
NetProbe: A Fast and Scalable System for Fraud Detection
in Online Auction Networks

Shashank Pandit, Duen Horng Chau, Samuel Wang, Christos Faloutsos ∗

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{shashank, dchau, samuelwang, christos}@cs.cmu.edu

ABSTRACT
Given a large online network of online auction users and
their histories of transactions, how can we spot anomalies
and auction fraud? This paper describes the design and
implementation of NetProbe, a system that we propose for
solving this problem. NetProbe models auction users and
transactions as a Markov Random Field tuned to detect the
suspicious patterns that fraudsters create, and employs a
Belief Propagation mechanism to detect likely fraudsters.
Our experiments show that NetProbe is both efficient and
effective for fraud detection. We report experiments on syn-
thetic graphs with as many as 7,000 nodes and 30,000 edges,
where NetProbe was able to spot fraudulent nodes with over
90% precision and recall, within a matter of seconds. We
also report experiments on a real dataset crawled from eBay,
with nearly 700,000 transactions between more than 66,000
users, where NetProbe was highly effective at unearthing
hidden networks of fraudsters, within a realistic response
time of about 6 minutes. For scenarios where the under-
lying data is dynamic in nature, we propose Incremental

NetProbe, which is an approximate, but fast, variant of Net-
Probe. Our experiments prove that Incremental NetProbe
executes nearly doubly fast as compared to NetProbe, while
retaining over 99% of its accuracy.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

General Terms
Algorithms

Keywords
Fraud detection, Bipartite cores, Markov random fields, Be-
lief propagation

∗This material is based upon work supported by the National
Science Foundation under Grants No. IIS-0326322 IIS-0534205.
This work is also supported in part by the Pennsylvania Infras-
tructure Technology Alliance (PITA), an IBM Faculty Award, a
Yahoo Research Alliance Gift, with additional funding from Intel,
NTT and Hewlett-Packard. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
National Science Foundation, or other funding parties.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

.

Application Server
Runs algorithms to spot suspicious

patterns in auction graph.

Crawler Agents
2-tier parallelizable. Multiple
agents with multiple threads

to download auction data.

Data Master
Maintain centralized queue to

avoid redundant crawlling.

User Queries Trustworthiness of "Alisher"
User enters the user ID "Alisher" into a Java applet that talks
to the server, which sends assessment results in an XML file.

The applet interprets and visualizes suspicious networks.

Online Auction Site
Auction data modelled as graph
Nodes: users
Edges: transactions

. . .

XML

NetProbe

Figure 1: Overview of the NetProbe system

1. INTRODUCTION
Online auctions have been thriving as a business over the

past decade. People from all over the world trade goods
worth millions of dollars every day using these virtual mar-
ketplaces. EBay1, the world’s largest auction site, reported a
third quarter revenue of $1,449 billion, with over 212 million
registered users [6]. These figures represent a 31% growth in
revenue and 26% growth in the number of registered users
over the previous year. Unfortunately, rapid commercial
success has made auction sites a lucrative medium for com-
mitting fraud. For more than half a decade, auction fraud
has been the most prevalent Internet crime. Auction fraud
represented 63% of the complaints received by the Federal
Internet Crime Complaint Center last year. Among all the
monetary losses reported, auction fraud accounted for 41%,
with an average loss of $385 [10].

Despite the prevalence of auction frauds, auctions sites
have not come up with systematic approaches to expose
fraudsters. Typically, auction sites use a reputation based
framework for aiding users to assess the trustworthiness of

1http://www.ebay.com

each other. However, it is not difficult for a fraudster to
manipulate such reputation systems. As a result, the prob-
lem of auction fraud has continued to worsen over the past
few years, causing serious concern to auction site users and
owners alike.

We therefore ask ourselves the following research ques-
tions - given a large online auction network of auction users
and their histories of transactions, how do we spot fraud-
sters? How should we design a system that will carry out
fraud detection on auction sites in a fast and accurate man-
ner?

In this paper, we propose NetProbe a system for fraud de-
tection in online auction sites (Figure 1). NetProbe is a sys-
tem that systematically analyzes transactions within users
of auction sites to identify suspicious networks of fraudsters.
NetProbe allows users of an online auction site to query the
trustworthiness of any other user, and offers an interface to
visually explains the query results. In particular, we make
the following contributions through NetProbe:

• First, we propose data models and algorithms based
on Markov Random Fields and belief propagation to
uncover suspicious networks hidden within an auction
site. We also propose an incremental version of Net-
Probe which performs almost twice as fast in dynamic
environments, with negligible loss in accuracy.

• Second, we demonstrate that NetProbe is fast, accu-
rate, and scalable, with experiments on large synthetic
and real datasets. Our synthetic datasets contained
as many as 7,000 users with over 30,000 transactions,
while the real dataset (crawled from eBay) contains
over 66,000 users and nearly 800,000 transactions.

• Lastly, we share the non-trivial design and implemen-
tation decisions that we made while developing Net-
Probe. In particular, we discuss the following con-
tributions: (a) a parallelizable crawler that can effi-
ciently crawl data from auction sites, (b) a centralized
queuing mechanism that avoids redundant crawling,
(c) fast, efficient data structures to speed up our fraud
detection algorithm, and (d) a user interface that visu-
ally demonstrates the suspicious behavior of potential
fraudsters to the end user.

The rest of this paper is organized as follows. We begin by
reviewing related work in Section 2. Then, we describe the
algorithm underlying NetProbe in Section 3 and explain how
it uncovers dubious associations among fraudsters. We also
discuss the incremental variant of NetProbe in this section.
Next, in Section 4, we report experiments that evaluate Net-
Probe (as well as its incremental variant) on large real and
synthetic datasets, demonstrating NetProbe’s effectiveness
and scalability. In Section 5, we describe NetProbe’s full
system design and implementation details. Finally, we sum-
marize our contributions in Section 6 and outline directions
for future work.

2. RELATED WORK
In this section, we survey related approaches for fraud

detection in auction sites, as well as the literature on rep-
utation systems that auction sites typically use to prevent
fraud. We also look at related work on trust and authority
propagation, and graph mining, which could be applied to
the context of auction fraud detection.

Efforts from the Mass. In the past, attempts have been
made to help people identify potential fraudsters. How-
ever, most of them are “common sense” approaches, rec-
ommended by a variety of authorities such as newspapers
articles [20], law enforcement agencies [8], or even from auc-
tion sites themselves [7]. These approaches usually suggest
that people be cautious at their end and perform background
checks of sellers that they wish to transact with. Such sug-
gestions however, require users to maintain constant vigi-
lance and spend a considerable amount of time and effort in
investigating potential dealers before carrying out a trans-
action.

To overcome this difficulty, self-organized vigilante orga-
nizations are formed, usually by auction fraud victims them-
selves, to expose fraudsters and report them to law enforce-
ment agencies [1]. Unfortunately, such grassroot efforts are
insufficient for regulating large-scale auction fraud, moti-
vating the need for a more systematic approach to solve the
auction fraud problem.

Auction Fraud and Reputation Systems. Reputa-
tion systems are used extensively by auction sites to pre-
vent fraud. But they are usually very simple and can be
easily foiled. In an overview, Resnick et al. [17] summa-
rized that modern reputation systems face many challenges
which include the difficulty to elicit honest feedback and to
show faithful representations of users’ reputation. Despite
their limitations, reputation systems have had a significant
effect on how people buy and sell. Melnik et al. [13] and
Resnick et al. [18] conducted empirical studies which showed
that selling prices of goods are positively affected by the
seller’s reputation, implying people feel more confident to
buy from trustworthy sources. In summary, reputation sys-
tems might not be an effective mechanism to prevent fraud
because fraudsters can easily trick these systems to manip-
ulating their own reputation.

Chua et al. [5] have categorized auction fraud into differ-
ent types, but they did not formulate methods to combat
them. They suggest that an effective approach to fight auc-
tion fraud is to allow law enforcement and auction sites to
join forces, which unfortunately can be costly from both
monetary and managerial perspectives.

In our previous work, we explored a classification-based
fraud detection scheme [3]. We extracted features from auc-
tion data to capture fluctuations in sellers’ behaviors (e.g.,
selling numerous expensive items after selling very few cheap
items). This method, though promising, warranted fur-
ther enhancement because it did not take into account the
patterns of interaction employed by fraudsters while deal-
ing with other auction users. To this end, we suggested a
fraud detection algorithm by identifying suspicious networks
amongst auction site users [4]. However, the experiments
were reported over a tiny dataset, while here we report an
in-depth evaluation over large synthetic and real datasets,
along with fast, incremental computation techniques.

Trust and Authority Propagation. Authority propa-
gation, an area closely related to fraud detection, has been
studied extensively in the context of Web search. PageR-
ank [2] and HITS [11] treat a Web page as “important” if
other “important” pages point to it. In effect, they prop-
agate the importance of pages over hyperlinks connecting
them. Trust propagation was used by TrustRank [9] to de-

tect Web spam. Here, the goal was to distinguish between
“good” and “bad” sites (e.g, phishers, sites with adult con-
tent, etc). Also related is the work by Neville et al. [14,
15], which aggregates features across nodes in a graph for
classification of movie and stock databases. None of these
techniques however, explicitly focuses on fraud detection.

Graph Mining: Remotely related is the work on graph
mining, with (fascinating) discoveries about the Web graph
topology [12], Internet topology [19], and fast algorithms
to search and mine for specific, or frequent graph patterns
(e.g., gSpan [22], the GraphMiner system [21] and related
algorithms [16, 23, 25]). None of these techniques focuses
on a systematic way to do large-scale, online auction fraud
detection, which is the focus of our work.

3. NetProbe: PROPOSED ALGORITHMS
In this section, we present NetProbe’s algorithm for de-

tecting networks of fraudsters in online auctions. The key
idea is to infer properties for a user based on properties of
other related users. In particular, given a graph represent-
ing interactions between auction users, the likelihood of a
user being a fraudster is inferred by looking at the behavior
of its immediate neighbors . This mechanism is effective at
capturing fraudulent behavioral patterns, and affords a fast,
scalable implementation (see Section 4).

We begin by describing the Markov Random Field (MRF)
model, which is a powerful way to model the auction data
in graphical form. We then describe the Belief Propagation

algorithm, and present how NetProbe uses it for fraud detec-
tion. Finally, we present an incremental version of NetProbe
which is a quick and accurate way to update beliefs when
the graph topology changes.

3.1 The Markov Random Field Model
MRFs are a class of graphical models particularly suited

for solving inference problems with uncertainty in observed
data. MRFs are widely used in image restoration problems
wherein the observed variables are the intensities of each
pixel in the image, while the inference problem is to identify
high-level details such as objects or shapes.

A MRF consists of an undirected graph, each node of
which can be in any of a finite number of states. The state
of a node is assumed to statistically depend only upon each
of its neighbors, and independent of any other node in the
graph 2. The dependency between a node and its neighbors
is represented by a Propagation Matrix (ψ), where ψ(i, j)
equals the probability of a node being in state j given that
it has a neighbor in state i.

Given a particular assignment of states to the nodes in a
MRF, a likelihood of observing this assignment can be com-
puted using the propagation matrix. Typically, the problem
is to infer the maximum likelihood assignment of states to
nodes, where the correct states for some of the nodes are
possibly known before hand. Naive computation through
enumeration of all possible state assignments is exponential
in time. Further, there is no method known which can be
theoretically proved to solve this problem for a general MRF.
Therefore, in practice, the above problem is solved through
heuristic techniques. One particularly powerful method is
the iterative message passing scheme of belief propagation.

2The general MRF model is much more expressive than dis-
cussed here. For a more comprehensive discussion, see [24].

Symbol Definition
S set of possible states
bi(σ) belief of node i in state σ
ψ(i, j) (i, j)th entry of the Propagation Matrix
mij message sent by node i to node j

Table 1: Symbols and definitions

This method, although provably correct only for a restricted
class of MRFs, has been shown to perform extremely well for
general MRFs occurring in a wide variety of disciplines (e.g.,
error correcting codes, image restoration, factor graphs, and
particle physics 3). Next, we describe how belief propagation
solves the above inference problem for general MRFs.

3.2 The Belief Propagation Algorithm
As mentioned before, belief propagation is an algorithm

used to infer the maximum likelihood state probabilities of
nodes in a MRF, given a propagation matrix and possibly a
prior state assignment for some of the nodes. In this section,
we describe how the algorithm operates over general MRFs.

We denote vectors in bold font, and scalars in normal font.
For any vector v, v(k) denotes its kth component. The set
of possible states a node can be in is represented by S. For
a node n, the probability of n being in state σ is called the
belief of n in state σ, and is denoted by bn(σ). Table 1 lists
the symbols and their definitions used in this section.

Belief propagation functions via iterative message passing
between nodes in the network. Let mij denote the message
that node i passes to node j. mij represents i’s opinion
about the belief of j. At every iteration, each node i com-
putes its belief based on messages received from its neigh-
bors, and uses the propagation matrix to transform its belief
into messages for its neighbors. Mathematically,

mij(σ) ←
X

σ′

ψ(σ′
, σ)

Y

n∈N(i)\j

mni(σ
′) (1)

bi(σ) ← k
Y

j∈N(i)

mji(σ) (2)

where mij is the message vector sent by node i to j
N(i) is the set of nodes neighboring i

k is a normalization constant
Starting with a suitable prior on the beliefs of the nodes,

belief propagation proceeds by iteratively passing messages
between nodes based on previous beliefs, and updating be-
liefs based on the passed messages 4. The iteration is stopped
when the beliefs converge (within some threshold), or a max-
imum limit for the number of iterations is exceeded. Al-
though convergence is not guaranteed theoretically, in prac-
tice the algorithm has been observed to converge quickly to
reasonably accurate solutions.

3.3 NetProbe for Online Auctions

3For an excellent discussion on belief propagation and its
generalizations to various problems, see [24].
4In case there is no prior knowledge available, each node is
initialized to an unbiased state (i.e., it is equally likely to be
in any of the possible states), and the initial messages are
computed by multiplying the propagation matrix with these
initial, unbiased beliefs.

Figure 2: A sample execution of NetProbe. Red triangles represent fraudsters, yellow diamonds represent
accomplices, white ellipses represent honest nodes, while gray rounded rectangles represent unbiased nodes.

We now describe how NetProbe utilizes the MRF model-
ing to solve the fraud detection problem.

Transactions between users are modeled as a graph, with
a node for each user and an edge for one (or more) trans-
actions between two users. As is the case with hyper-links
on the Web (where PageRank [2] posits that a hyper-link
confers authority from the source page to the target page),
an edge between two nodes in an auction network can be
assigned a definite semantics, and can be used to propagate
properties from one node to its neighbors. For instance, an
edge can be interpreted as an indication of similarity in be-
havior — honest users will interact more often with other
honest users, while fraudsters will interact in small cliques
of their own (to mutually boost their credibility). This se-
mantics is very similar in spirit to that used by TrustRank
[9], a variant of PageRank used to combat Web spam. Un-
der this semantics, honesty/fraudulence can be propagated
across edges and consequently, fraudsters can be detected by
identifying relatively small and densely connected subgraphs
(near cliques).

However, our previous work [4] suggests that fraudsters
do not form such cliques. There are several reasons why
this might be so:

• Auction sites probably use techniques similar to the
one outlined above to detect probable fraudsters and
void their accounts.

• Once a fraud is committed, an auction site can eas-
ily identify and void the accounts of other fraudsters
involved in the clique, destroying the “infrastructure”
that the fraudster had invested in for carrying out the

fraud. To carry out another fraud, the fraudster will
have to re-invest efforts in building a new clique.

Instead, we uncovered a different modus operandi for fraud-
sters in auction networks, which leads to the formation of
near bipartite cores. Fraudsters create two types of identities
and arbitrarily split them into two categories – fraud and ac-

complice. The fraud identities are the ones used eventually
to carry out the actual fraud, while the accomplices exist
only to help the fraudsters carry out their job by boost-
ing their feedback rating. Accomplices themselves behave
like perfectly legitimate users and interact with other honest
users to achieve high feedback ratings. On the other hand,
they also interact with the fraud identities to form near bi-
partite cores, which helps the fraud identities gain a high
feedback rating. Once the fraud is carried out, the fraud
identities get voided by the auction site, but the accomplice
identities linger around and can be reused to facilitate the
next fraud.

We model the auction users and their mutual transactions
as a MRF. A node in the MRF represents a user, while
an edge between two nodes denotes that the corresponding
users have transacted at least once. Each node can be in
any of 3 states — fraud, accomplice, and honest.

To completely define the MRF, we need to instantiate the
propagation matrix. Recall that an entry in the propaga-
tion matrix ψ(σ, σ′) gives the likelihood of a node being in
state σ′ given that it has a neighbor in state σ. A sam-
ple instantiation of the propagation matrix is shown in Ta-
ble 2. This instantiation is based on the following intuition:
a fraudster tends to heavily link to accomplices but avoids

Node state

Neighbor state Fraud Accomplice Honest

Fraud εp 1− 2εp εp

Accomplice 0.5 2εp 0.5− 2εp

Honest εp (1− εp)/2 (1 − εp)/2

Table 2: Instantiation of the propagation matrix for
fraud detection. Entry (i, j) denotes the probability
of a node being in state j given that it has a neighbor
in state i.

linking to other bad nodes; an accomplice tends to link to
both fraudsters and honest nodes, with a higher affinity for
fraudsters; a honest node links with other honest nodes as
well as accomplices (since an accomplice effectively appears
to be honest to the innocent user.) In our experiments, we
set εp to 0.05. Automatically learning the correct value of
εp as well as the form of the propagation matrix itself would
be valuable future work.

3.4 NetProbe: A Running Example
In this section, we present a running example of how Net-

Probe detects bipartite cores using the propagation matrix
in Table 2. Consider the graph shown in Figure 2. The
graph consists of a bipartite core (nodes 7, 8, . . . , 14) mingled
within a larger network. Each node is encoded to depict its
state — red triangles indicate fraudsters, yellow diamonds
indicate accomplices, white ellipses indicate honest nodes,
while gray rounded rectangles indicate unbiased nodes (i.e.,
nodes equally likely to be in any state.)

Each node is initialized to be unbiased, i.e., it is equally
likely to be fraud, accomplice or honest. The nodes then
iteratively pass messages and affect each other’s beliefs. No-
tice that the particular form of the propagation matrix we
use assigns a higher chance of being an accomplice to every
node in the graph at the end of the first iteration. These
accomplices then force their neighbors to be fraudsters or
honest depending on the structure of the graph. In case of
bipartite cores, one half of the core is pushed towards the
fraud state, leading to a stable equilibrium. In the remaining
graph, a more favorable equilibrium is achieved by labeling
some of the nodes as honest.

At the end of execution, the nodes in the bipartite core
are neatly labeled as fraudsters and accomplices. The key
idea is the manner in which accomplices force their partners
to be fraudsters in bipartite cores, thus providing a good
mechanism for their detection.

3.5 Incremental NetProbe
In a real deployment of NetProbe, the underlying graph

corresponding to transactions between auction site users,
would be extremely dynamic in nature, with new nodes
(i.e., users) and edges (i.e., transactions) being added to
it frequently. In such a setting, if one expects an exact an-
swer from the system, NetProbe would have to propagate
beliefs over the entire graph for every new node/edge that
gets added to the graph. This would be infeasible in sys-
tems with large graphs, and especially for online auction
sites where users expect interactive response times.

Intuitively, the addition of a few edges to a graph should
not perturb the remaining graph by a lot (especially dis-
connected components.) To avoid wasteful recomputation
of node beliefs from scratch, we developed a mechanism to

Figure 3: An example of Incremental NetProbe.
Red triangles represent fraudsters, yellow diamonds
represent accomplices, white ellipses represent hon-
est nodes, while gray rounded rectangles represent
unbiased nodes. An edge (shown as a dotted blue
line) is added between nodes 9 and 10 of the graph
on the left hand side. Normal propagation of beliefs
in the 3-vicinity of node 10 (shown on the right hand
side) leads to incorrect inference, and so nodes on
the boundary of the 3-vicinity (i.e. node 6) should
retain their beliefs.

incrementally update beliefs of nodes upon small changes in
the graph structure. We refer to this variation of our system
as Incremental NetProbe.

The motivation behind Incremental NetProbe is that ad-
dition of a new edge will at worst result in minor changes
in the immediate neighborhood of the edge, while the effect
will not be strong enough to propagate to the rest of the
graph. Whenever a new edge gets added to the graph, the
algorithm proceeds by performing a breadth-first search of
the graph from one of the end points (call it n) of the new
edge, up to a fixed number of hops h, so as to retrieve a small
subgraph, which we refer to as the h-vicinity of n. It is as-
sumed that only the beliefs of nodes within the h-vicinity are
affected by addition of the new edge. Then, “normal” belief
propagation is performed only over the h-vicinity, with one
key difference. While passing messages between nodes, be-
liefs of the nodes on the boundary of the h-vicinity are kept
fixed to their original values. This ensures that the belief
propagation takes into account the global properties of the
graph, in addition to the local properties of the h-vicinity.

The motivation underlying Incremental NetProbe’s algo-
rithm is exemplified in Figure 3. The initial graph is shown
on the left hand side, to which an edge is added between
nodes 9 and 10. The 3-vicinity of node 10 is shown on the
right hand side. The nodes on the right hand side are col-
ored according to their inferred states based on propagating
beliefs only in the subgraph without fixing the belief of node
6 to its original value. Note that the 3-vicinity does not cap-
ture the fact that node 6 is a part of a bipartite core. Hence
the beliefs inferred are influenced only by the local structure

0

0.2

0.4

0.6

0.8

1

1.2

100 600 1100 1600 2100 2600

#nodes

Recall
Precision

Figure 4: Accuracy of NetProbe over synthetic
graphs with injected bipartite cores

of the 3-vicinity and are “out of sync” with the remaining
graph. In order to make sure that Incremental NetProbe
retains global properties of the graph, it is essential to fix
the beliefs of nodes at the boundary of the 3-vicinity to their
original values.

4. EVALUATION
We evaluated the performance of NetProbe over synthetic

as well as real datasets. Overall, NetProbe was effective

– it detected bipartite cores with very high accuracy – as
well as efficient – it had fast execution times. We also
conducted preliminary experiments with Incremental Net-
Probe, which indicate that Incremental NetProbe results in
significant speed-up of execution time with negligible loss of
accuracy.

4.1 Performance on Synthetic Datasets
In this section, we describe the performance of NetProbe

over synthetic graphs generated to be representative of real-
world networks. Typical (non-fraudulent) interactions be-
tween people lead to graphs with certain expected prop-
erties, which can be captured via synthetic graph genera-
tion procedures. In our experiments, we used the Barabasi-
Albert graph generation algorithm to model real-world net-
works of people. Additionally, we injected random sized
bipartite cores into these graphs. These cores represent the
manner in which fraudsters form their sub-networks within
typical online networks. Thus, the overall graph is represen-
tative of fraudsters interspersed within networks of normal,
honest people.

Accuracy of NetProbe. We ran NetProbe over synthetic
graphs of varying sizes. and measured the accuracy of Net-
Probe in detecting bipartite cores via precision and recall.
In our context, precision is the fraction of nodes labeled by
NetProbe as fraudsters who belonged to a bipartite core,
while recall is the fraction of nodes belonging to a bipar-
tite core that were labeled by NetProbe as fraudsters. The
results are are plotted in Figure 4.

In all cases, recall is very close to 1, which implies that
NetProbe detects almost all bipartite cores. Precision is al-
most always above 0.9, which indicates that NetProbe gen-
erates very few false alarms. NetProbe thus robustly detects
bipartite cores with high accuracy independent of the size
of the graph.

Scalability of NetProbe.

0

200

400

600

800

1000

1200

1400

1600

0 5000 10000 15000 20000 25000 30000

#edges

ti
m

e
(m

s)

Figure 6: Scalability of NetProbe over synthetic
graphs

There are two aspects to testing the scalability of Net-
Probe, (a) the time required for execution, and (b) the
amount of memory consumed.

The running time of a single iteration of belief propaga-
tion grows linearly with the number of edges in the graph.
Consequently, if the number of iterations required for con-
vergence is reasonably small, the running time of the entire
algorithm will be linear in the number of edges in the graph,
and hence, the algorithm will be scalable to extremely large
graphs.

To observe the trend in the growth of NetProbe’s exe-
cution time, we generated synthetic graphs of varying sizes,
and recorded the execution times of NetProbe for each graph.
The results are shown in Figure 6. It can be observed that
NetProbe’s execution time grows almost linearly with the
number of edges in the graph, which implies that NetProbe
typically converges in a reasonable number of iterations.

The memory consumed by NetProbe also grows linearly
with the number of edges in the graph. In Section 5.1,
we explain in detail the efficient data structures that Net-
Probe uses to achieve this purpose. In short, a special ad-
jacency list representation of the graph is sufficient for an
efficient implementation (i.e., to perform each iteration of
belief propagation in linear time.)

Both the time and space requirements of NetProbe are
proportional to the number of edges in the graph, and there-
fore, NetProbe can be expected to scale to graphs of massive
sizes.

4.2 Performance on the EBay Dataset
To evaluate the performance of NetProbe in a real-world

setting, we conducted an experiment over real auction data
collected from eBay. As mentioned before, eBay is the world’s
most popular auction site with over 200 million registered
users, and is representative of other sites offering similar ser-
vices. Our experiment indicates that NetProbe is highly ef-
ficient and effective at unearthing suspicious bipartite cores
in massive real-world auction graphs.

Data Collection. We crawled the Web site of eBay to col-
lect information about users and their transactions. Details
of the crawler implementation are provided in Section 5.1.
The data crawled lead to a graph with 66,130 nodes and
795,320 edges.

Efficiency. We ran NetProbe on a modest workstation,
with a 3.00GHz Pentium 4 processor, 1 GB memory and

Figure 5: Cores detected by NetProbe in the eBay dataset. Nodes shaded in red denote confirmed fraudsters.

Fraud Accomplice Honest

0.0256 0.0084 0.016

Table 3: Fraction of negative feedback received by
different categories of users

25 GB disk space. NetProbe converged in 17 iterations and
took a total of 380 seconds (∼ 6 minutes) to execute.

Effectiveness. Since our problem involves predicting which
users are likely fraudsters, it is not easy to design a quan-
titative metric to measure effectiveness. A user who looks
honest presently might in reality be a fraudster, and it is im-
possible to judge the ground truth correctly. Therefore, we
relied on a subjective evaluation of NetProbe’s effectiveness.

Through manual investigation (Web site browsing, news-
paper reports, etc.) we located 10 users who were guaran-
teed fraudsters. NetProbe correctly labeled each of these
users as fraudsters. Moreover, it also labeled the neighbors
of these fraudsters appropriately so as to reveal hidden bi-
partite cores. Some of the detected cores are shown in Fig-
ure 5. Each core contains a confirmed fraudster represented
by a node shaded with red color. This evidence heavily sup-
ports our hypothesis that fraudsters hide behind bipartite
cores to carry out their fraudulent activities.

Since we could not manually verify the correctness of every
fraudster detected by NetProbe, we performed the following
heuristic evaluation. For each user, we calculated the frac-
tion of his last 20 feedbacks on eBay which were negative. A
fraudster who has already committed fraudulent activities
should have a large number of recent negative feedbacks.
The average bad feedback ratios for nodes labeled by Net-
Probe are shown in Table 3. Nodes labeled by NetProbe
as fraud have a higher bad feedback ratio on average, in-
dicating that NetProbe is reasonably accurate at detecting
prevalent fraudsters. Note that this evaluation metric does
not capture NetProbe’s ability to detect users likely to com-
mit frauds in the future via unearthing their bipartite core
structured networks with other fraudsters.

Overall, NetProbe promises to be a very effective mecha-
nism for unearthing hidden bipartite networks of fraudsters.
A more exhaustive and objective evaluation of its effective-
ness is required, with the accuracy of its labeling measured

0

20

40

60

80

100

120

4000 4500 5000 5500 6000 6500 7000

#nodes

% Accuracy
% Time

Figure 7: Performance of NetProbe over synthetic
graphs with incremental edge additions

against a manual labeling of eBay users (e.g., by viewing
their feedbacks and profiles, collaboration with eBay, etc.)
Such an evaluation would be valuable future work.

4.3 Performance of Incremental NetProbe
To evaluate the performance of Incremental NetProbe, we

designed the following experiment. We generated synthetic
graphs of varying sizes, and added edges incrementally to
them. The value of h (see Sec 3.5) was chosen to be 2. At
each step, we also carried out belief propagation over the
entire graph and compared the ratio of the execution times
and the accuracies with the incremental version.

The results are shown in Figure 7. Incremental Net-
Probe can be seen to be not only extremely accurate but
also nearly twice as fast compared to stand-alone NetProbe.
Observe that for larger graphs, the ratio of execution times
favors Incremental NetProbe, since it touches an almost con-
stant number of nodes, independent of the size of the graph.
Therefore, in real-world auction sites, with graphs contain-
ing over a million nodes and edges, Incremental NetProbe
can be expected to result in huge savings of computation,
with negligible loss of accuracy.

5. THE NetProbe SYSTEM DESIGN
In this section, we describe the challenges faced while de-

signing and implementing NetProbe. We also propose a user

Figure 8: A sample eBay page listing the recent
feedbacks for a user

interface, which we believe is appropriate for visualizing the
fraudulent networks detected by NetProbe.

5.1 Current (Third Party) Implementation
Currently, we have implemented NetProbe as a third party

service, which need not be regulated by the auction site it-
self (since we do not have collaborations with any online
auction site.) A critical challenge in such a setting is to
crawl data about users and transactions from the auction
site. In this section, we describe the implementation details
of our crawler, as well as some non-trivial data structures
used by NetProbe for space and time efficiency.

Crawler Implementation. EBay provides a listing of
feedbacks received by a user, including details of the person
who left the feedback, the date when feedback was left, and
the item id involved in the corresponding transaction. A
snapshot of such a page is shown in Figure 8. The user-
name of each person leaving a feedback is hyperlinked to
his own feedback listing, thus enabling us to construct the
graph of transactions between these users by crawling these
hyperlinks.

We crawled user data in a breadth-first fashion. A queue
data structure was used to store the list of pending users
which have been seen but not crawled. Initially, a seed set
of ten users was inserted into the queue. Then at each step,
the first entry of the queue was popped, all feedbacks for that
user were crawled, and every user who had left a feedback
(and was not yet seen) was enqueued. Once all his feedbacks
were crawled, a user was marked as visited, and stored in a
separate queue.

In order to crawl the data as quickly as possible, we en-
hanced the naive breadth-first strategy to make it paralleliz-
able. The queue is stored at a central machine, called the
master, while the crawling of Web pages is distributed across
several machines, called the agents. Each agent requests the
master for the next available user to crawl, and returns the
crawled feedback data for this user to the master. The mas-

3 5 8
1

2

3

7

1 7 22

3 9 15

1,3

3,1

3,7

7,3

Messages Array
Adjacency Lists

Figure 9: Data structures used by NetProbe’s. The
graph is stored as a set of adjacency lists, while mes-
sages are stored in a flat array indexed by edge iden-
tifiers. Note that the message sent from node i to j

is always adjacent to the message sent from j to i.

ter maintains global consistency of the queue, and ensures
that a user is crawled only once.

To ensure consistency and scalability of the queue data
structure, we decided to use a MySQL database as the plat-
form for the master. This architecture allows us to add
new agents without suffering any downtime or configuration
issues, while maintaining a proportional increase in perfor-
mance. Further, each agent itself can open arbitrary num-
ber of HTTP connections, and run several different crawler
threads. Thus, the crawler architecture allows for two tiers
of parallelism — the master can control several agents in
parallel, while each agent itself can utilize multiple threads
for crawling.

The crawler was written in Java, and amounted to about
1000 lines of code. The master stored all of the data in a
MySQL 5.0.24 database with the following schema:

User (uid, username, date joined, location,

feedback score, is registered user,

is crawled)

Feedback (feedback id, user from, user to, item,

buyer, score, time)

Queue (uid, time added to queue)

We started the crawl on October 10, and stopped it on
November 2. In this duration, we managed to collect 54,282,664
feedback entries, visiting a total of 11,716,588 users, 66,130
of which were completely crawled.

Data Structures for NetProbe. We implemented elab-
orate data structures and optimizations to ensure that Net-
Probe runs in time proportional to the number of edges in
the graph.

NetProbe starts with graphical representation of users and
transactions within them, and then at each iteration, passes
messages as per the rules given in Equation 2. While edges

are undirected, messages are always directed from a source
node to a target node. Therefore, we treat an undirected
edge as a pair of two directed edges pointing in opposite
directions. We use a simple adjacency list representation to
store the graph in memory. Each (directed) edge is assigned
a numeric identifier and the corresponding message is stored
in an array indexed by this identifier (as shown in Figure 9).

Coming back to Equation 2, the second rule in this equa-
tion computes the belief of a node i in the graph by multiply-
ing the messages that i receives from each of its neighbors.
Executing this rule thus requires a simple enumeration of the
neighbors of node i. The first rule however, is more com-
plicated. It computes the message to be sent from node i
to node j, by multiplying the messages that node i receives
from all its neighbors except j. Naive implementation of
this rule would enumerate over all the neighbors of i while
computing the message from i to any of its neighbors, hence
making the computation non-linear in the number of edges.
However, if for each node i, the messages from all its neigh-
bors are multiplied and stored beforehand (let us call this
message as i’s token), then for each neighbor j, the message
to be sent from i to j can be obtained by dividing i’s token
by the last message sent from j to i. Thus, if the last mes-
sage sent from j to i is easily accessible while sending a new
message from i to j, the whole computation would end up
being efficient.

In order to make this possible, we assign edge identifiers in
a way such that each pair of directed edges corresponding to
a single undirected edge in the original graph get consecutive
edge identifiers. For example (as shown in Figure 9), if the
graph contains an edge between nodes 1 and 3, and the
edge directed from 1 to 3 is assigned the identifier 0 (i.e.,
the messages sent from 1 to 3 are stored at offset 0 in the
messages array), then the edge directed from 3 to 1 will be
assigned the identifier 1, and the messages sent from 3 to 1
will be stored at offset 1. As a result, when the message to
be sent from node 1 to its neighbor 3 is to be computed, the
last message sent from 3 to 1 can be quickly looked up.

NetProbe’s fraud detection algorithm was implemented
using these data structures in C++, with nearly 5000 lines
of code.

5.2 User Interface
A critical component of a deployed fraud detection system

would be its user interface, i.e., the “window” through which
the user interacts with the underlying algorithms. For our
scheme of detecting fraudsters via unearthing the suspicious
network patterns they create, we propose a user interface
based on visualization of the graph neighborhood for a user
whose reputation is being queried. A screens-hot of the same
is shown in Figure 10.

We believe that a simple and intuitive visualization tool
is essential for users understand the results that the sys-
tem produces. The detected bipartite cores, when shown
visually, readily explain to the user why a certain person is
being labeled as a fraudster, and also increase general aware-
ness about the manner in which fraudsters operate. Users
could finally combine the system’s suggestions with their
own judgment to assess the trustworthiness of an auction
site user.

We have implemented the above interface to run as a Java
applet in the user’s browser. The user can simply input an
username/email (whatever the auction site uses for authenti-

Figure 10: Proposed user interface for NetProbe

cation) into the applet and hit “Go”. The tool then queries
the system’s backend and fetches a representation of the
user’s neighborhood (possibly containing bipartite core) in
XML format. Such bipartite information could be pre-built
so that a query from the user will most of the time lead to
a simple download of an XML file, minimizing chances of
real-time computation of the bipartite core information.

In summary, the user interface that we propose above pro-
vides a rich set of operations and visualizations at an inter-
active speed to the end user. We believe that displaying the
characteristic patterns of a fraudster will be essential for the
success of a fraud detection system.

6. SUMMARY AND FUTURE WORK
In this paper, we have described the design and imple-

mentation of NetProbe, the first system (to the best of our
knowledge) to systematically tackle the problem of fraud de-
tection in large scale online auction networks. We have un-
veiled an ingenious scheme used by fraudsters to hide them-
selves within online auction networks. Fraudsters make use
of accomplices, who behave like honest users, except that
they interact heavily with a small set of fraudsters in order
to boost their reputation. Such interactions lead to the for-
mation of near bipartite cores, one half of which consists of
fraudsters, and the other is made up of accomplices. Net-
Probe detects fraudsters by using a belief propagation mech-
anism to discover these suspicious networks that fraudsters
form. The key advantage of NetProbe is its ability to not
only spot prevalent fraudsters, but also predict which users
are likely to commit frauds in the future. Our main contri-

Neighbor state Node state
Fraud Honest

Fraud 1− ε ε

Honest ε′ 1− ε′

Table 4: A sample instantiation of the propagation
matrix for detecting cliques of fraudsters (ε′ � ε)

butions are summarized in this section, along with directions
for future work.

Data Modeling and Algorithms. We have proposed
a novel way to model users and transactions on an auction
site as a Markov Random Field. We have also shown how to
tune the well-known belief propagation algorithm so as to
identify suspicious patterns such as bipartite cores. We have
designed data structures and algorithms to make NetProbe
scalable to large datasets. Lastly, we have also proposed a
valuable incremental propagation algorithm to improve the
performance of NetProbe in real-world settings.

Evaluation. We have performed extensive experiments on
real and synthetic datasets to evaluate the efficiency and
effectiveness of NetProbe. Our synthetic graphs contain as
many as 7000 nodes and 30000 edges, while the real dataset
is a graph of eBay users with approximately 66,000 nodes
and 800,000 edges. Our experiments allow us to conclude
the following:

• NetProbe detects fraudsters with very high accuracy

• NetProbe is scalable to extremely large datasets

• In real-world deployments, NetProbe can be run in
an incremental fashion, with significant speed up in
execution time and negligible loss of accuracy.

System Design. We have developed a prototype imple-
mentation of NetProbe, which is highly efficient and scalable
in nature. In particular, the prototype includes a crawler de-
signed to be highly parallelizable, while avoiding redundant
crawling, and an implementation of the belief propagation
algorithm with efficient graph data structures. We have also
proposed a user-friendly interface for looking up the trust-
worthiness of a auction site user, based on visualization of
the graph neighborhood of the user. The interface is de-
signed to be simple to use, intuitive to understand and op-
erate with interactive response times. The entire system was
coded using nearly 6000 lines of Java/C++ code.

Directions for Future Work. From the algorithmic
point of view, it would be interesting to see if NetProbe
is able to spot patterns other than bipartite cores. Ideally,
we should be able to formulate an instantiation of the prop-
agation matrix to detect a desired patterns. For example,
the matrix shown in Table 4 associates a high probability
for a fraudster to connect to another fraudster, and should
result in detection of cliques. Systematically analyzing the
behavior of NetProbe for different patterns would be valu-
able future work. Another challenging problem is to learn
the propagation matrix automatically from available data.
Solving this problem entails development of appropriate ma-
chine learning techniques to use training data for learning
both the form of the propagation matrix (i.e., the dimension
of the matrix), and the value of all the entries.

7. REFERENCES
[1] Auctionbytes: ebay auction fraud spawns vigilantism trend.

http://www.auctionbytes.com/cab/abn/y02/m10/i12/s01,
2002.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In WWW, 1998.

[3] D. H. Chau and C. Faloutsos. Fraud detection in electronic
auction. In European Web Mining Forum at
ECML/PKDD, 2005.

[4] D. H. Chau, S. Pandit, and C. Faloutsos. Detecting
fraudulent personalities in networks of online auctioneers.
In Proc. ECML/PKDD, 2006.

[5] C. Chua and J. Wareham. Fighting internet auction fraud:
An assessment and proposal. In Computer, volume 37 no.
10, pages 31–37, 2004.

[6] ebay inc. announces third quarter 2006 financial results.
http:
//biz.yahoo.com/bw/061018/20061018005916.html?.v=1,
October 2006.

[7] ebay: Avoiding fraud. http:
//pages.ebay.com/securitycenter/avoiding_fraud.html,
2006.

[8] Federal trade commission: Internet auctions: A guide for
buyers and sellers. http:
//www.ftc.gov/bcp/conline/pubs/online/auctions.htm,
2004.

[9] Z. Gyongyi, H. G. Molina, and J. Pedersen. Combating web
spam with trustrank. In VLDB, 2004.

[10] Internet fraud complaint center: Ic3 2004 internet fraud -
crime report.
http://www.ifccfbi.gov/strategy/statistics.asp, 2005.

[11] J. Kleinberg. Authoritative sources in a hyperlinked
environment. In Proc. 9th ACM-SIAM Symposium on
Discrete Algorithms, 1998.

[12] S. R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Extracting large-scale knowledge bases from
the web. VLDB, pages 639–650, 1999.

[13] M. Melnik and J. Alm. Does a seller’s ecommerce
reputation matter? evidence from ebay auctions. Journal of
Industrial Economics, 50:337–49, 2002.

[14] J. Neville and D. Jensen. Collective classification with
relational dependency networks. In 2nd Multi-Relational
Data Mining Workshop, SIGKDD, 2003.

[15] J. Neville, . Simsek, D. Jensen, J. Komoroske, K. Palmer,
and H. Goldberg. Using relational knowledge discovery to
prevent securities fraud. In Proc. SIGKDD, 2005.

[16] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph
quasi-cliques. In KDD, pages 228–238, 2005.

[17] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara.
Reputation systems. Communications of the ACM, 43,
2000.

[18] P. Resnick, R. Zeckhauser, J. Swanson, and K. Lockwood.
The value of reputation on ebay: A controlled experiment,
2003.

[19] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos.
Power-laws and the AS-level internet topology. IEEE/ACM
Transactions on Networking, 11(4):514–524, 2003.

[20] Usa today: How to avoid online auction fraud. http://www.
usatoday.com/tech/columnist/2002/05/07/yaukey.htm,
2002.

[21] W. Wang, C. Wang, Y. Zhu, B. Shi, J. Pei, X. Yan, and
J. Han. Graphminer: a structural pattern-mining system
for large disk-based graph databases and its applications.
In SIGMOD Conference, pages 879–881, 2005.

[22] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In ICDM, pages 721–724, 2002.

[23] X. Yan, X. J. Zhou, and J. Han. Mining closed relational
graphs with connectivity constraints. In KDD, pages
324–333, 2005.

[24] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding
belief propagation and its generalizations. Exploring AI in

the new millennium, pages 239–269, 2003.
[25] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent

closed quasi-clique discovery from large dense graph
databases. In KDD, pages 797–802, 2006.

