVE 
COMPUTATION 

In this section, we describe the resource-adaptive computation 
methods. If the arrival rate of new documents is high (e.g., due to 
the bursty nature of document streams), the ONED system may 
become overloaded in two ways: (1) the CPU cannot process all the 
incoming new documents, or (2) the memory cannot hold the 
information for all the identified first-story documents within the 
last W days. In the first case, we need to adjust the parameters (e.g., 
W, T, and M) of our techniques to increase the throughput of the 
ONED system. In the second case, the information of some saved 
documents must be removed from memory. In both cases, the goal 
of the resource utilization component in Figure 3 is to minimize the 
loss in detection accuracy. 
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5.1 CPU-Bound Case 
We first consider the case that the ONED system is not fast 

enough to handle all the incoming new documents. As will be 
shown in Section 8.1, decreasing the parameter values (W, T, and M) 
of our techniques can increase the throughput of the ONED system. 
For example, the smaller the W, the fewer old documents are 
included for comparison with the incoming new documents. The 
smaller the M, the fewer incoming new documents can pass the pre-
filter and get compared with the old documents. Hence, we can 
intelligently shed the input load by adaptively varying the amount 
of processing applied to incoming new documents based on the load. 

Our ONED system has a FIFO queue Qi (the subscript i stands 
for input) that can hold at most V documents. When a new 
document D arrives, if the ONED system is busy, D is first put into 
Qi, waiting to be processed by the ONED system. When Qi 
becomes close to full, the ONED is overloaded. In this case, we 
have multiple methods for improving the system throughput, all at 
the expense of sacrificing the detection accuracy of the ONED 
system: 
(1) Method 1 (dropping new documents): The incoming new 

document is simply dropped. 
(2) Method 2 (adjusting W): Let Wd represent the default initial 

value of the sliding window size W. Whenever Qi becomes 
close to full, W is decreased by 5%. When the number of 
documents in Qi drops below V/2, W is increased by 5% if 
W<Wd. 

(3) Method 3 (adjusting T): The same as method 2 except that 
we adjust T, the threshold for the similarity value. 

(4) Method 4 (adjusting M): The same as method 2 except that 
we adjust M, the number of top terms used for pre-filtering. 

(5) Method 5 (adjusting W, T, and M): Whenever Qi becomes 
close to full, one of W, T, and M is decreased by 5% in a 
round-robin fashion, e.g., first W, then T, then M, and so on. 
When the number of documents in Qi drops below V/2, one of 
W, T, and M is increased by 5% in a round-robin fashion if the 
value of this parameter is smaller than its default initial value. 

We compare the performance of these methods in Section 8.2. 
 
5.2 Memory-Bound Case 

Next, we consider the case that the memory is used up and the 
information of some saved documents must be removed from 
memory. We introduce a definition that will be frequently used in 
the rest of the paper: 

 
Implicit citation (or simply citation): When a non-first-story 
document Dnf arrives, if Dnf mentions the same event as an existing 
first-story document D, we say that D is cited by Dnf once. 
 
Intuitively, to minimize the loss in detection accuracy, we need to 
keep in memory the information of those documents that will be 
cited by a large number of documents in the future. If we treat 
memory as a cache and citations as cache hits, this becomes a cache 
management problem. Hence, we can use a traditional cache 
management algorithm such as LRU to manage all the saved 
documents in memory. We will compare the LRU policy with the 
following policies in Section 8.2: 
Random policy: Randomly remove the information of saved 
documents from memory. 
Time policy: Always remove the information of the oldest 
documents from memory. 
 

6.  USER INTERFACE ISSUES 
In this section, we discuss the user interface issues. 
 

6.1 Output Load Shedding 
In practice, the processing rate of the consumer can be slower 

than the output rate of the ONED system, particularly when a burst 
of first-story documents arrive. In this case, some documents need 
to be dropped from the output queue Qo so that the consumer will 
not become overloaded. The output load shedding component 
strives to minimize this impact by dropping less important 
documents from Qo. 

Intuitively, the importance of a document D is measured by the 
importance of the event E mentioned by D, and the importance of E 
is related to the number of documents mentioning E. We use the 
following method to judge the importance of a first-story document 
D. The total number of citations that D have received so far and will 
receive in the future is called the final citation number of D, which 
is denoted as Cfinal(D) and reflects the importance of D. As a 
companion concept, the number of citations that D have received so 
far is called the current citation number of D, which is denoted as 
Ccurrent(D). 

The main idea of our output load shedding method is as follows. 
To avoid overwhelming the consumer, the size of the output queue 
Qo is fixed. Documents are removed from Qo when they are 
consumed by the consumer. When Qo becomes full, some document 
must be dropped from Qo before a new document can be inserted 
into Qo. Intuitively, for the documents in Qo, their current citation 
numbers partially reflect their importance. Hence, we keep track of 
the current citation numbers of the documents in Qo. One naive 
policy is to drop from Qo those documents with small current 
citation numbers. This policy, however, is unfair. Newly arrived 
documents tend to have small current citation numbers but they can 
be important if they will receive a large number of citations in the 
future. Thus, it is not desirable to always drop newly arrived 
documents in favor of those documents that arrived a long time ago. 
To address this problem, Qo is split into two parts: the new part 
Qo_new and the old part Qo_old. A newly arrived document D first 
stays in Qo_new to accumulate citations. When D moves from Qo_new 
to Qo_old, its current citation number has become close to its final 
citation number and can roughly reflect its importance. Documents 
in Qo_old with small current citation numbers are considered as less 
important and thus the candidates to be dropped from Qo. 

The concrete output load shedding method works as follows. For 
each document in the output queue Qo, we use a counter to keep 
track of its current citation number. When a document D is first 
inserted into Qo, D’s counter is initialized to zero. As described in 
Section 2, when a new document Dnew arrives at the ONED system, 
Dnew is compared with the saved documents in memory. If the 
similarity value between Dnew and a saved document Dold is above 
the threshold T, Dnew is predicted to mention the same event as Dold. 
That is, Dold is cited by Dnew once. In this case, if Dold still exists in 
Qo, Dold’s counter is incremented by one. 

The resource utilization method described in Section 5.2 is 
revised slightly. The documents in the output queue Qo is a subset 
of the saved documents in memory. When memory overflows, the 
information about the documents in Qo is never removed from 
memory, as this information is needed to keep track of the current 
citation numbers of the documents in Qo. 

The output queue Qo can hold at most N documents, where N is a 
constant specified by the consumer of the ONED system. Qo 
contains two parts: the new part Qo_new and the old part Qo_old. Qo_new 



 

is a FIFO queue and can hold at most p×N documents, where p is a 
predetermined constant ( 10 ≤≤ p ). Qo_old can hold at most (1-p)×N 
documents. All the documents in Qo_old are sorted in ascending 
order of their current citation numbers. The optimal value of p 
depends on both N and the document set. It can be determined using 
a training document set that has similar characteristics as the actual 
document set. Each time a first-story document D is identified, D is 
inserted into Qo_new. If Qo_new is full, the oldest document in Qo_new is 
moved to Qo_old. If Qo_old becomes full, the document in Qo_old that 
has the smallest current citation number is dropped. 

Note that it is not desirable to use the LRU algorithm to manage 
Qo_old, because our optimization criterion is the citation number 
rather than the cache hit ratio. LRU can incorrectly drop the 
documents with large citations numbers if their last citations 
happened a long time ago. Our key observation is that a good policy 
should consider both document arrival time and current citation 
number. Our algorithm is one of the policies that consider these two 
factors. We leave it as a subject for future work to investigate other 
alternatives. 
 
6.2 Document Ranking 

When presenting results to the consumer, the document ranking 
component can sort the documents in the output queue according to 
a criterion different from that used in the output load shedding 
method. This allows the consumer to process the desired documents 
first. 

For this purpose, we keep a pointer queue Qr (the subscript r 
stands for rearrangement) that contains N pointers. Each pointer 
links to a different document in the output queue Qo. These pointers 
are sorted according to the policy that is specified by the document 
ranking component. Documents in Qo are presented to the consumer 
in the order that their pointers are sorted in Qr. 

The document ranking policy depends on the concrete 
requirement of the consumer. One policy is to sort all the pointers in 
Qr in ascending order of the corresponding documents’ arrival time. 
Consequently, the consumer always processes the oldest document 
first. 

A second policy is to sort all the pointers in Qr in descending 
order of the corresponding documents’ importance (i.e., current 
citation numbers) so that the consumer can see the currently-most-
important document first. This policy may introduce starvation, as 
documents that arrive later and quickly accumulate a large number 
of citations can always jump ahead of a document that arrived 
earlier but does not receive citations any more. 

One solution to address this problem is to break Qr into two 
queues: the new queue Qr_new and the old queue Qr_old, as shown in 
Figure 5. All the pointers in Qr_new are sorted in descending order of 
the current citation numbers of the corresponding documents. All 
the pointers in Qr_old are sorted in ascending order of the arrival time 
of the corresponding documents. When a document D is first 
inserted into the output queue Qo, the pointer to D is in Qr_new. After 
D has stayed in Qo for a certain amount of time Tc, where Tc is a 
constant specified by the consumer, the pointer to D is moved to Qr-

_old. Both the currently-most-important document (with the largest 
current citation number) whose pointer is in Qr_new and the oldest 
document whose pointer is in Qr_old are presented to the consumer 
simultaneously. The consumer determines which of these two 
documents to process first. This gives the oldest documents in Qo a 
chance of being seen by the consumer rather than getting starved. 

 
 

 
 
 
 
 
 
 
 
 

Figure 5. One arrangement of the output queue Qo. 
 
7.  RANKING DOCUMENT SOURCES 

For many applications, it is desirable to know the importance of 
document sources [12]. For example, due to its limited processing 
power, a system may only want to process documents from those 
importance sources rather than all the available sources. In this 
section, we describe a document source ranking algorithm. The 
source ranking component uses this algorithm and the information 
generated by the ONED component to compute the importance of 
document sources. 

Intuitively, a document source is important if it is often the first 
source to report important events. An important event is mentioned 
by a large number of documents. Hence, a document source is 
important if it emits a large number of first-story documents, and 
many of these first-story documents are frequently cited by the 
other documents. Our key observation is that the citations among 
documents create implicit “links” among document sources. In 
other words, the citations among documents can be merged together 
to obtain linking relationships among document sources. Then a 
PageRank-style algorithm [25] can be used to compute the 
importance of document sources. Note that PageRank and other 
similar algorithms [20, 25] use explicit links among web pages to 
compute the importance of web pages, whereas our algorithm uses 
automatically created, implicit links to compute document source 
importance. 

 
 
 
 
 
 
 
 

Figure 6. Three document sources citing each other. 
 

The concrete document source ranking algorithm works as 
follows. Suppose there are n document sources: S1, S2, …, and Sn. 
We keep a matrix An×n. Initially, ∀i, j ( ni ≤≤1 , nj ≤≤1 ): 

0, =jiA . Each time the ONED system discovers that a document 

from source Si ( ni ≤≤1 ) cites a document from source Sj 
( nj ≤≤1 ), 

jiA ,
 is incremented by one. That is, 

jiA ,
 is the 

number of times that Si cites Sj, as shown in Figure 6. Matrix Bn×n is 
a normalized version of An×n in the sense that each row of B sums to 
one. That is,  

∑
=

=
n

k
kijiji AAB

1
,,,

.  

Bi, j represents the fraction of Si’s citations that go to Sj. 
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Figure 7. Normalized detection cost 
vs. W . 
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Figure 8. System throughput vs. W . 

0

200

400

600

800

1000

1200

1 6 11 16 21 26 31 36 41 46
W  (days)

sy
st

em
 th

ro
ug

hp
ut

 
(#

do
cs

/s
ec

on
d)

T=100
T=80
T=60

Let Rn be the importance column vector of all the n document 
sources. That is, Ri ( ni ≤≤1 ) represents the importance of source Si. 
Intuitively, if a source Si ( ni ≤≤1 ) is important, the source Sj 
( nj ≤≤1 ) that Si frequently cites is also important. Also, the 
importance of a source is influenced by the importance of other 
sources according to the citation frequencies. If we regard Bi, j as the 
proportion of Si’s importance that contributes to the importance of 
Sj, we have  

∑
=

×=
n

j
ijji BRR

1
,

.  

In matrix form, this is  
RBR T ×= .  

Hence, R is the dominant eigenvector of BT that corresponds to 
eigenvalue one. 

In general, to ensure that matrix B is ergodic, we can use a 
method similar to the random surfer model in the PageRank 
algorithm [25] so that ∀i, j ( ni ≤≤1 , nj ≤≤1 ): Bi, j≠0. Then R is 
guaranteed to be computable using a power method [25]. The 
computation of R only needs to be performed periodically whereas 

jiA ,
’s need to be updated continuously. This allows us to keep 

track of the changes in source importance without incurring much 
computation overhead. 

 
8.  PERFORMANCE EVALUATION 

We implemented a prototype of our framework on top of IBM’s 
SPC stream processing middleware [17]. Our implementation uses 
two processing elements (PEs) that consume and produce streams 
of data through input and output ports, respectively. One PE 
produces the document stream and sends it to another PE that 
implements ONED. To the best of our knowledge, this is the first 
implementation of a real application in a large-scale stream 
processing system. 

The latest TDT5 benchmark [34] was used to evaluate the 
performance of our techniques. This standard benchmark for NED 
contains 278,109 pieces of news that came from seven news 
agencies between April and September 2003. These news agencies 
include Associated Press, Agence France Presse, Xinhua, New 
York Times, Ummah, LA Times/Washington Post, and CNN. Each 
news source is treated as a news stream. Our measurements were 
performed on two computers, each with one 1.6GHz processor, 
1GB main memory, one 75GB disk, and running Linux. 

For an ONED system, the miss probability Pmiss is the probability 
that a first-story document is incorrectly predicted as a non-first-
story document. The false alarm probability PFA is the probability 
that a non-first-story document is incorrectly predicted as a first-
story document. In TDT [34], the performance of an ONED system 
is measured in terms of the normalized detection cost CDet that is 
defined as follows:  

)}1(,min{
)1(

argarg

argarg

ettFAettMiss

ettFAFAettMissMiss
Det PCPC

PPCPPC
C

−××

−××+××
= ,  

where CMiss=1 and CFA=0.1 are preset costs. Ptarget=0.02 is the a 
priori probability of a target (i.e., first-story document). The smaller 
the normalized detection cost, the better the quality of the 
predictions made by an ONED system. 

 
8.1 Techniques for Improving Efficiency 

In this section, we evaluate the performance of our techniques for 
improving efficiency. Our techniques use a few parameters. The 

default parameter values are as follows: T=100 (the threshold for 
similarity value), W=29 (the sliding window size in days), K=250 
(the number of top terms kept in each saved document), and M=10 
(the number of top terms used for pre-filtering purpose). We 
perform a sensitivity analysis, using a set of experiments to evaluate 
the impact of parameter values on the quality of the predictions 
made by the ONED system and the document processing speed. In 
each experiment, we varied the value of one parameter while 
keeping the other parameters unchanged. In all these experiments, 
the memory was always large enough to hold all the identified first-
story documents in the last W days. 
 
W (Sliding Window Size) 

 
 
 
 
 
 
 
 
 
 
The first experiment concerns W, the size of the sliding window. 

Only old documents within the last W days are saved. The default 
value of W is 29. We varied W from 1 to 46. Figure 7 shows the 
impact of W on the normalized detection cost. (Note: to make 
figures in Section 8 more readable, the y-axis does not always start 
from zero.) If W is too large, many old, useless documents are saved. 
This makes it difficult to correctly identify the first-story documents. 
If W is too small, not enough old documents are saved to conserve 
useful information. Hence, many non-first-story documents are 
incorrectly predicted as first-story documents. Especially, there is a 
big jump of the normalized detection cost when W changes from 2 
to 1, as a large number of events are reported within two 
consecutive days but not in a single day. The normalized detection 
cost reaches its smallest value when W=29 and becomes larger as W 
deviates from 29. The safe range for W is between 24 and 32. When 
W is within this range, our method can make good predictions. 

Figure 8 shows the impact of W on the throughput of our ONED 
system. This throughput is measured by the number of documents 
that can be processed per second, where each piece of news is a 
document. The larger the W, the more documents are saved and the 
more old documents are included for comparison with the incoming 
new documents. Hence, the system throughput decreases as W 
increases. 

 
 
 
 
 
 
 
 
 
 
 



 

Figure 9. Normalized detection cost 
vs. T . 

0.6

0.7

0.8

0.9

1.0

1.1

40 60 80 100 120 140 160
T

no
rm

al
iz

ed
 d

et
ec

tio
n 

co
st

W=29
W=26
W=20

Figure 10. System throughput vs. T . 
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Figure 11. Normalized detection cost 
vs. K . 
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Figure 13. System throughput vs. M . 
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Figure 12. Normalized detection cost 
vs. M . 
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T (Threshold for Similarity Value) 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second experiment concerns the threshold T for the similarity 

value. The default value of T is 100. We varied T from 40 to 160. 
Figure 9 shows the impact of T on the normalized detection cost. If 
T is too small, many first-story documents are incorrectly predicted 
as non-first-story documents and thus the false alarm probability is 
large. If T is too large, many non-first-story documents are 
incorrectly predicted as first-story documents and thus the miss 
probability is large. The normalized detection cost reaches its 
smallest value when T=100 and becomes larger as T deviates from 
100. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 shows the impact of T on the throughput of our ONED 

system. The larger the T, the more documents are predicted and 
saved as first-story documents, and the more old documents are 
included for comparison with the incoming new documents. Hence, 
the document processing speed decreases as T increases. 
 
K (Number of Top Terms Kept in Each Saved Document) 

The third experiment concerns K, the number of top terms kept in 
each saved document. The default value of K is 250. We varied K 
from 50 to 400. Figure 11 shows the impact of K on the normalized 
detection cost. If K is too small, not enough information is captured 
in the computed similarity values and the detection accuracy will 
degrade. Hence, the normalized detection cost increases as K 
decreases. After K becomes larger than 100, the detection accuracy 
is not very sensitive to the value of K. When K≥250, the computed 
similarity values have captured enough information and increasing 
K more does not help much in improving the normalized detection 
cost. 
M (Number of Top Terms Used for Pre-filtering) 

The fourth experiment concerns M, the number of top terms used 
for pre-filtering. The default value of M is 10. We varied M from 3 
to 25. Figure 12 shows the impact of M on the normalized detection 
cost. If M is too small, many old, relevant documents are not 
included for comparison with the incoming new documents. Hence, 
many first-story documents are incorrectly filtered out as non-first-

story documents. If M is too large, many old, useless documents are 
compared with the incoming new documents. This makes it difficult 
to correctly identify the first-story documents. The normalized 
detection cost reaches its smallest value when M=10 and becomes 
larger as M deviates from 10. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 13 shows the impact of M on the throughput of our ONED 

system. The larger the M, the more old documents are included for 
comparison with the incoming new documents. Hence, the 
document processing speed decreases as M increases. 

Using our techniques for improving efficiency, it takes 684 
seconds (less than 12 minutes) to process all the documents in the 
TDT5 data set. In contrast, the baseline system described in Section 
2 uses 285,908 seconds (more than three days) to process all the 
documents in the TDT5 data set. Compared to the baseline system, 
our techniques improve the efficiency by two orders of magnitude 
(418 times). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the TDT5 competition, among all the participants, Stottler 

Henke Associates Inc. achieved the best normalized detection cost 
0.7155 [8]. Using the default parameter values, our prototype 
achieves a normalized detection cost of 0.758. This number is only 
slightly (0.758/0.7155-1=6%) worse than the best result in the 
TDT5 competition. 



 

Figure 15. Normalized detection cost 
vs. q .
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Figure 14. Normalized detection cost vs. u .
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In summary, with a minor degradation in detection accuracy, our 
method can significantly increase the document processing rate. 
Each parameter has a not-very-small safe range, within which our 
method can make good predictions. That is, the quality of the 
predictions is insensitive to parameter changes. However, when the 
parameter value is outside of this safe range, the quality of the 
predictions will degrade. 
 
8.2 Resource-Adaptive Computation 

In this section, we evaluate the performance of our resource-
adaptive computation algorithms.  
 
CPU-Bound Case 

Let Rarrival denote the document arrival rate, and Tmax denote the 
maximum throughput of the ONED system when the default 
parameter values of our techniques are used. The load factor is 
defined as u=Rarrival/Tmax. The ONED system is overloaded when 
u>1. In our ONED system, the input queue Qi can hold at most 
V=100 documents. (The results for other values of V are similar and 
hence omitted.) 

We varied the load factor u from 100% to 170%. Figure 14 
shows the impact of u on the normalized detection cost for the five 
methods that improve throughput (see Section 5.1). Among these 
five methods, dropping new documents performs the worst. In most 
cases, adjusting W performs the best or close to the best. This is 
because among the three parameters W, T, and M, varying W tends 
to have the least impact on the normalized detection cost (see 
Figures 7, 9, and 12). 
 
Memory-Bound Case 

Let Mactual denote the number of identified first-story documents 
in the last W days that can be held in memory. That is, Mactual 
represents the memory size. In the TDT5 document set, at any time, 
our ONED system always identifies no more than Mfull=7,500 first-
story documents in the last W=29 days. (The TDT5 document set 
has only seven document sources. In a real world ONED system 
that monitors a large number of document sources, we would expect 
Mfull to be much larger than 7,500 and hence memory overflow is 
much more likely to occur.) q=Mactual/Mfull roughly reflects the 
portion of identified first-story documents in the last W days that 
can be held in memory. 

As mentioned in Section 5.2, when memory overflows, we can 
use the LRU algorithm, the random policy, or the time policy, to 
manage all the saved documents in memory. We varied q from 7% 
to 100%. Figure 15 shows the impact of q on the normalized 
detection cost. The smaller the memory, the less useful information 
can be held in memory and the worse the detection accuracy. Hence, 
the normalized detection cost increases as q decreases. It is natural 

that when q<100%, the LRU policy always works better than the 
other two policies. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Compared to random old documents, those documents that are 
very old are much less likely to mention the same event as the new 
document and thus removing their information from memory will 
have a smaller impact on the detection accuracy. Therefore, when 
q<100%, the time policy always works better than the random 
policy. When q is close to 100%, the performance difference among 
the three policies is minor. However, once q becomes less than 90%, 
the LRU policy exhibits significant performance advantages over 
the other two policies. 
 
8.3 Output Load Shedding 

In this section, we evaluate the performance of our output load 
shedding algorithm. Our algorithm uses two parameters. The 
default parameter values are as follows: N=1000 (the size of the 
output queue) and p=0.9 (the portion of Qo that is Qo_new). For the 
consumer of the ONED system, let r denote the ratio of its 
consuming rate to the output rate of the ONED system. In our tests, 
the default value of r is 0.5. 

Recall that Cfinal(D) denotes the final citation number of a first-
story document D. We define the importance of D as f(Cfinal(D)), 
where f(x) is a real non-decreasing function of x. We use the 
average importance value of the first-story documents that are 
processed by the consumer as the performance metric of an output 
load shedding policy. The larger the average importance value, the 
better the output load shedding policy. 

The method described in Section 6.1 uses two queues Qo_new and 
Qo_old and hence is called the two-queue policy. When the output 
queue Qo becomes full, we compare the two-queue policy with the 
following two policies: 
Random policy: Drop a random document from Qo. 
Time policy: Drop the oldest document from Qo. 

Two functions are used: f1(x)=x and f2(x)=ln(x+1). We perform a 
sensitivity analysis, using a set of experiments to evaluate the 
impact of parameter values on the average importance value. In 
each experiment, we varied the value of one parameter while 
keeping the other parameters unchanged. In all these experiments, 
the consumer always consumes the oldest document in the output 
queue first. (We also tested other consuming policies and the results 
are similar.) 
 
N (Size of the Output Queue) 
The first experiment concerns N, the size of the output queue. We 
varied N from 50 to 550. Figures 16 and 17 show the impact of N 
on the average importance value when functions f1(x) and f2(x) are 
used, respectively.  



 

Figure 16. Average importance value 
vs. N (f 1 (x)=x ).
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Figure 17. Average importance value 
vs. N (f 2 (x)=ln(x+1) ).
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Figure 18. Average importance value 
vs. r (f 1 (x)=x ).
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Figure 19. Average importance value vs. 
r (f 2 (x)=ln(x+1) ).
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Figure 20. Average importance value 
vs. p (f 1 (x)=x ).
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Figure 21. Average importance value 
vs. p (f 2 (x)=ln(x+1) ).
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When dropping documents from the output queue, neither the 
random policy nor the time policy considers the importance values 
of the documents and hence the dropped documents have random 
importance values. Thus, the random policy and the time policy 
have roughly the same performance, which is not influenced by N 
much. In contrast, the two-queue policy considers the importance 
values of the documents and performs much better than the other 
two policies. The larger the N, the more documents that the two-
queue policy can consider in making output load shedding decisions 
and hence the better the decisions. Thus, the average importance 
value of the two-queue policy increases with N. The above 
observations apply to both f1(x) and f2(x). 
 
r (Ratio of the Consuming Rate to the Output Rate) 

The second experiment concerns r, the ratio of the consumer’s 
consuming rate to the output rate of the ONED system. We varied r 
from 0.1 to 0.9. Figures 18 and 19 show the impact of r on the 
average importance value when functions f1(x) and f2(x) are used, 
respectively. Due to the same reason discussed above, the random 
policy and the time policy have roughly the same performance, 
which is not influenced by r much. The two-queue policy performs 
much better than the other two policies. The smaller the r, the fewer 
documents are consumed by the consumer of the ONED system and 
hence the more selective the two-queue policy can be in choosing 
these documents. Thus, the average importance value of the two-
queue policy increases as r decreases. 

 
p (Portion of Qo that is Qo_new) 

The third experiment concerns p, the portion of Qo that is Qo_new. 
In the two-queue policy, we varied the parameter p from 2% to 98%. 
Figures 20 and 21 show the impact of p on the average importance 
value when functions f1(x) and f2(x) are used, respectively. Due to 
the same reason discussed above, the random policy and the time 
policy have roughly the same performance, which is not influenced 
by p. The two-queue policy performs much better than the other 
two policies. When p is very small, Qo_new is small.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
Hence, a document does not have much chance to accumulate 
citations before it is moved to Qo_old. Then in Qo_old, young 
documents tend to have fewer citations than old documents and get 
dropped from the output queue first when the consumer is 
overloaded. This deteriorates the average importance value of the 
two-queue policy, as such young documents can be important ones 
if they will receive a lot of citations in the future. When p is very 
large, few documents are stored in Qo_old. Then the two-queue 
policy does not have many candidates to choose when making 
output load shedding decisions. This also deteriorates the quality of 
the decisions made by the two-queue policy. The average 
importance value of the two-queue policy reaches its maximum 
value when p=90% and decreases as p deviates from 90%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure 22. Highest rank of all the 
AP partitions vs. s . 
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8.4  Ranking Document Sources 
 

Table 1. Document source ranking. 
source rank eigenvalue 
Associated Press 1 1 
Agence France Presse 2 0.9912 
Xinhua 3 0.5568 
New York Times 4 0.1981 
Ummah 5 0.0586 
LA Times/Washington Post 6 0.0373 
CNN 7 0.0156 

 
In this section, we evaluate the performance of our document 

source ranking algorithm. The TDT5 document set has seven 
document sources. Table 1 shows the computed ranking of all these 
sources after the entire document set has been processed. All the 
sources are sorted in decreasing order of their eigenvalues. We 
acknowledge that ultimately the judgment of the importance of 
document sources is a subjective issue, just like the evaluation of 
Web page ranks provided by Google’s PageRank algorithm. 
Moreover, unlike some well-understood (but yet controversial) 
rankings such as school ranking, there is no authoritative ranking of 
international news agencies. Despite these difficulties in evaluation, 
we consider the computed source order reasonable and consistent 
with our real-world experience. Associated Press (AP) is the largest 
news agency in the world and has the highest rank. Agence France 
Presse is the third largest news agency in the world and ranked the 
second in the sorted list. Xinhua is the most authoritative news 
agency in P.R. China. It is often the first one in reporting important 
news related to China. As the world is gaining more and more 
interest in China, those news related to China are widely cited by 
the other news agencies. Hence, Xinhua is ranked the third among 
all the seven sources. Companies such as CNN are major players in 
the public media market but not the most important news agencies, 
because they employ few news reporters and produce only a low 
volume of news. Most news appearing on their media are purchased 
from other news agencies and not included in the TDT5 document 
set. Therefore, it is not surprising that these companies are ranked 
low in the sorted list. 

We performed a second experiment to show the effect that our 
computed document source ranking considers not only the number 
of first-story documents but also the number of citations received by 
a first-story document. In Table 1, AP is the most important 
document source. We split the AP documents into s equal-sized AP 
partitions and treat each partition as a separate document source. 
We compute a new ranking after replacing the original AP source 
with the s AP partitions. We varied s from 1 to 5. The results show 
that for a fixed s, all the AP partitions have similar (consecutive) 
ranks. Figure 22 shows the highest rank of all the AP partitions. The 
larger the s, the fewer first-story documents are emitted from an AP 
partition while the average number of citations received by a first-
story document remains the same. Hence, the highest rank of all the 
AP partitions drops gradually as s increases, which matches with 
our expectation. 

 
9. RELATED WORK 

ONED has been studied before [2, 3, 7, 11, 19, 21, 23, 29, 37, 38]. 
However, there is a gap between the existing ONED systems and a 
system that can be used in practice. This paper attempts to close this 
gap. 

 

 
 
 
 
 
 
 
 
 
 
 

Sentence-level novelty detection has been studied in the TREC 
Novelty Track [35] and [1, 4]. Zhang et al. [39] proposes 
performing NED in an information filtering environment. 
Extending our techniques to these two environments is an 
interesting area for future work. 

Bharat et al. [6, 9, 10, 14] consider the problem of finding near-
duplicate documents on the Web. In our case, we focus on finding 
documents that mention the same event and these documents are 
usually not near-duplicates of each other. 

Based on the real-time resource availability information, Arnt et 
al. [5] proposes dynamically composing the information retrieval 
techniques that are used to answer queries. In our case, when either 
memory overflows or the consumer of the ONED system is 
overloaded, those documents that are regarded as less important for 
detection or presentation purposes are thrown away. 

The output queue is a buffer between the ONED system and the 
consumer. Breaking a buffer into two parts has been proposed in the 
2Q buffer management algorithm [18]. 2Q focuses on improving 
buffer hit ratio while our output load shedding algorithm focuses on 
dropping less important documents. 

Tu et al. [40] use a control theory based approach to perform load 
shedding in data stream management systems. They treat all data 
tuples equally and the goal is to keep the average tuple processing 
delay below a threshold. In contrast, we explicitly differentiate the 
importance of documents and the goal is to minimize the loss in 
detection accuracy. 

Ranking news sources has been considered in Corso et al. [12]. 
The ranking method in Corso et al. [12] does not consider the 
arrival time of news. If two news sources S1 and S2 report the same 
set of news while S1 always reports before S2, the method in Corso 
et al. [12] will give the same rank to S1 and S2. In contrast, our 
document source ranking algorithm considers the timeliness that 
events are reported by document sources and will rank S1 higher 
than S2. 
 
10. CONCLUSION 

This paper proposes a comprehensive framework for online new 
event detection and improves an ONED system from four 
perspectives: efficiency, resource-adaptive computation, user 
interface, and document source ranking. We implemented a 
prototype of our framework on top of a stream processing 
middleware. Our experiments with the standard TDT5 benchmark 
show that the proposed techniques can improve the document 
processing rate by two orders of magnitude without sacrificing 
much detection accuracy. When resources are tight, our techniques 
can maximize the benefit that can be gained from the limited 
resources. When the consumer of the ONED system is overloaded, 



 

our techniques automatically drop less important documents and 
only present the most important ones to the consumer. Moreover, 
the computed importance ranking of document sources matches 
with our real world experience. 
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