
XQuery:
An XML query
language

by D. Chamberlin

The World Wide Web Consortium has
convened a working group to design a query
language for Extensible Markup Language
(XML) data sources. This new query language,
called XQuery, is still evolving and has been
described in a series of drafts published by
the working group. XQuery is a functional
language comprised of several kinds of
expressions that can be nested and
composed with full generality. It is based on
the type system of XML Schema and is
designed to be compatible with other XML-
related standards. This paper explains the
need for an XML query language, provides a
tutorial overview of XQuery, and includes
several examples of its use.

Increasingly, Extensible Markup Language (XML)1

is considered the format of choice for the exchange
of information among various applications on the
Internet. The popularity of XML is due in large part
to its flexibility for representing many kinds of in-
formation. The use of tags makes XML data self-de-
scribing, and the extensible nature of XML makes it
possible to define new kinds of documents for spe-
cialized purposes. As the importance of XML has in-
creased, a series of standards has grown up around
it, many of which were defined by the World Wide
Web Consortium (W3C).2 For example, XML Sche-
ma3 provides a notation for defining new types of
elements and documents; XML Path Language
(XPath)4 provides a notation for selecting elements
within an XML document; and Extensible Stylesheet
Language Transformations (XSLT)5 provides a no-

tation for transforming XML documents from one
representation to another.

XML makes it possible for applications to exchange
data in a standard format that is independent of stor-
age. For example, one application may use a native
XML storage format, whereas another may store data
in a relational database. Since XML is emerging as
a standard for data exchange, it is natural that que-
ries among applications should be expressed as que-
ries against data in XML format. This use gives rise
to a requirement for a query language designed ex-
pressly for XML data sources. In October 1999, W3C
convened the XML Query Working Group6 for the
purpose of designing such a query language, to be
called XQuery.

XML data are different from relational data in sev-
eral important respects that influence the design of
a query language. Relational data tend to have a reg-
ular structure, which allows the descriptive meta-data
for these data to be stored in a separate catalog. XML
data, in contrast, are often quite heterogeneous, and
distribute their meta-data throughout the document.
XML documents often contain many levels of nested
elements, whereas relational data are “flat.” XML
documents have an intrinsic order, whereas relational
data are unordered except where an ordering can
be derived from data values. Relational data are usu-
ally “dense” (nearly every column has a value), and

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 0018-8670/02/$5.00 © 2002 IBM CHAMBERLIN 597

relational systems often represent missing informa-
tion by a special null value. XML data, in contrast,
are often “sparse” and can represent missing infor-
mation simply by the absence of an element. For
these and other reasons, existing relational query lan-
guages are not directly suitable for querying XML
data.

The design of XQuery is still in progress. The XML
Query Working Group has published working drafts
of several documents that describe the current state
of the design. Of these, perhaps the most important

is XQuery 1.0: An XML Query Language, 7 which con-
tains a syntax and informal description of the lan-
guage. The working group has also published a list
of requirements,8 a description of the data model
that underlies the language,9 a formal semantic de-
scription,10 a list of functions and operators,11 and
a collection of use cases that illustrate applications
of the language.12 Each of these documents is up-
dated from time to time as the design of XQuery
evolves. This paper is based on the most recent
XQuery design at the time of its publication, but since
this design is still changing, the documents refer-
enced in this paragraph should be consulted for the
latest developments.

The design of XQuery has been subject to a number
of influences. Perhaps the most important of these
is compatibility with existing W3C standards, includ-
ing Schema, XSLT, XPath, and XML itself. XPath, in
particular, is so important and so closely related that
XQuery is defined as a superset of XPath. The over-
all design of XQuery is based on a language proposal
called Quilt.13 Quilt, in turn, was influenced by the
functional approach of Object Query Language
(OQL),14 by the keyword-based syntax of Structured
Query Language (SQL),15 and by previous XML query
language proposals including XQL,16 XML-QL,17 and
Lorel.18

It is an objective of the XML Query Working Group
to define two syntaxes for XQuery: one that is ex-
pressed in XML, and one that is optimized for hu-

man writing and understanding. This paper describes
only the human-oriented version of XQuery.

The initial design of XQuery is focused only on in-
formation retrieval and does not provide facilities
for updating existing XML documents. The XML
Query Working Group may consider the addition
of an update facility after completing the design of
the first version of XQuery.

This paper describes the data model on which
XQuery is based, and then presents an overview of
the XQuery language in the form of a series of ex-
amples. This paper is not intended to provide a rig-
orous or exhaustive definition of the language. The
reader is referred to Reference 7 for an XQuery syn-
tax and a more complete language description.

Data model

Formally, the input and output of XQuery are de-
fined in terms of a data model, described in Refer-
ence 9. The query data model provides an abstract
representation of one or more XML documents or
document fragments. The data model is based on
the notion of a sequence. A sequence is an ordered
collection of zero or more items. An item may be a
node or an atomic value. An atomic value is an in-
stance of one of the built-in data types defined by XML
Schema, such as strings, integers, decimals, and dates.
A node conforms to one of seven node kinds, which
include element, attribute, text, document, comment,
processing instruction, and namespace nodes. A
node may have other nodes as children, thus form-
ing one or more node hierarchies. Some kinds of
nodes, such as element and attribute nodes, have
names or typed values, or both. A typed value is a
sequence of zero or more atomic values. Nodes have
identity (that is, two nodes may be distinguishable
even though their names and values are the same),
but atomic values do not have identity. Among all
the nodes in a hierarchy there is a total ordering
called document order, in which each node appears
before its children. Document order corresponds to
the order in which the nodes would appear if the
node hierarchy were represented in XML format.
Document order between nodes in different hierar-
chies is implementation-defined but must be consis-
tent; that is, all the nodes in one hierarchy must be
ordered either before or after all the nodes in an-
other hierarchy.

Sequences may be heterogeneous; that is, they may
contain mixtures of various types of nodes and atomic

The design of
XQuery has been

subject to a number
of influences.

CHAMBERLIN IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002598

values. However, a sequence never appears as an
item in another sequence. All operations that cre-
ate sequences are defined to “flatten” their operands
so that the result of the operation is a single-level
sequence. There is no distinction between an item
and a sequence of length one—in other words, a
node or atomic value is considered to be identical
to a sequence of length one containing that node or
atomic value.

Sequences of length zero are valid and are some-
times used to represent missing or unknown infor-
mation, in much the same way that null values are
used in relational systems.

In addition to sequences, the query data model de-
fines a special value called the error value, which is
the result of evaluating an expression that contains
an error. An error value may not be combined in a
sequence with any other value.

Input XML documents can be transformed into the
query data model by a process called schema vali-
dation, which parses the document, validates it

against a particular schema, and represents it as a
hierarchy of nodes and atomic values, labeled with
type information derived from the schema. If an in-
put document does not have a schema, it is validated
against a permissive default schema that assigns ge-
neric types—nodes are labeled anyType and atomic
values are labeled anySimpleType. The process of
schema validation is described in more detail in Ref-
erence 3.

The result of a query may be transformed from the
query data model into an XML representation by a
process called serialization. The details of serializa-
tion are beyond the scope of this paper. It is worth
noting that the result of a query is not always a well-
formed XML document. For example, a query might
return an atomic value such as the number 47, or a
sequence of elements with no common parent.

Example data

To illustrate the query data model and provide a ba-
sis for later examples, we consider a small XML da-
tabase that contains data from an on-line auction,

itemno seller description reserve-price end-date

(ALL ITEM ELEMENTS
HAVE SIMILAR STRUCTURE)

Figure 1 Data model representation of items.xml

items.xmlD

itemsE

item statusAE item statusAE

E

TTT T T

E EE E

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 CHAMBERLIN 599

based loosely on Use Case R in Reference 12. The
database consists of two XML documents named
items.xml and bids.xml.

The items.xml document contains a root element
named items, which in turn contains an item element
for each item currently for sale at the auction. Each
item element has a status attribute and subelements
named itemno, seller, description, reserve-price,
and end-date. The reserve-price element names a
minimum selling price set by the owner, and the
end-date element indicates the ending date of the
auction.

The bids.xml document contains a root element
named bids, which in turn contains a bid element
for each bid that has been placed for an item. Each
bid element has subelements named itemno, bidder,
bid-amount, and bid-date.

Figures 1 and 2 show the data model representations
of the items.xml and bids.xml documents, respec-
tively (including only a representative item and a rep-
resentative bid). In the figures, the circles labeled

D, E, A, and T represent document, element, at-
tribute, and text nodes, respectively.

Expressions

We now describe expressions in XQuery.

Basics. Like XML and XPath, XQuery is a case-sen-
sitive language, and all its keywords are made up of
lowercase characters. Detailed rules for lexing and
parsing XQuery are described in Reference 7. Char-
acters enclosed between “{--” and “--}” are con-
sidered to be comments and are ignored during query
processing (except, of course, inside a quoted string,
where they are considered to be part of the string).

XQuery is a functional language, which means that
it is made up of expressions that return values and
do not have side effects. XQuery has several kinds
of expressions, most of which are composed from
lower-level expressions, combined by operators or
keywords. XQuery expressions are fully composable,
that is, where an expression is expected, any kind of
expression may be used. As noted earlier, the value

itemno bidder bid-amount bid-date

(ALL BID ELEMENTS
HAVE SIMILAR STRUCTURE)

Figure 2 Data model representation of bids.xml

bids.xmlD

bidsE

bid E bidE

E

TTT T

EE E

CHAMBERLIN IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002600

of an expression, in general, is a heterogeneous se-
quence of nodes and atomic values.

The simplest kind of XQuery expression is a literal,
which represents an atomic value. The following are
several examples of literals:

47 is a literal of type integer
4.7 is a literal of type decimal because it con-

tains a decimal point
4.7E3 is a literal of type double because it con-

tains an exponent
''47'' is a literal of type string (single quotes

are allowed inside double-quoted strings)
'47 ' is a literal of type string (double quotes

are allowed inside single-quoted strings)

Atomic values of other types may be created by call-
ing constructors. A constructor is a function that cre-
ates a value of a particular type from a string con-
taining a lexical representation of the desired type.
In general, a constructor has the same name as the
type it constructs. The following example uses a con-
structor to create a value of type date:

date(''2002-5-31'')

Any XQuery expression may be enclosed in paren-
theses. Parentheses are useful for making explicit the
order in which an expression should be evaluated.
The following examples of arithmetic expressions
show how parentheses can be used to control the pre-
cedence of operators. Arithmetic expressions are dis-
cussed in more detail in a later subsection.

(2 � 4) � 5 has the value 30 because the sub-
expression (2 � 4) is evaluated
first

2 � 4 � 5 has the value 22 because � has a
higher precedence than �

The comma operator concatenates two values to
form a sequence. Sequences are often enclosed in
parentheses as explicit delimiters, although this is not
required. An empty pair of parentheses denotes an
empty sequence. Since sequences cannot be nested,
the comma operator constructs a sequence consist-
ing of all the items in its left operand, followed by
all the items in its right operand. A sequence can
also be constructed by the to operator, which returns
a sequence consisting of all the integers between its
left operand and its right operand, inclusive. The fol-
lowing examples illustrate construction of sequences:

1, 2, 3 is a sequence of three values
(1, 2, 3) is identical to 1, 2, 3
((1, 2), �, 3) is identical to 1, 2, 3
1 to 3 is identical to 1, 2, 3

A variable in XQuery is a name that begins with a
dollar sign. A variable may be bound to a value and
used in an expression to represent that value. One
way to bind a variable is by means of a LET expres-
sion, which binds one or more variables and then
evaluates an inner expression. The value of the LET
expression is the result of evaluating the inner expres-
sion with the variables bound. The following exam-
ple illustrates a LET expression that returns the se-
quence 1, 2, 3:

let $start :� 1, $stop :� 3
return $start to $stop

A LET expression is a special case of a FLWR (for,
let, where, return) expression, which provides addi-
tional ways to bind variables. FLWR expressions are
described in more detail later.

Another simple form of XQuery expression is a func-
tion call. XQuery provides a core function library,
described in Reference 11, and a mechanism
whereby users can define additional functions, de-
scribed in the next section. Function calls in XQuery
employ the usual notation in which the arguments
of the function are enclosed in parentheses. The fol-
lowing example calls the core library function
substring to extract the first six characters from a
string:

substring(''Martha Washington'', 1, 6)

Path expressions. Path expressions in XQuery are
based on the syntax of XPath.4 A path expression
consists of a series of steps, separated by the slash
character (“/”). The result of each step is a sequence
of nodes. The value of the path expression is the node
sequence that results from the last step in the path.

Each step is evaluated in the context of a particular
node, called the context node. In general, a step can
be any expression that returns a sequence of nodes.
One important kind of step, called an axis step, can
be thought of as beginning at the context node and
moving through the node hierarchy in a particular
direction, called an axis. As the axis step moves along
the designated axis, it selects nodes that satisfy a se-
lection criterion. The selection criterion can select
nodes based on their names, their positions with re-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 CHAMBERLIN 601

spect to the context node, or a predicate based on
the value of a node. XPath defines 13 axes, and some
or all of them will be supported by XQuery as well.
Current plans are for XQuery to support the six axes
named child, descendant, parent, attribute, self,
and descendant-or-self.

As a path expression is evaluated, the nodes selected
by each step serve in turn as context nodes for the
following step. If a step has several context nodes,
it is evaluated for each of the context nodes in turn,
and the resulting node sequences are combined by
the union operator to form the result of the step. The
result of a step is always a sequence of distinct nodes
(without duplicates based on node identity), in doc-
ument order.

Path expressions may be written in either unabbre-
viated syntax or abbreviated syntax. The unabbre-
viated syntax for an axis step consists of an axis and
a selection criterion, separated by two colons. Q1 il-
lustrates a four-step path expression using unabbre-
viated syntax. The first step invokes the built-in
document function, which returns the document node
for the document named items.xml. The second step
is an axis step that finds all children of the document
node (“�” selects all nodes on the given axis, which
in this case is only a single element node named
items). The third step follows the child axis again
to find all the child elements at the next level that
are named item and that in turn have a child named
sellerwith the value “Smith.” The result of the third
step is a sequence of item element nodes. Each of
these item nodes is used in turn as the context node
for the fourth step, which follows the child axis again
to find the description elements that are children
of the given item. The final result of the path expres-
sion is the result of the fourth step: a sequence of
description element nodes, in document order.

(Q1) List the descriptions of all items offered for sale
by Smith.

document(''items.xml'')/child::�

/child::item[child::seller � ''Smith'']
/child::description

In practice, path expressions are usually written us-
ing abbreviated syntax. Several kinds of abbreviations
are provided. Perhaps the most important of these
is that the axis specifier may be omitted when the
child axis is used. Since child is the most commonly
used axis, this abbreviation is helpful in reducing the

length of many path expressions. For example, Q1
may be abbreviated as follows:

document(''items.xml'')
/�/item[seller � ''Smith'']/description

When two steps are separated by a double slash
rather than by a single slash, it means that the sec-
ond step may traverse multiple levels of the hierar-
chy, using the descendants axis rather than the single-
level child axis. For example, Q2 searches for
description elements that are descendants of the
root node of a given document. The result of Q2 is
a sequence of element nodes that could, in princi-
ple, have been found at various levels of the node
hierarchy (though, in our sample document, all
description nodes are found at the same level).

(Q2) List all description elements found in the doc-
ument items.xml.

document(''items.xml'')//description

Within a path expression, a single dot (“ . ”) refers
to the context node, and two consecutive dots (“..”)
refer to the parent of the context node. These no-
tations are abbreviated invocations of the self and
parent axes, respectively. Names found in path ex-
pressions are usually interpreted as names of ele-
ment nodes; however, a name prefixed by the “@”
character is interpreted as the name of an attribute
node. This is an abbreviation for a step that traverses
the attribute axis. These abbreviations are illus-
trated by Q3, which begins at the node that is bound
to the variable $description, traverses the parent
axis to the parent item node, and then traverses the
attribute axis to find an attribute named status.
The result of Q3 is a single attribute node.

(Q3) Find the status attribute of the item that is the
parent of a given description.

$description/../@status

Predicates. In XQuery, a predicate is an expression,
enclosed in square brackets, that is used to filter a
sequence of values. Predicates are often used in the
steps of a path expression. For example, in the step
item[seller � ''Smith''], the phrase seller �

''Smith'' is a predicate that is used to select certain
item nodes and discard others. We will refer to the
items in the sequence being filtered by a predicate
as candidate items. The predicate is evaluated for
each candidate item, using the candidate item as the

CHAMBERLIN IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002602

context item for evaluating the predicate expression.
The term “context item” is a generalization of the
term “context node” and may indicate either a node
or an atomic value. Within a predicate expression,
a single dot (“ . ”) indicates the context item. Each
candidate item is selected or discarded according to
the following rules.

If the predicate expression evaluates to a Boolean
value, the candidate item is selected if the value of
the predicate expression is true. This type of pred-
icate is illustrated by the following example, which
selects item nodes that have a reserve-price child
node whose value is greater than 1000:

item[reserve-price � 1000]

If the predicate expression evaluates to a number,
the candidate item is selected if its ordinal position
in the list of candidate items is equal to the number.
This type of predicate is illustrated by the following
example, which selects the fifth item node on the
child axis:

item[5]

If the predicate expression evaluates to an empty se-
quence, the candidate item is discarded, but if the
predicate expression evaluates to a sequence con-
taining at least one node, the candidate item is se-
lected. This form of predicate can be used to test for
the existence of a child node that satisfies some con-
dition. This is illustrated by the following example,
which selects item nodes that have a reserve-price
child node, regardless of its value:

item[reserve-price]

Several different kinds of operators and functions
are often used inside predicates. In the following six
paragraphs, some of the commonest and most use-
ful of these operators and functions are described.

Value comparison operators: eq, ne, lt, le, gt, ge.
These operators can compare two scalar values, but
they raise an error if either operand is a sequence
of length greater than one. If either operand is a
node, the value comparison operator extracts its
value before performing the comparison. For exam-
ple, item[reserve-price gt 1000] selects an item
node if it has exactly one reserve-price child node
whose value is greater than 1000.

General comparison operators: �, !�, �, ��, �, ��.
These operators can deal with operands that are se-
quences, providing implicit “existential” semantics
for both operands. Like the value comparison op-
erators, the general comparison operators automat-
ically extract values from nodes. For example,
item[reserve-price � 1000] selects an item node
if it has at least one reserve-price child node whose
value is greater than 1000.

Node comparison operators: is and isnot. These op-
erators compare the identities of two nodes. For ex-
ample, $node1 is $node2 is true if the variables $node1
and $node2 are bound to the same node (that is, the
node identity is the same for both variables).

Order comparison operators: These operators com-
pare the positions of two nodes. For example,
$node1 �� $node2 is true if the node bound to $node1
occurs earlier in document order than the node
bound to $node2.

Logical operators: and and or operators can be used
to combine logical conditions inside a predicate. For
example, the following predicate selects item nodes
that have exactly one seller child element with the
value “Smith,” and also have at least one
reserve-price child element with any value:
item[seller eq ''Smith'' and reserve-price].

Negation: not is a function rather than an operator.
It serves to invert a Boolean value, turning true into
false and false into true. The following step uses
the not function with an existence test to find item
nodes that have no reserve-price child element:
item[not(reserve-price)].

In all of the above examples, element and attribute
names have been simple identifiers. However, the
XML Namespace recommendation19 allows elements
and attributes to have two-part names in which the
first part is a namespace prefix, followed by a colon.
A name qualified by a namespace prefix is called a
QName. Each namespace prefix must be bound to
a URI (uniform resource identifier) that uniquely

A predicate is an expression,
enclosed in square brackets,

that is used to filter
a sequence of values.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 CHAMBERLIN 603

identifies a namespace. This convention allows each
application to define names in its own namespace
without danger of colliding with names defined by
other applications, and it allows a query to unam-
biguously refer to names defined by various appli-
cations. If the prefix auction were bound to the
namespace URI of our on-line auction application,
the step item[reserve-price � 1000] might be writ-
ten using QNames as follows:

auction:item[auction:reserve-price � 1000]

The process of binding a prefix to a namespace URI
is described in the next-to-last section. In most of
our examples, we use one-part names rather than
QNames. This use is realistic because XQuery pro-
vides a way to specify a default namespace for a
query. Such use makes it unnecessary for a query to
use QNames unless it needs to refer to names from
multiple namespaces.

This paper provides only a brief introduction to the
path expressions available in XPath and XQuery.
Like XQuery, XPath is an evolving language. A
working draft of a new version of XPath, called
XPath 2.0,20 has recently been published jointly by
the XML Query and XSLT Working Groups. It is ex-
pected that XPath 2.0 and XQuery will share not only
a common syntax for path expressions and predicates
but several other kinds of expressions as well.

Element constructors. Path expressions are power-
ful, but they have an important limitation: they can
only select existing nodes. A full query language
needs a facility to construct new elements and at-
tributes and to specify their contents and relation-
ships. This facility is provided in XQuery by a kind
of expression called an element constructor.

The simplest kind of element constructor looks ex-
actly like the XML syntax for the element to be cre-
ated. For example, the following expression con-
structs an element named highbid containing one
attribute named status and two child elements
named itemno and bid-amount:

�highbid status � ''pending''�
�itemno�4871�/itemno�

�bid-amount�250.00�/bid-amount�

�/highbid�

In the example above, the values of the elements and
attributes are constants. However, in many cases it
is necessary to create an element or an attribute

whose value is computed by some expression. In this
case, the expression is enclosed in curly braces to in-
dicate that it is to be evaluated rather than treated
as literal text. The expression is evaluated and re-
placed by its value in the element constructor. In the
following example, the values of the elements and
attributes are computed by expressions. The varia-
bles $s, $i, and $bids used in these expressions must
be bound by some enclosing expression.

�highbid status � ''{$s}''�
�itemno� {$i} �/itemno�

�bid-amount�

{max($bids[itemno � $i]/bid-amount)}
�/bid-amount�

�/highbid�

The content of an element constructor may be any
expression. In general, the expression used in an el-
ement constructor may generate a sequence of items,
including atomic values, elements, and attributes. At-
tributes that are generated inside an element con-
structor become attached to the constructed element.
Elements and atomic values that are generated in-
side an element constructor become the content of
the constructed element. In the following example,
an element constructor contains an expression, en-
closed in curly braces, that generates one attribute
and two subelements. The variable $bmust be bound
by some enclosing expression.

�highbid�

{
$b/@status,
$b/itemno,
$b/bid-amount
}

�/highbid�

The element node produced by an element construc-
tor is a new node with its own node identity. If the
newly constructed element has child nodes and at-
tributes that are derived from existing nodes, as in
the above example, the new child nodes and at-
tributes are copies of the nodes from which they were
derived, with new node identities.

In the above examples of element constructors, even
though the content of the element may be computed,
the name of the constructed element is a known con-
stant. However, it is sometimes necessary to construct
an element whose name as well as its content is com-
puted. For this purpose, XQuery provides a special
kind of constructor called a computed element con-

CHAMBERLIN IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002604

structor. A computed element constructor consists
of the keyword element, followed by two expressions
in curly braces—the first expression computes the
name of the element, and the second expression com-
putes the content of the element.

For an example of the use of a computed construc-
tor, suppose that the variable $e is bound to an el-
ement with a numeric value. We need to construct
a new element that has the same name as $e and the
same attributes as $e, but we want its value to be
twice the value of $e. This construction can be ac-
complished by the following expression, which uses
the data function to extract the numeric value of the
original node:

element
{name($e)}
{$e/@�, data($e)�2}

Similar to a computed element constructor, XQuery
provides a computed attribute constructor, which con-
sists of the keyword attribute, followed by two ex-
pressions in curly braces—the first expression com-
putes the name of the attribute and the second
expression computes its value. An attribute construc-
tor can be used anywhere an attribute is valid, for
example, inside an element constructor. The follow-
ing attribute constructor, based on the bound vari-
able $p, might generate an attribute that looks like
father�''Frank'' or mother�''Mary''. This example
uses a conditional (if-then-else) expression, described
later.

attribute
{if $p/sex�''M'' then ''father'' else ''mother''}
{$p/name}

Iteration and sorting. Iteration is an important part
of a query language. XQuery provides a way to it-
erate over a sequence of values, binding a variable
to each of the values in turn and evaluating an expres-
sion for each binding of the variable.

The simplest form of iteration in XQuery consists
of a for clause that names a variable and provides
a sequence of values over which the variable is to
iterate, followed by a return clause that contains the
expression to be evaluated for each variable bind-
ing. The following example illustrates this simple
form of iteration:

for $n in (2, 3) return $n � 1

The result of this simple iterative expression is the
sequence (3, 4).

A for clause may specify more than one variable, with
an iteration sequence for each variable. Such a for
clause produces tuples of variable bindings that form
the Cartesian product of the iteration sequences. Un-
less otherwise specified, the binding tuples are gen-
erated in an order that preserves the order of the

iteration sequences, using the leftmost variable as
the “outer loop” and the rightmost variable as the
“inner loop.” The following example illustrates a for
clause that contains two variables and two iteration
sequences:

for $m in (2, 3), $n in (5, 10)
return �fact�{$m} times {$n} is

{$m � $n}�/fact�

The result of this expression is the following sequence
of four elements:

�fact�2 times 5 is 10�/fact�

�fact�2 times 10 is 20�/fact�

�fact�3 times 5 is 15�/fact�

�fact�3 times 10 is 30�/fact�

The for clauses illustrated above and the let clause
illustrated earlier are both special cases of a more
general expression called a FLWR (pronounced “flow-
er”) expression. In its most general form, a FLWR
expression may have multiple for clauses, multiple
let clauses, an optional where clause, and a return
clause.

As we have already seen, the function of the for
clause and let clause is to bind variables. Each of
these clauses contains one or more variables and an
expression associated with each variable. The expres-
sions evaluate to sequences and may contain refer-
ences to variables bound in previous clauses. The dif-
ference between a for clause and a let clause is that
a for clause iterates each variable over the associ-
ated sequence, binding the variable in turn to each

Iteration is
an important

part of a query
language.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 CHAMBERLIN 605

item in the sequence, whereas a let clause binds each
variable to the associated sequence as a whole. This
difference is illustrated by the following pair of claus-
es:

for $i in (1 to 3)
let $j :� (1 to $i)

This pair of clauses is not a full FLWR expression be-
cause it does not have a return clause. The for clause
and let clause simply produce a sequence of binding
tuples. The clauses in the above example produce
the following sequence of three binding pairs:

$i � 1, $j � 1
$i � 2, $j � (1, 2)
$i � 3, $j � (1, 2, 3)

In general, the number of binding tuples produced
by a series of for clauses and let clauses is equal to
the product of the cardinalities of the iteration ex-
pressions in the for clauses. A let clause without any
for clause, of course, produces only a single binding
tuple.

The binding tuples produced by the for clauses and
let clauses in a FLWR expression are filtered by the
optional where clause. The where clause contains an
expression that is evaluated for each binding tuple.
If the value of the where expression is the Boolean
value trueor a sequence containing at least one node
(an “existence test”), the binding tuple is retained;
otherwise the binding tuple is discarded.

The return clause of the FLWR expression is then ex-
ecuted once for each binding tuple retained by the
where clause, in order. The results of these execu-
tions are concatenated into a sequence that serves
as the result of the FLWR expression.

The power of FLWR is illustrated by Q4, a query over
our auction database.

(Q4) For each item that has more than ten bids, gen-
erate a popular-item element containing the item num-
ber, description, and bid count.

for $i in document(''items.xml'')/�/item
let $b :� document(''bids.xml'')

/�/bid[itemno � $i/itemno]
where count ($b) � 10
return

�popular-item�

{
$i/itemno,
$i/description,
�bid-count� {count ($b)} �/bid-count�

}
�/popular-item�

The for clause and let clause produce a binding pair
for each item in items.xml. In each binding pair, $i
is bound to the item and $b is bound to a sequence
containing all the bids for that item. The where clause
retains only those binding tuples in which $b con-
tains more than ten bids. The return clause then gen-
erates an output element for each of these bindings,
containing the item number, description, and bid
count.

By default, the order of the output sequence of a
FLWR expression preserves the order of the itera-
tion sequences. The prefix operator unordered can
be used before any expression to indicate that the
order of the result is not significant. This gives the
implementation greater flexibility to optimize the ex-
ecution of the expression (for example, by iterating
in a different order).

Any sequence can be reordered by a sortby clause
that contains one or more ordering expressions. For
each item in the original sequence, the ordering ex-
pressions are evaluated using the given item as the
context item. The items in the original expression
are then reordered into ascending or descending or-
der based on the values of their ordering expressions.
Of course, each ordering expression must return a
single result, and these results must be comparable
by the gtoperator. For the purpose of a sortby clause,
an empty sequence can be treated either as greater
than any other value or as less than any other value,
under user control.

A sortby clause is often useful in reordering the re-
sults of a FLWR expression. For example, if it is de-
sired for the popular-item elements generated by
Q4 to be sorted into descending order by bid-count,
the following clause could be added at the end of
Q4:

sortby bid-count descending

It is important to realize that sortby is not a part of
a FLWR expression but a separate kind of XQuery
expression that can be used to reorder any sequence,
whether generated by a FLWR expression or not.

CHAMBERLIN IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002606

However, when a FLWR expression is followed by
sortby, a smart optimizer will realize that the reor-
dering of the output items relaxes the usual con-
straints on the ordering of the binding tuples.

Q4 illustrates how a FLWR expression can have some
of the same characteristics as a join query in a re-
lational database system and also some of the same
characteristics as a grouping query. Q4 is like a join
query because it correlates elements found in two
different XML files, named items.xml and bids.xml.
It is also like a grouping query because it groups bids
together by item number and computes the number
of bids in each group (in SQL, this might be expressed
as GROUP BY itemno).

Arithmetic. We have already seen several examples
of the use of arithmetic operators. XQuery provides
the usual arithmetic operators: �, �, �, div, and mod,
as well as the aggregating functions sum, avg, count,
max, and min, which operate on a sequence of num-
bers and return a numeric result. The division op-
erator in XQuery is called div to distinguish it from
the slash that is used in path expressions. When the
subtraction operator follows a name, it must have
a preceding blank to distinguish it from a hyphen,
since a hyphen is a valid name character in XML.

Arithmetic operators are defined on numeric values
(or, in the case of the aggregating functions, sequences
of numeric values). Numeric values include values
of type integer, decimal, float, double, or types de-
rived from these types. When the operands of an
arithmetic operator are mixed, they are promoted
to the nearest common type using the promotion hi-
erarchy integer 3 decimal 3 float 3 double. If
an operand of an arithmetic operator is a node, its
typed value is automatically extracted.

The behavior of arithmetic operators on empty se-
quences is an important special case. In XQuery, an
empty sequence is sometimes used to represent miss-
ing or unknown information, in much the same way
that a null value is used in relational systems. For
this reason, the �, �, �, div, and mod operators are
defined to return an empty sequence if either of their
operands is an empty sequence. To illustrate the ap-
plication of this rule, suppose that the variable $emps
is bound to a sequence of emp elements, each of which
represents an employee and contains a name element,
a salary element, an optional commission element,
and an optional bonus element. The expression in
Q5 transforms this sequence into a new sequence of
emp elements, each of which contains a name element

and a pay element whose value is the employee’s to-
tal pay. For those employees whose commission or
bonus is missing ($e/commission or $e/bonus eval-
uates to an empty sequence), the generated pay el-
ement will be empty.

(Q5) Given a sequence of emp elements, replace their
salary, commission, and bonus subelements with a new
pay element containing the sum of the values of the
original elements, and order the resulting sequence in
ascending order by the value of the pay element.

for $e in $emps
return

�emp�

{
$e/name,
�pay� {$e/salary � $e/commission

� $e/bonus} �/pay�

}
�/emp�

sortby (pay)

In some cases, it may be desirable to provide a de-
fault value that can be substituted for missing op-
erands in an arithmetic expression. The next section
of this paper illustrates how a user-defined function
can be written for this purpose.

Operations on sequences. In a sense, all XQuery
operations are operations on sequences, since every
value in XQuery is either a sequence or an error.
However, XQuery provides three operators that are
specifically designed for combining sequences of
nodes: union, intersect, and except. A union of two
node sequences is a sequence containing all the
nodes that occur in either of the operands. The
intersect operator produces a sequence contain-
ing all the nodes that occur in both of its operands.
The except operator produces a sequence contain-
ing all the nodes that occur in its first operand but
not in its second operand.

The union, intersect, and except operators return
node sequences in document order and eliminate du-
plicates from their result sequences, based on node
identity. Query Q6 provides an example of the use
of the intersect operator.

(Q6) Construct a new element named recent-large-bids,
containing copies of all the bid elements in the doc-
ument bids.xml that have a bid-amount of more than
1000 and a bid-date after January 1, 2002.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 CHAMBERLIN 607

�recent-large-bids�

document(''bids.xml'')
/�/bid[bid-amount � 1000.00]

intersect
document(''bids.xml'')

/�/bid[bid-date � date(''2002-01-01'')]
�/recent-large-bids�

Expressions that apply the union, intersect, and
except operators can often be expressed in another
way. For example, the following query is equivalent
to Q6:

�recent-large-bids�

document(''bids.xml'')/�/bid
[bid-amount � 1000.00 and bid-date

� date(''2002-01-01'')]
�/recent-large-bids�

It is important to remember that intersect and
except are not useful in combining sequences of
nodes from different documents, since there is no
possibility that two nodes in different documents
could have the same node identity. For example, con-
sider the following query:

document(''items.xml'')//itemno
except
document(''bids.xml'')//itemno

This query applies the except operator to two se-
quences of itemno nodes. Since the node sequences
are selected from different documents, there is no
possibility that any node in the second sequence
could be identical to a node in the first sequence.
Therefore, this query returns all the itemno nodes
in items.xml. If the intent of the query had been to
make a list of itemno elements for items that have
no bids, this could have been accomplished as fol-
lows, using the library function empty, which returns
true if its operand is an empty sequence:

for $i in document(''items.xml'')//item
where empty(document(''bids.xml'')
//bid[itemno eq $i/itemno])

return $i/itemno

In the above example, the predicate itemno eq $i/
itemno compares two itemno nodes by extracting and
comparing their content rather than by their iden-
tity.

The � operator, retained for compatibility with XPath
1.0, is equivalent to the union operator. These op-

erators are sometimes used in a step of a path expres-
sion. For example, the following path expression
finds the union of all b children and c children of
nodes in the sequence bound to $a; the nodes in this
union then serve as context nodes for the next step
in the path.

$a/(b � c)/d

Conditional expressions. A conditional expression
provides a way of executing one of two expressions,
depending on the value of a third expression. It is
written in the familiar if . . . then . . . else format pro-
vided by many languages. In XQuery, all three
clauses (if, then, and else) are required, and the
expression in the if clause must be enclosed in pa-
rentheses.

The result of a conditional expression depends on
the value of the expression in the if clause, called
the test expression. The rules are as follows:

If the value of the test expression is the Boolean value
true, or a sequence containing at least one node
(serving as an “existence test”), the then clause is
executed.

If the value of the test expression is the Boolean value
false or an empty sequence, the else clause is ex-
ecuted.

Otherwise, the conditional expression returns the er-
ror value.

The following simple conditional expression might
be used to return the price of a part, depending on
the existence of an attribute named discounted (in-
dependently of the value of the attribute):

if ($part/@discounted) then $part/wholesale
else $part/retail

Q7 in Figure 3 is an example of a more complex query
that contains a conditional expression. The query also
illustrates several levels of nesting of FLWR expres-
sions and element constructors.

Quantified expressions. Quantified expressions al-
low testing of some condition to see whether it is true
for some value in a sequence (called an existential
quantifier), or for every value in a sequence (called
a universal quantifier). The result of a quantified
expression is always true or false.

CHAMBERLIN IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002608

Like a FLWR expression, a quantified expression al-
lows a variable to iterate over the items in a sequence,
being bound in turn to each item in the sequence.
For each variable binding, a test expression is eval-
uated. A quantified expression that begins with some
returns the value true if the test expression is true for
some variable binding, as in the following example:

some $n in (5, 7, 9, 11) satisfies $n � 10

A quantified expression that begins with every, in
contrast, returns the value true if the test expres-
sion is true for every variable binding. For example,
the following quantified expression returns the value
false because the test expression is true for some
but not all bindings:

every $n in (5, 7, 9, 11) satisfies $n � 10

The use of a quantified expression in a query is il-
lustrated by Q8.

(Q8) Find the items in items.xml for which all the bids
received were more than twice the reserve price. Re-
turn copies of all these item elements, enclosed in a
new element called underpriced-items.

�underpriced-items�

for $i in document(''items.xml'')
where every $b in document(''bids.xml'')

/�/bid[itemno � $i/itemno]
satisfies $b/bid-amount

� 2 � $i/reserve-price
return $i

�/underpriced-items�

Functions

We have already seen several examples of functions,
including the document function and aggregating
functions such as avg. XQuery provides a library of
predefined functions, listed in Reference 11, and also

(Q7) Generate a report containing the status of the bids for various items. Label each bid with
a status “OK,” “too small,” or “too late.” Enclose the report in an element called bid-status-report.

<bid-status-report>

 for $i in document ("items.xml")/*/item

 return

 <item>

 {

 $i/itemno,

 for $b in document ("bids.xml")/*/bid[itemno = $i/itemno]

 return

 <bid>

 {

 $b/bidder,

 $b/bid-amount,

 <status>

 {

 if ($b/bid-date > $i/end-date) then "too late"

 else if ($b/bid-amount < $i/reserve-price)

 then "too small"

 else "OK"

 }

 </status>

 }

 </bid>

 }

 </item>

</bid-status-report>

Figure 3 Example of more complex query

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 CHAMBERLIN 609

allows users to define functions of their own. A func-
tion may take zero or more parameters. A function
definition must specify the name of the function and
the names of its parameters. It may optionally spec-
ify types for the parameters and the result of the func-
tion. It must also provide the body of the function,
which is an expression enclosed in curly braces. When
the function is called, the arguments of the function
call are bound to the parameters of the function and
the body is executed, producing the result of the func-
tion call. If no type is specified for a function param-
eter, that parameter accepts values of any type. If
no type is specified for the result of the function, the
function may return a value of any type.

The following example defines a function named
highbid that takes an element node as its param-
eter and returns a decimal value. The function in-
terprets its parameter as an item element and ex-
tracts its item number; it then finds and returns the
largest bid-amount that has ever been recorded for
that item number. The example also illustrates a
function call that invokes the highbid function on
the item with item number 1234.

define function highbid(element $item)
returns decimal
{
max(document(''bids.xml'')

//bid[itemno � $item/itemno]/bid-amount)
}

highbid(document(''items.xml'')
//item[itemno � ''1234''])

The types used as the argument-types and result-type
of a function definition may be simple types such as
decimal, or more complex types such as elements
and attributes. The rules for declaring types in func-
tion definitions are described in more detail in the
next section.

XQuery does not support overloading of user-de-
fined functions; that is, it does not permit two user-
defined functions to have the same qualified name.
Nevertheless, some of the XQuery built-in functions
are overloaded. For example, the string function
can convert an argument of almost any type into a
string.

The arguments of a function call must match the de-
clared types of the function parameters. For this pur-
pose, a function argument of a numeric type may be
promoted to the declared parameter type, using the

promotion hierarchy integer 3 decimal 3 float
3 double. An argument is also considered to be a
match if the type of the argument is derived from
(i.e., a subtype of) the declared parameter type. If
a function that expects an atomic value is called with
an argument that is an element, the typed value of
the element is extracted and checked for compat-
ibility with the expected parameter type before it is
passed to the function. The value produced by the
body of a function must also match the return type
declared in the function definition, using the same
rules that are used for parameter matching.

The following example illustrates how a user might
write a function to provide a default value for miss-
ing data. The function named defaulted takes two
parameters: a (possibly missing) element node, and
a default value. If the element is present and has a
nonempty value, the function returns that value; but
if the element is absent or empty, the function re-
turns the default value.

define function defaulted
(element? $e, anySimpleType $d)
returns anySimpleType
{
if (empty($e)) then $d
else if (empty($e/�)) then $d
else data($e)
}

Using this function, query Q5 could be rewritten as
follows. In this formulation, missing or empty com-
mission or bonus elements are treated as though they
have the value zero:

for $e in $emps
return

�emp�

{
$e/name,
�pay� { $e/salary

� defaulted ($e/commission, 0)
� defaulted ($e/bonus, 0) }

�/pay�

}
�/emp�

sortby(pay)

A function that invokes itself in its own body is called
a recursive function, and two functions whose bodies
invoke each other are called mutually recursive func-
tions. Recursion is a powerful feature in function def-
initions, particularly in functions that are defined

CHAMBERLIN IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002610

over a hierarchical data model such as XML. As an
illustration of a recursive function, the depth func-
tion in the following example can be invoked on an
element and returns the depth of the element hier-
archy beginning with its argument. If the argument
element has no descendants, the depth of the hier-
archy is one. Otherwise, the depth of the hierarchy
is one more than the maximum depth of any hier-
archy rooted in a child of the argument element; this
value is computed by a recursive call to the depth
function. The example also illustrates a function call
that invokes the depth function to find the depth of
the document named bids.xml.

define function depth(element $e)
returns integer
{
if (empty($e/�)) then 1
else 1 � max
(for $c in $e/� return depth($c))

}

depth(document(''bids.xml''))

Types

In writing a query, it is sometimes necessary to refer
to a particular type. For example, function defini-
tions need to describe the types of the function pa-
rameters and result, as noted in the previous sec-
tion. Other types of XQuery expressions, described
later in this section, also need to refer to specific
types.

One way to refer to a type is by its qualified name,
or QName. A QName may refer to a built-in type
such as xs:integeror to a type that is defined in some
schema, such as abc:address. If the QName has a
namespace prefix (the part to the left of the colon),
that prefix must be bound to a specific namespace
URI. This binding is accomplished by a namespace
declaration in the query prolog, described in the next
section.

Another way to refer to a type is by a generic key-
word such as element or attribute. This keyword
may optionally be followed by a QName that fur-
ther restricts the name or type of the node. For ex-
ample, element denotes any element; element shipto
denotes an element whose name is shipto; and
element of type abc:address denotes an element
whose type is address as declared in the namespace
abc. The keyword attribute denotes any attribute,

node denotes any node, and item denotes any item
(node or atomic value).

XQuery also provides additional syntax that makes
it possible to refer to other kinds of nodes and to
element types that are defined in a local part of a
schema. For example, element city in customer/
address refers to the element named city, as de-
fined in the schema context customer/address.

A reference to a type may optionally be followed by
one of three occurrence indicators: “�” means “zero
or more”; “�” means “one or more,” and “?” means
“zero or one.” The absence of an occurrence indi-
cator denotes exactly one occurrence of the indicated
type. The use of occurrence indicators is illustrated
by the following examples:

element memo? denotes an optional occurrence of an
element with the name memo

element of type order� denotes one or more
elements with the type order

element� denotes zero or more unrestricted elements
attribute? denotes an optional attribute of any

name or type

Type references occur not only in function defini-
tions but also in several other places in XQuery. One
of these places is the second operand of instance of,
a binary operator that returns true if its first oper-
and is an instance of the type named in its second
operand. The following examples illustrate usage of
the instance of operator, presuming that the prefix
xs is bound to the schema namespace, http://
www.w3.org/2001/XMLSchema:

49 instance of xs:integer returns true
''Hello'' instance of xs:integer returns false
�partno�369�/partno� instance of element� returns
true

$a instance of element shipto returns true if $a
is bound to an element whose name is shipto

Occasionally it may be necessary for a query to pro-
cess an expression in a way that depends on the dy-
namic (run-time) type of the expression. For exam-
ple, a query might be preparing mailing labels and
might need to extract geographical information from
various types of addresses. For such applications,
XQuery provides an expression called typeswitch,
which is loosely modeled on the switch statement
of the C or Java** languages. The first part of a
typeswitch consists of the expression whose type is
being tested, called the operand expression, and op-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 CHAMBERLIN 611

tionally a variable that is bound to the value of the
operand expression. This is followed by one or more
case clauses, each of which contains a type and an
expression. The operand expression is tested against
the type named in each of the case clauses in turn.
The first case clause for which the operand expres-
sion is an instance of the named type is called the
effective case; the expression in this case clause is eval-
uated and serves as the result of the typeswitch. If
the operand expression does not conform to any of
the types named by the case clauses, the result of
the typeswitch is taken from a final default clause.

The use of a typeswitch expression is illustrated by
the following example. This expression might occur
inside a loop in which the variable $customer iter-
ates over a set of customer elements, each of which
has a subelement named billing-address. The
billing-address subelements are of several differ-
ent types, each of which needs to be handled in its
own way. In the example, $a is bound to a
billing-address and then one of several expressions
is evaluated, depending on the dynamic type of $a.
Within each case clause, $a has a specific type, for
example, in the first case clause, the type of $a is
known to be element of type USAddress. If a
billing-address element is encountered that does
not conform to one of the expected types, the result
of this example expression is “unknown.”

typeswitch($customer/billing-address) as $a
case element of type USAddress
return $a/state

case element of type CanadaAddress
return $a/province

case element of type JapanAddress
return $a/prefecture

default return ''unknown''

Type names are also used in three similar-looking
XQuery expressions called cast, treat, and assert.
Each of these expressions consists of a keyword, a
reference to a type, and an expression enclosed in
parentheses.

A cast expression is used to convert the result of an
expression into one of the built-in types of XML
Schema. A predefined set of casts is supported. For
example, the result of the expression $x div 5 could
be cast to the xs:double type by the expression
cast as xs:double($x div 5). A cast may return an
error value if it is unsuccessful. For example,
cast as xs:integer($mystring) will be successful
if $mystring is a string representation of an integer,

but it will return an error if $mystring has the value
''Hello''. The cast expression cannot be used to cast
a value into a user-defined type; however, a user can
write a function for this purpose.

A treat expression is used to ensure that the dynamic
(run-time) type of an expression conforms to an ex-
pected type. For example, suppose that the static
(compile-time) type of the expression $customer/
shipping-address is Address. A certain subexpres-
sion may be meaningful only for values that conform
to a subtype of Address, such as USAddress. The writer
of the subexpression may use a treat expression to
declare the expected type of the subexpression, as
in the following example:

treat as USAddress($customer/billing-address)

Unlike a cast expression, a treat expression does
not actually change the type of its operand. Instead,
its effect is twofold: (1) it assigns a specific static type
to its operand, which can be used for type-checking
when the query is compiled; and (2) at execution
time, if the actual value of the expression does not
conform to the named type, it returns an error value.

To see how a query processor might make use of the
information provided by a treat expression, consider
the following example:

$customer/billing-address/zipcode

A type-checking XQuery compiler might consider
the above example to be a type error, since the static
type of $customer/billing-address is Address, and
the Address type does not in general have a zipcode
subelement. However, in the following reformula-
tion of the example, the static type of the expression
is changed to USAddress, which has a zipcode sub-
element, and the type error is removed:

(treat as USAddress
($customer/billing-address))/zipcode

Like treat, assert is used to provide a query pro-
cessor with information that may be useful for type-
checking. An assert expression serves as an asser-
tion to the query processor that its operand
expression has a particular static type. If the proces-
sor is checking a query for static type-safety, it may
raise an error if it cannot verify that the given expres-
sion conforms to the asserted type. An assert expres-
sion is more strict than a treat expression, because
it pertains to the static type of the expression, and

CHAMBERLIN IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002612

therefore it is independent of input data and can be
checked before execution of the query. A treat
expression, in contrast, pertains to the dynamic type
of the expression, and therefore depends on input
data and can only be checked during query process-
ing.

The following example, unlike the similar treat
expression discussed above, will generate a compile-
time type error if the static type of $customer/
billing-address is Address:

(assert as USAddress
($customer/billing-address))/zipcode

XQuery does not require an implementation to pro-
vide static type-checking. For a query processor that
does not provide static type-checking, an assert
expression is equivalent to a treat expression.

Validation

The process of schema validation is defined in Ref-
erence 3. Schema validation may be applied to an
XML document or to a part of a document such as
an individual element. The material being validated
is compared with the definitions in a given schema,
which describes a particular kind of document. The
validation process may label an element as valid or
invalid; it may also assign a specific type to an el-
ement and provide additional information such as
default values for certain attributes. For example,
validation of an element named shiptomight assign
it the specific type USAddress and might provide a
default value for its carrier attribute.

Schema validation is applied to input documents as
part of the process of representing them in the query
data model. In addition, schema validation can be
invoked explicitly on a query result or on some in-
termediate expression within a query.

The query data model associates a type annotation
with each element node. A type annotation indicates
that an element has been validated as conforming
to a specific named type. Elements that have not been
validated or that do not conform to a named type
have the generic type annotation anyType. For ex-
ample, an element that is created by an element con-
structor has the type annotation anyType until it is
given a more specific type by a validate expression.
The following example constructs an element and
validates it against the schema(s) that are named in
the query prolog:

validate { �shipto�

�street�123 Elm St.�/street�

�city�Elko, NV�/city�

�zipcode�85039�/zipcode�

�/shipto� }

Type annotations are used by expressions such as
instance of and typeswitch that test the type of an
element, and by expressions such as function calls
that require an element of a particular type. For ex-
ample, validation of the shipto element above might
assign it a type annotation of USAddress, which might
enable it to be used as an argument to a function
whose parameter type is element of type USAddress.

Structure of a query

In XQuery, a query consists of two parts called the
query prolog and the query body. The query prolog
contains a series of declarations that define the envi-
ronment for processing the query body. The query
body is simply an expression whose value defines the
result of the query.

The query prolog is needed only if the query body
depends on one or more namespaces, schemas, or
functions. If such a dependency exists, the object(s)
that the query body depends on must be declared
in the query prolog. We will discuss declarations for
namespaces, schemas, and functions separately.

A namespace declaration defines a namespace pre-
fix and associates it with a namespace URI. The pre-
fix can be any identifier. For example, the following
namespace declaration defines the prefix xyz and as-
sociates it with a specific URI:

namespace xyz
� ''http://www.xyz.com/example/names''

This declaration enables the prefix xyz to be used
in QNames in the query body. It associates the pre-
fix with the URI of a specific namespace and serves
as a unique qualifier for names of elements, at-
tributes, and types. For example, xyz:billing-
addressmight uniquely identify the billing-address
element defined in the namespace http://www.
xyz.com/example/names. If desired, multiple
namespace prefixes can be associated with the same
namespace.

The query prolog can declare a default namespace
that applies to all unqualified element and type

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 CHAMBERLIN 613

names and another default namespace that applies
to all unqualified function names. The syntax for de-
claring default namespaces is illustrated in the fol-
lowing example:

default element namespace
� ''http://www.xyz.com/example/names''

default function namespace
� ''http://www.xyz.com/example/functions''

If no default namespaces are provided, unqualified
names of elements, types, and functions are consid-
ered to be in no namespace. Unqualified attribute
names are always considered to be in no namespace.

In addition to namespace declarations, a query pro-
log can contain one or more schema imports. A
schema import identifies a schema by its URI and op-
tionally provides a second URI that specifies the lo-
cation where the schema file can be found. The pur-
pose of the schema import is to make available to
the query processor the definitions of elements, at-
tributes, and types that are declared in the named
schema. The query processor can use these defini-
tions for validating newly constructed elements, for
optimization, and for doing static type analysis on
a query.

A schema usually defines a set of elements, attributes,
and types in a particular namespace, called its target
namespace, but it does not define a namespace pre-
fix. Therefore, a schema import may specify a
namespace prefix to be bound to the target
namespace of the given schema. For example, the
following schema import binds the namespace pre-
fix xhtml to the target namespace of a particular
schema and also provides the system with a nonbind-
ing “hint” for where this schema can be found:

schema namespace xhtml
� ''http://www.w3.org/1999/xhtml''
at ''http://www.w3.org/1999/xhtml/xhtml.xsd''

In addition to namespace declarations and schema
imports, a query prolog may contain one or more
function definitions. We have seen examples of func-
tion definitions in an earlier section. The functions
defined in the query prolog may be used in the query
body or in the bodies of other functions. It is expected
that the query prolog will also provide a means of
importing function definitions from an external func-
tion library.

Conclusion

XQuery is a functional language consisting of sev-
eral types of expressions that can be composed with
full generality. XQuery expression-types include path
expressions, element constructors, function calls,
arithmetic and logical expressions, conditional ex-
pressions, quantified expressions, expressions on se-
quences, and expressions on types.

XQuery is defined in terms of a data model based
on heterogeneous sequences of nodes and atomic
values. An instance of this data model may contain
one or more XML documents or fragments of doc-
uments. A query provides a mapping from one in-
stance of the data model to another instance of the
data model. A query consists of a prolog that estab-
lishes the processing environment, and an expres-
sion that generates the result of the query.

Currently, XQuery is defined only by a series of work-
ing drafts, and design of the language is an ongoing
activity of the W3C XML Query Working Group. The
working group is actively discussing the XQuery type
system and how it is mapped to and from the type
system of XML Schema. It is also discussing full-text
search functions, serialization of query results, error-
handling, and a number of other issues. It is likely
that the final XQuery specification will include mul-
tiple conformance levels; for example, it may define
how static type-checking is done but not require that
it be done by every conforming implementation. It
is also expected that a subset of XQuery will be des-
ignated as XPath Version 2.0 and will be made avail-
able for embedding in other languages such as XSLT.5

This paper has presented an overview of XQuery,
illustrated with some example queries. For a more
complete description of XQuery and a BNF (Backus-
Naur Form) grammar for the language, the reader
is referred to Reference 7. The document at this URI
will be updated periodically to contain the latest
XQuery specification as the language continues to
evolve.

Just as XML is emerging as an application-indepen-
dent format for exchange of information on the In-
ternet, XQuery is designed to serve as an application-
independent format for exchange of queries. If
XQuery is successful in providing a standard way to
retrieve information from XML data sources, it will
help XML to realize its potential as a universal in-
formation representation.

**Trademark or registered trademark of Sun Microsystems, Inc.

CHAMBERLIN IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002614

Cited references

1. Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation (6 October 2000), see http://www.
w3.org/TR/REC-xml.

2. World Wide Web Consortium (W3C), see http://www.w3.org.
3. XML Schema, Parts 0, 1, and 2, W3C Recommendation (2

May 2001), see http://www.w3.org/TR/xmlschema-0, http://
www.w3.org/TR/xmlschema-1 and http://www.w3.org/TR/
xmlschema-2.

4. XML Path Language (XPath) Version 1.0, W3C Recommen-
dation (16 November 1999), see http://www.w3.org/TR/xpath.

5. XSL Transformation (XSLT) Version 1.0, W3C Recommen-
dation (16 November 1999), see http://www.w3.org/TR/xslt.

6. W3C XML Query Working Group, see http://www.w3.
org/XML/Query.

7. XQuery 1.0: An XML Query Language, W3C Working Draft
(16 August 2002), see http://www.w3.org/TR/xquery.

8. XML Query Requirements, W3C Working Draft (15 Febru-
ary 2001), see http://www.w3.org/TR/xmlquery-req.

9. XQuery 1.0 and XPath 2.0 Data Model, W3C Working
Draft (16 August 2002), see http://www.w3.org/TR/query-
datamodel.

10. XQuery 1.0 Formal Semantics, W3C Working Draft (16 Au-
gust 2002), see http://www.w3.org/TR/query-semantics.

11. XQuery 1.0 and XPath 2.0 Functions and Operators, W3C
Working Draft (16 August 2002), see http://www.w3.org/
TR/xquery-operators.

12. XML Query Use Cases, W3C Working Draft (16 August 2002),
see http://www.w3.org/TR/xmlquery-use-cases.

13. D. Chamberlin, J. Robie, and D. Florescu, “Quilt: An XML
Query Language for Heterogeneous Data Sources,” Lecture
Notes in Computer Science, Springer-Verlag (December 2000),
see also http://www.almaden.ibm.com/cs/people/chamberlin/
quilt.html.

14. T. Atwood, D. Barry, J. Duhl, J. Eastman, G. Ferran, D. Jor-
dan, M. Loomis, and D. Wade, The Object Database Stan-
dard: ODMG-93, Release 1.2, R. G. C. Catell, Editor, Mor-
gan Kaufmann Publishers, San Francisco, CA (1996).

15. Information Technology-Database Language SQL, Standard
No. ISO/IEC 9075, International Organization for Standard-
ization (ISO) (1999); available from American National Stan-
dards Institute, New York, NY 10036, (212) 642–4900.

16. J. Robie, J. Lapp, and D. Schach, XML Query Language
(XQL), see http://www.w3.org/TandS/QL/QL98/pp/xql.html.

17. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Su-
ciu, A Query Language for XML, see http://www.research.
att.com/�mff/files/final.html.

18. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wie-
ner, “The Lorel Query Language for Semistructured Data,”
International Journal on Digital Libraries 1, No. 1, 68–88 (April
1997), see http://www-db.stanford.edu/�widom/pubs.html.

19. Namespaces in XML, W3C Recommendation (14 January
1999), see http://www.w3.org/TR/REC-xml-names.

20. XML Path Language (XPath) 2.0, W3C Working Draft (20
December 2001), see http://www.w3.org/TR/xpath20.

Accepted for publication June 17, 2002.

Don Chamberlin IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (electronic mail:
chamberlin@almaden.ibm.com). Dr. Chamberlin is best known
as co-inventor of the SQL database language and as author of
two books on IBM’s relational database products. He holds a B.S.

degree in engineering from Harvey Mudd College and a Ph.D.
degree in electrical engineering from Stanford University. He is
an ACM Fellow and a member of the National Academy of En-
gineering and the IBM Academy of Technology. Dr. Chamber-
lin is currently a research staff member at the Almaden Research
Center, where his work is focused on relational database tech-
nology, document processing, and XML. He serves as one of
IBM’s representatives to the W3C XML Query Working Group
and as an editor of the XQuery language specification.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 CHAMBERLIN 615

