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This paper presents, QuickStore, a memory-mapped storage sys-
tem for persistent C++ built on top of the EXODUS Storage
Manager. QuickStore provides fast access to in-memoty objects
by allowing application programs to accessobjects via normal vir-
tual memory pointers. The paper also presents the results of a
detailed performance study using the 007 benchmark. The study
compares the performance of QuickStore with the latest implemen-
tation of the E programming language. These systems exemplify
the two basic approaches (hardware and software) that have been
used to implement persistence in object-oriented database systems.
Both systems use the same underlying storage manager and com-
piler allowing us to make a truly apples-to-apples comparison of
the hardware and software techniques.

1. Introduction

This paper presents, QuickStore, a memory-mapped storage sys-
tem for persistent C++ built on top of the EXODUS Storage
Manager (ESM) [Carey89a, Carey89b]. QuickStore uses standard
virtual memory hardware to trigger the transfer of persistent data
from secondary storage into main memory [Wilso90]. The advan-
tage of this approach is that accessto in-memory persistent objects
is just as efficient as access to transient objects, i.e. application
programs access objects by dereferencing normal virtual memory
pointers, with no overhead for software residency checks as in
[Moss90, Schuh90, White92].

QuickStore is implemented as a C++ class library that can be
linked with an application, requiring no special compiler support.
The memory-mapped architecture of QuickStore supports “per-
sistence orthogonal to type”, so that both transient and persistent
objects can be manipulated using the same compiled code.
Because QuickStore uses ESM to store persistent data on disk, it
features a client-server architecture with full support for transac-
tions (concurrency control and recovery), indices, and large
objects. QuickStore places no additional limits on the size of a
database, and the amount of data that can be accessedin the con-
text of any single transaction is limited only by the size of virtual
memory,

The paper also presents the results of a detailed performance study,
in which we use the 007 benchmark [Carey93] to compare the

performance of QuickStore with the latest implementation of E
[Rich89], a persistent programming language developed at
Wisconsin that is also based on C++, The comparison between

QuickStore and E is interesting because each of the systems takes a
radically different approach toward implementing persistence.
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QuickStore employs a hardware faulting scheme that relies on vir-
tual memory support (as mentioned above), while E uses an inter-

pretive approach that is implemented in software.

These systems exemplify the two basic approaches (hardware and

soft ware) that have been used to implement persistence in object-

oriented systems. Moreover, both QuickStore and E use the same

underlying storage manager (ESM) and compiler. This allows us

to make a truly apples-to-apples comparison of the hardware and

software swizzling schemes, something which has not been done

previously.

The remainder of the paper is organized as follows. Section 2
discusses related work on hardware and software based pointer

swizzling schemes and points out how the performance results

presented in this paper differ from previous studies. Section 3

describes the design of QuickStore. Section 4 presents our experi-

mental methodology and Section 5 presents the results of the per-
formance study. Section 6 contains some conclusions and propo-
sals for future work.

2. Related Work

A detailed proposal advocating the use of virtual memory tech-

niques to trigger the transfer of persistent objects from disk to main
memory, first appeared in [Wilso90]. The basic approach

described in [Wilso90] is termed “pointer swizzling at page fault
time” since under this scheme all pointers on a page are converted
from their disk format to normal virtual memory pointers (i.e.

swizzled) by a page-fault handling routine before an application is

given access to a newly resident page. In addition, pages of virtual
memory are allocated for non-resident pages one step ahead of

their actual use and access protected, so that references to these

pages will cause a page-fault to be signaled, The technique

described in [Wilso90] allows programs to access persistent

objects by dereferencing standard virtual memory pointers, elim-
inating the need for software residency checks.

The basic ideas presented in [Wilso90] were, at the same time,

independently used by the designers of ObjectStore [Objec90,
Lamb91 ], a commercial 00DBMS product from Object Design,
Inc. The implementation of ObjectStore, outlined briefly in

[Objec90], differs in some interesting ways from the scheme
described in [Wilso90]; most notably in the way that pointer swiz-
zling is implemented, and in how pointers are represented on disk.

Under the approach outlined in [Objec90], pointers between per-
sistent objects are stored on disk as virtual memory pointers

instead of being stored in a different disk format as in [Wilso90].
In other words, pointer fields in objects simply contain the vahre

that they last were assigned when the page was resident in main
memory in ObjectStore. When a page containing persistent objects
is first referenced by an application program, ObjectStore attempts
to assign the page to the same virtual address as when rhe page was
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ResearchLaboratory under contract DAAB07-91-C-Q518.
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last memory resident. If all of the pages accessed by an applica-

tion can be assigned to their previous locations in memory, then
the pointers contained on the pages can retain their previous
values, and need not be “swizzled”, i.e. changed to reflect some

new assignment of pages to memory locations, as part of the fault-
ing process. If any page cannot be assigned to its previous address

(because of a conflict with another page), then pointers that refer-
ence objects on the page will need to be altered (i.e swizzled) to
reflect the new location of the page.

This scheme requires that the system maintain some additional

information describing the previous assignment of disk pages to

virtual memory addresses. The hope is that processing this infor-

mation will be less expensive on average, than swizzling the

pointers on pages that are faulted into memory by the application

program. We note here that QuickStore is similar to ObjectStore

in that QuickStore also stores pointers on disk as virtual memory

pointers. Section 3 contains a detailed discussion of the implemen-

tation of QuickStore.

The Texas [Singh92] and Cricket [Shek90] storage systems also

use virtual memory techniques to implement persistence. Texas
stores pointers on disk as 8-byte file offsets, and swizzles pointers
to virtual addresses as described in [Wilso90] at fault time.

Currently, all data is stored in a single file (implemented on a raw

Unix disk partition) in Texas [Singh92]. Although, QuickStore
and Texas are different in their implementation details, there are

some similarities between the two systems. For example, both sys-

tems are implemented as C++ libraries that add persistence to C++

programs without the need for compiler support. Both systems

also support the notion of “persistence orthogonal to type”. This
allows the same compiled code to manipulate both transient and
persistent objects. Both systems also allow the database size to be

bigger than the size of virtual memory.

Texas, however, is currently a single user, single processor system

while QuickStore, since it is built on top of client-server

EXODUS, features a client-server architecture with full transaction

support including concurrency control, recovety, and support for

distributed transactions. QuickStore is also different in that it
manipulates objects directly in the ESM client buffer pool, while

Texas copies objects into a separate heap area allocated in virtual

memory. This limits the amount of data that can currently be

accessed during a single transaction by Texas to the size of the disk
swap area backing the application process. QuickStore also
manages paging in the ESM client buffer pool explicitly, while
Texas simply allows pages to be swapped to disk by the virtual

memory subsystem when the process size exceeds the size of phy-
sical memory. Cricket, on the other hand, uses the Mach external
pager facility to map persistent data into an application’s address

space (see [Shek90] for details).

We next discuss previous performance studies of pointer swizzling
and object faulting techniques, and point out how the study
presented here differs from them. [Moss90] contains a study of

several software swizzling techniques and examines various issues
relevant to pointer swizzling. Among these are whether swizzling
has better performance than simply using object identifiers to
locate objects, and whether objects should be manipulated in the
buffer pool of the underlying storage manager, or copied out into a
separate area of memory before swizzling takes place. [Moss90]

also looks at lazy vs. eager swizzling. Eager swizzling involves
prefetching the entire collection of objects into memory so that all
pointers can be swizzled, while lazy swizzling swizzles pointers
incrementally as objects are accessed and faulted into memory by

the application program.

We do not consider copy swizzling approaches since [White92]
showed that they do not perform well when the database size is
larger than physical memory, The study presented here also differs
from [Moss90] in that we allow pages of objects to be replaced in

the buffer pool, while [Moss90] only considers small data sets
where no paging occurs. The systems we examine also include

concurrency control and recovery, while those examined in
[Moss90] did not.

[Hoski93] examines the performance of several object faulting

schemes in the context of a persistent Smalltalk implementation.

[Hoski93] includes one scheme that uses virtual memory tech-
niques to detect accesses to non-resident objects. The approach

described in [Hoski93] allocates fault-blocks, special objects that

stand in for non-resident objects, in protected pages. When the

application tries to access an object through its corresponding fault

block, an access violation is signaled. The results presented in

[Hoski93] show this scheme to have very poor performance. It is

not clear, however, whether this is due to the overhead associated
with using virtual memory or is the result of extra work that must

be performed during each object fault to locate and eliminate any

outstanding pointers to the fault block that caused the fault. This
work involves examining the pointer fields of all transient and per-

sistent objects that contain pointers to the fault block. Finally, we

note that the effects of page replacement in the buffer pool and

updates are also not considered in [Hoski93].

In [White92] the performance of several implementations of the E
language [Rich89, Rich90, Schuh90] and ObjectStore [Objec90,

Lamb91], a commercial 00DBMS, are compared. The results
presented in [White92] were inconclusive, however, in providing a

true comparison of software and hardware-based schemes since the

underlying storage managers used by the systems were different

and because the systems used different compilers. In the study
presented in this paper, all of the systems use the same underlying
storage manager and compiler, so any differences in performance

are due to the swizzling and faulting technique that was used.

One additional difference between the systems compared in

[White92] and those examined here, is that the systems included in

the current study are much less restrictive in terms of the amount

of data that can be accessed during a transaction, and all systems

manage paging of persistent data explicitly. This differs from the

approach used by EPVM 2.0 in [White92], which limited the
amount of data that could be accessed during a transaction to the

size of the disk swap area backing the process, and which allowed

objects to be swapped to disk by the virtual memory subsystem

when the size of the process exceeded the size of physical memory.

3. QuickStore Design Concepts

3.1. Overview of the Memory-Mapped Architecture

As mentioned in Section 1, QuickStore uses ESM to store per-

sistent objects on disk. ESM features a page-shipping architecture,
in which objects are transferred from the server to the client a
page-at-a-time. Once a page of objects has been read into the
buffer pool of the ESM client, applications that use QuickStore
access objects on the page directly in the ESM client buffer pool,
by dereferencing normal virtual memory pointers. Objects are
always accessed in the context of a transaction in QuickStore.

To understand the way that QuickStore coordinates access to per-
sistent objects, it is useful to view the virtual address space of the

application process as being divided into a contiguous sequence of
frames of equal length, In our case, these frames are 8 K-bytes in
size, the same size as pages on disk. The ESM client buffer pool
can also be viewed as a (much smaller) sequence of 8 K-byte
frames. To coordinate access to persistent objects, QuickStore

maintains a physical mapping from virtual memory frames to

frames in the buffer pool. This physical mapping is dynamic,
since paging in the buffer pool requires that the same frame of vir-
tual memory be mapped to different frames in the buffer pool at
different points in time. The mapping can also be viewed as a
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logical mapping from virtual memory frames to disk pages. When
viewed this way, the ma~ping is static since the same virtual frame

is always associated with the same disk page during a transaction.
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Figure 1. Mapping virtual frames into the buffer pool.

Figure 1 illustrates this mapping scheme in more detail. The buffer

pool shown in Figure 1 contains 7 frames (labeled from 1 to 7).

Virtual memory frames are denoted using upper-case letters, while

disk pages are specified in lower-case. In the discussion that fol-

lows, we sometimes refer to the virtual memory frame beginning at
address A as frame A.

The virtual memory frame corresponding to a disk page that con-
tains persistent data is selected by QuickStore and access pro-

tected, before the page can be accessed by an application. When
the application first attempts to access an object on the page by
dereferencing a pointer into its frame, a page-fault is signaled and a

fault handling routine that is part of the QuickStore runtime system

is invoked. This fault handling routine is responsible for reading
the page from disk, updating various data structures, and enabling
access permission on the virtual frame that caused the fault so that

execution of the program can resume. For example, in Figure 1a

page a has been read from disk into frame 4 of the buffer pool.
Page a is “mapped’ to virtual address A, Read access has been

enabled on frame A, so that the application can read the objects

contained on page a. We note that once the mapping from virtual
address A to page a has been established, the application can

access objects on page a by dereferencing pointers to frame A at

any time. Thus, the mapping from A to a must remain valid until
the end of the current transaction (or longer, if requested) in order

to preserve the semantics of any pointers that the application may
have to objects on page a.

If the objects on page a contain pointers to objects on other non-
resident pages, then virtual frames are assigned to these pages

when page a is faulted into memory, if they haven’t been already.

A frame for a non-resident page remains access protected until the
program attempts to deference a pointer into the frame. Figure 1
doesn’t explicitly show any frames of this type for page a since
they are not important to the current discussion.

When the buffer pool becomes full, paging will occur and page a
may be selected for replacement by the buffer manager, This is

what has happened in Figure lb. Here, page b has been read from
disk into frame 4 of the buffer pool, replacing page a. Page b has

been mapped to virtual address B and read access on B has been

enabled. Note that since we assume that the buffer pool is full in

Figure lb, additional virtual frames (not shown) will also have

been mapped to the remaining 6 frames in the buffer pool other

than frame 4. If the application continues to access additional

pages of objects in the database, then the situation shown in Figure

lC may result. In Figure 1c, page c has been read into memory and
replaced page b in frame 4 of the buffer pool. Page c has been
mapped to virtual frame C and read access on C has been enabled.

This illustrates that, in general, any number of virtual frames may

be associated with a particular frame of the buffer pool over the
course of a transaction.

The reader may be wondering at this point, what would happen in
Figure lb if the application attempted to dereference pointers into
virtual frame A after page a has been replaced in the buffer pool by

page b? Won’t these pointers refer to data on page b? This prob-

lem is avoided by disabling read access on frame A when page a is
not in memory. If the application again dereferences pointers into

frame A, a page-fault will be signaled and the fault handling rou-

tine invoked. The fault handling routine will call ESM to reread

page a, map virtual frame A to the frame in the buffer pool that

now contains a, and enable read permission on frame A once again,

To illustrate this, Figure ld shows what might result if page a were

immediately referenced after it was replaced in Figure 1b. In this
case, a has been reread by ESM into frame 3 in the buffer pool and

frame 3 has been mapped to virtual memory address A. This

further illustrates the dynamic nature of the physical mapping from
virtual memory frames to frames in the buffer pool since virtual

frame A is mapped to buffer frame 4 in Figure 1a and remapped to

buffer frame 3 in Figure ld. However, the mapping between vir-

tual frames and disk pages is static since virtual frame A is always
mapped to disk page a.

3.2. Implementation Details

QuickStore uses the UNIX remap system call to implement the
physical mapping from virtual memory frames to frames in the

ESM client buffer pool, and to control virtual frames’ access pro-
tections. It was necessary to modify the ESM client software
slightly in order to accommodate the use of remap since remap

really just associates virtual memory addresses with offsets in a

file, while ESM normally calls the UNIX function malloc to allo-
cate space in memory for its client buffer pool. To make ESM and

remap work together, the buffer pool allocation code was changed
so that it would first open a file (and resize it if necessary) equal in
size to the size of the client buffer pool. Then the buffer allocation
code calls remap to associate a range of virtual memory with the
entire file. The rest of the ESM client software uses this range of

memory to access the buffer pool just as though the memory had
been allocated using malloc.

The important thing to note is that the file serves as backing store
for the buffer pool. Swap space and actual physical memory are
never allocated for the virtual frames that are mapped into the file
by remap, so mapping a huge amount of virtual memory into the
buffer pool doesn’t affect the size of the process, although it may
increase the size of page tables maintained by the operating sys-
tem. One should also note that the contiguous range of addresses
used by the ESM client to access the buffer pool is different from

the 8 K-byte ranges of addresses that the application program uses
to access pages in the buffer pool. The former is simply used to
integrate an already existing storage manager (ESM) with the
memory mapped approach and would not, in general, be required
by a memory mapped implementation.
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We would like to point out, however, that using remap in the way

that we did, actt,tally caused some minor performance problems in

the implementation. Because the workstation used as the client
machine (a Sun ELC) in the benchmark experiments had a virtu-

ally mapped CPU cache, accessing the same page of physical

memory in the buffer pool via different virtual address ranges

caused the CPU cache to be flushed whenever the process switched

between the address ranges. This increased the number of min

faults, virtual memory page faults that do not require 110 in Unix
terminology, experienced by the application. We note the effects
of this phenomena when discussing the performance results (see
Section 5).

3.3. In-Memory Data Structures

QuickStore maintains an in-memory table that keeps track of the

current logical mapping from virtual memory frames to disk pages.
At a given point in time, the table contains an entry for every page

that has been faulted into memory, plus entries for any additional

pages which are referenced by pointers on these pages. Entries in
the table are called page descriptors and are 60 bytes long. We

note that disk pages themselves come in two types: pages that con-

tain sets of objects that are smaller than a disk page are called
small object pages, while pages that contain individual pages of

multi-page objects are called large object pages. Table entries for

small object pages and large object pages differ in some respects,
so they are discussed separately.

A page descriptor for a small object page contains the range of vir-
tual addresses associated with the page, the physical address of the

page on disk, and a pointer to the page when it is pinned in the
buffer pool. The physical address of the page, in our implementa-

tion, is the OID of a special meta-object (24 bytes) located on each
small object page. Page descriptors also contain other fields such

as flags that indicate what types of access are currently allowed on

the frame associated with the page (read, write, and none), whether
an exclusive lock has been obtained, and whether or not the page
has previously been read into memory during the current transac-

tion. This last flag is useful since it is not necessary to do any

swizzling work for a page when it is reread during a transaction,
since the pointers on the page are guaranteed to be valid.

The scheme used for large object pages is somewhat more compli-

cated than the scheme for small object pages. The virtual memory

frames associated with a multi-page object must be contiguous, so
they are reserved all at once. To avoid maintaining individual

table entries for every page of a multi-page object, multi-page

objects that have not been accessed, but which are in the mapping,
are represented by a single entry in the mapping table. The range

of virtual addresses in this entry is the entire range of contiguous
addresses associated with the object and the physical address field
contains the OID of the object. When the first page of a multi-page
object is accessed by the application program, the table entry is

split so that there is one entry in the table for the page that has been
accessed, and an entry for each contiguous sub-sequence of unac-
cessed pages. Table entries for sub-sequences of unaccessed pages
of a multi-page object are split in turn when one of the pages con-
tained in the sub-sequence is accessed.

The table organizes page descriptors according to the range of vir-
tual memory addresses that they contain using a height balanced

binary tree. One reason for using a binary tree was that it makes
the splitting operation associated with large objects efficient. It is
also heIpful to keep the ranges of addresses currently allocated to
persistent data ordered. For example, our current scheme for allo-

cating virtual frames to disk pages uses a global counter (stored on
disk) that is incremented by the frame size each time that a frame
is allocated to a disk page. If the database becomes bigger than the
size of virtual memory then this counter will wrap around and it
may become necessary to scan the in-memory binary tree in order

to find a virtual frame that is currently not in use,

Page descriptors are also hashed based on their physical address

(OID) and inserted into a hash table. (For large objects only the

page descriptor that the beginning subsequence of the object is
inserted into the hash table.) The hash table implements a reverse

mapping from physical disk address to virtual memory address.
The hash table is used by the fault handling routine as part of the

pointer swizzling process (see below for details).

3.4. Pointer Swizzling in QuickStore

Like ObjectStore [Objec90, Lamb91 ], QuickStore stores pointers

on disk as virtual memory addresses in exactly the same format

that they have when they are in memory. Since virtual memory

pointers are only meaningful in the context of an individual pro-
cess, this scheme requires that the system maintain some additional

meta-data that associates pointers on disk with the objects that they

reference. The remainder of this section describes how this meta-

data is stored in QuickStore.

QuickStore associates meta-data with individual disk pages. In the

case of small object pages, each page contains a direct pointer

(OID) to a mapping object containing the meta-data for the page.
(Actually, the pointer is contained in a special meta-object located
on the page.) The term mapping object is used since the object

records the mapping between virtual frames referenced by pointers

on the page and disk pages that was in effect when the page was

last memory resident. Mapping objects are essentially just arrays

of <virtual address frame, disk address> pairs.

Mapping information is stored separately instead of on the disk

pages containing objects themselves because the space required to
store the mapping information for a page can vary over time. For
example, if the pointers on a page are updated, the number of

frames referenced by pointers on the page may change, changing

the number of entries in the mapping object. Multi-page objects

are implemented similarly to small object pages, except that there
is an array of meta-objects appended to the end of the large object

containing one meta-object for each page of the large object.

Finally, we note that each meta-object also contains a pointer

(OID) to a bitmap object that records the locations of pointers on
the page so that they can be swizzled. QuickStore uses a modified

version of gdb to get the type information for objects that is used to

maintain the bitmaps associated with pages.

To illustrate how the structures mentioned above are used, consider

the actions that are taken when a page containing data is first read
into memory by QuickStore. After reading the page, the meta-
object on the page is examined and the OID of the mapping object

that it contains is used to read the mapping object itself from disk.

The runtime system then looks up the disk address contained in
each mapping object entry in the in-memory table to see if the disk

page is currently part of the mapping. If no entry is found in the
table, then one is created using the information contained in the

mapping object. The disk page will be assigned to its previous vir-
tual frame at this point, if it is unused, or else a new frame is
selected. If an entry for the disk page is found in the table. the sys-

tem checks to see if the page is currently associated with the same
virtual frame as the one in the mapping object entry.

If all of the disk pages in the mapping object are associated with

their old virtual frames, then the swizzling process terminates, If
some disk pages have been mapped to new locations, however,
then the bitmap object is read from disk and used to find and

update any pointers on the page that reference these pages. Note
that even though bitmap objects are fixed in size, they are stored
separately from their corresponding data page since they hopefully
will not have to be read in most cases.
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3.5. Buffer Pool Management

Most buffer managers in traditional database systems have used a

clock style algorithm to approximate an LRU page replacement

policy. We also felt that a clock algorithm was the best choice for

use in QuickStore, however, implementing this type of scheme

turned out to be more difficult in the context of a memory-mapped

system where objects in the buffer pool are accessed by dere-
ferencing virtual memory pointers, The reason for this is that there

is less information available to the buffer manager indicating
which pages have been accessed recently.

Recall that in traditional implementations of clock, a bit is usually
kept for each frame in the buffer pool, indicating whether or not

the frame has been accessed since tbe clock hand last swept over it.

This bit is set by the database system each time the page is

accessed and reset by the clock algorithm. There is no way to set

such a flag, however, when dereferencing a pointer as in Quick-

Store.

One solution to this problem is to have the clock algorithm

access-protect the virtual frame corresponding to a buffer pool
frame when the clock hand reaches it. If the frame is subsequently

reaccessed a page-fault will occur and the fault handling routine

can re-enable access to the page. This scheme replaces the usual
setting and unsetting of bits in a traditional clock algorithm with
the enabling and disabling of access permissions on virtual

memory frames. We experimented with this solution, however, in

our experience the extra overhead of manipulating the page protec-

tions and handling additional page-faults made this approach

prohibitively expensive in terms of performance.

To avoid the problem described above, QuickStore uses a

simplified clock algorithm. Under this scheme the clock hand
begins its sweep from wherever it stopped during the previous
invocation of the clock algorithm. As soon as the clock hand

reaches a page for which access is not enabled the algorithm

selects that page for replacement. If the clock hand reaches the

end of the buffer pool without finding a candidate for replacement,

however, then the entire virtual address space of tbe process being
used for persistent data is reprotected with a single call to mmup
and the algorithm is restarted. This scheme performed much better

than the original scheme outlined above in our experiments, and
compared favorably with the more traditional clock replacement
algorithm used by E (see Section 5).

3.6. Recovery

Implementing recovery for updates poses some special problems in

the context of a memory-mapped scheme as well. For example,
since application programs are able to update objects by dere-
ferencing virtual memory pointers, it is difficult to know what por-
tions of objects have been modified and require logging. Further-

more, it is desirable to batch the effects of updates together and log
them all at once, if possible, since some applications may update

the same object many times during a transaction.

Due to the considerations mentioned above, we decided to use a

page diffing scheme to generate log records for objects that have

been updated in QuickStore. Virtual memory frames that are
mapped to pages in the database that have not been updated, do not

have write access enabled, so the first attempt by the application
program to update an object on a page will cause a page-fault.
When the fault-handler detects that an access violation is due to a
write attempt, it copies the original values contained in the objects
on the page into an in-memory heap data structure. The fault-
handler also obtains an exclusive lock on the page from ESM, if
needed, and enables write access on the virtual frame that caused
the fault before returning control to the application. The applica-
tion program can then update the objects on the page directly in the

buffer pool.

At transaction commit time, or sooner if paging in the buffer pool

occurs or the heap becomes full, the old values of objects con-

tained in the heap and the corresponding updated values of objects

in the buffer pool are diffed to determine if log records need to be

generated. The processes of diffing and generating log records are

interleaved in QuickStore. To understand why this is the so, con-
sider as an example the case when the first and last byte of an 1 K-

byte object have been updated. In this case QS minimizes the

amount of data written to the log by generating two log records,

one for each modified byte, instead of one big log record for the
entire object. On the other hand if the first, third, and fifth bytes
had been modified, QS would generate a single log record for the
first five bytes of the object. This is cheaper than generating multi-

ple log records since each log record contains a relatively large

(-50 byte) header area for storing information needed by the ESM
recovery scheme.

Care must also be taken when processing updates to update the
mapping tables associated with each modified page if necessary.
Recall that the mapping table for a page keeps track of the set of

pages that are referred to by pointers on the page. Updates to
objects on a page can change the pages that are members of this

set, making it necessary to update the mapping tables as well.

Updating the mapping table for a page requires that each pointer
contained on the page be examined and the in-memory table con-

sulted to determine which page in the database it references. The
bitmap for the page is used to locate the pointers that it contains

and from these pointers a new set of referenced pages is con-

structed. This new set is then compared element by element with
the old set to see if the set has changed. If it has, then the mapping

object for the page is updated to reflect the new set of referenced

pages.

4. Performance Experiments

This section briefly describes the structure of the 007 benchmark

database and the benchmark operations that were included in the

performance study. (See [Carey93] for a complete description of
the 007 benchmark.) The hardware and software systems
included in the study are also discussed.

4.1. The 007 Benchmark Database

The 007 database is intended to be suggestive of many different
CAD/CAM/CASE applications. We used two sizes for the 007
database: small and medium. Table 1 summarizes the parameters
of the database. A key component of the database is a set of com-
posite purrs. Each composite part is intended to suggest a design
primitive such as a register cell in a VLSI CAD application. The

number of composite parts was set to 500 in both the small and

Parameter Small Medium

NumAtomicPerComp 20 200
NumConnPerAtomic

DocumentSize (bytes)

Manual Size (bytes)

NumCompPerModule

NumAssmPerAs sm

NumAssmLevels

NumCompPerAssm

NumModules

3
2000
lOOK

500
3
7

3

1

3
20000

lM

500
3
7
3
1

Table 1. 007 Benchmark database parameters.
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medium databases. Each composite part has a number of attri-

butes, including the integer attributes id and buildDate. Associ-
ated with each composite part is a document object that models a
small amount of documentation associated with the composite part.

Each document has an integer attribute id, a small character attri-

bute title and a character string attribute text. The length of the
string attribute is controlled by the parameter DocumentSize.

Each composite part also has an associated graph of atomic parts.

Intuitively, the atomic parts within a composite part are tbe units

out of which the composite part is constructed. One atomic part in
each composite part’s graph is designated as the “root part”. In the

small database, each composite part’s graph contains 20 atomic

parts, while in the medium database, each composite part’s graph
contains 200 atomic parts. Each atomic part has the integer attri-

butes id, buildDate, x, y, and docId. Each atomic part is con-

nected via a hi-directional association to NumConnPerAtomic

other atomic parts which was set to three in the experiments. The

connections between atomic parts are implemented by interposing

a connection object between each pair of connected atomic parts.

Additional structure is imposed on the set of composite parts by
the “assembly hierarchy”. Each assembly is either made up of

composite parts (in which case it is a base assembly) or it is made

up of other assembly objects (in which case it is a complex assem-

bly). The first level of the assembly hierarchy consists of base
assembly objects. Base assembly objects have the integer attri-

butes id and buildDate. Each base assembly has a hi-directional

association with three composite parts which are chosen at random
from the set of all composite parts. Higher levels in the assembly

hierarchy are made up of complex assemblies. Each complex

assembly has a hi-directional association with three subassemblies,
which can either be base assemblies (if the complex assembly is at
level two in the assembly hierarchy) or other complex assemblies

(if the complex assembly is higher in the hierarchy). There are
seven levels in the assembly hierarchy.

Each assembly hierarchy is called a module. Modules are intended
to model the largest subunits of the database application. Modules

have several scalar attributes. Each module also has an associated
Manual object, which is a larger version of a document. Manuals

are included for use in testing the handling of very large (but sim-
ple) objects. Figure 2 depicts the full structure of the single user

007 Benchmark Database.

4.2. The 007 Benchmark Operations

This section describes the 007 benchmark operations that were
used in the study. The full set of benchmark operations, consists of

a set of 10 tests termed traversals, and another set of 8 query tests,

We do not present results for the queries since none of the systems
we tested has a declarative query language. Some of the traversal

operations were also omitted because they didn’t highlight any
additional differences among the systems that were studied, The
traversal tests are numbered from one to ten.

The T1 traversal performs a depth-first traversal of the assembly

hierarchy. As each base assembly is visited, each of its composite

parts is visited and a depth first search on the graph of atomic parts
is performed. The traversal returns a count of the number of
atomic parts visited, but otherwise no additional work is per-
formed. The T6 traversal is similar to T1, except that instead of
visiting the entire graph of atomic parts for each composite part,
T6 just visits the root atomic part,

T2 and T3 are also similar to T1, but they add updates. Each T2

traversal increments the (x,y) attributes contained in atomic parts

as follows’:

T2A—Update the root atomic part of each composite part.
T2B—Update all atomic parts of each composite part.
T2C—Update all atomic parts four times.

Module i

di?sign.rmt
id

complex

[

,..’

,fi s

type

assemblies ,,.” builddate
,:’

manual
,;’

,,.”

[

base j; Manual text

assembhes :
:’:... . .. . . . . .. .. ... .......’>

HEIRHHBRRBbBRBEHB
1234 N

I t

Design Library of Composite Parts

Figure 2. Structure of a module.

The T3 traversals are similar to T2 except that the buildDate field

of atomic parts in incremented. This field is indexed, so T3

highlights the cost of updates of indexed fields. We used 3 traver-

sals that are not based on T1. T7 picks a random atomic part and
traverses up to the root of the design hierarchy. T8 scans the

manual object associated with the module and counts the
occurrences of a specified character, and T9 compares the first and

last characters of the manual to see if they are equal.

4.3. Systems Tested

4.3.1. E

This section briefly describes the current implementation of the E

language. E and QuickStore both offer basically the same func-
tionality, however, E implements persistence using a software
interpreter, EPVM 3.0. EPVM 3.0 has a functional interface, so

operations such as dereferencing an unswizzled pointer in E are
handled by calling an EPVM function of perform the dereference.

As part of handling a reference to a persistent object, EPVM may

in turn call ESM if the page containing an object is not in memory,

and update its own internal data structures before returning control
to the application. In addition to calls of EPVM functions, the

code generated by the E compiler (a modified version of the gnu

C++ compiler) contains in-line code sequences to handle certain
basic operations. For example, residency checks and dereferences
of swizzled pointers are done in-line and do not require a function

call, which improves performance.

Like QuickStore, EPVM 3.0 accesses memory-resident persistent

objects directly in the ESM client buffer pool. The interpreter

maintains a hash table that contains an entry for each page of
objects that is currently in memory. The pointer swizzling scheme
used in EPVM 3.0 is similar to the scheme used in EPVM 1.0

[Schuh90] except that swizzled pointers point directly to objects in

the buffer pool. This swizzling scheme only swizzles pointers that

are local variables in C++ functions. Pointers within persistent

objects are not swizzled because this makes page replacement in

the buffer pool difficult [White92].

1[Carey 93] specifies that the (x, y) attributes should be swapped, however,
we increment them instead, so that multiple updates of the same object al-
ways change the object’s value. This guarantees that the diffing scheme
used by QuickStore for recovery will atways generate a log record.
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Update operations on persistent objects are always handled by an

interpreter function in EPVM 3.0. The update scheme used copies

the original values of objects into a side buffer, and updates the
objects in place in the buffer pool. Original values of objects and

updated values are used to generate log records at transaction com-

mit, or sooner if the side buffer or the buffer pool become full.

However, no diffmg is performed as in QuickStore. EPVM 3.0

employs a scheme that breaks large objects into 1K chunks for log-
ging purposes, Objects that are smaller than lK are logged in their

entirety.

4.3.2. QuickStore

A detailed description of QuickStore is given in Section 3.

Although QuickStore and E offer nearly the same functionality, it
is important to point out one fundamental way in which the two

systems differ. This has to do with the support that both systems
provide for the notion of object identity. Section 3 described the

scheme used by QuickStore (and ObjectStore [Objec90]) to imple-

ment a mapping between virtual memory frames and disk pages.
This mapping is maintained for pages when they are in memory as
well as when they reside on disk. Because of this mapping,

pointers to persistent objects can be viewed as a <virtual frame,

offset> pair where the high order bits of the pointer identify the
virtual memory frame referenced by the pointer and the low order

bits specify an offset into that frame, Virtual memory frames are

mapped to disk pages, so pointers really just specify offsets or
locations on pages.

To see why this scheme doesn’t support object identity, consider
what happens when an object, for which there are outstanding
references, is deleted. The page that contained the object can be

faulted into memory by subsequent program runs (assuming there

are other objects on the page) and mapped to some virtual memory

frame. If the program then dereferences dangling pointers to the

deleted object, no error will be explicitly flagged. If a new object

occupies the space on the page previously used by the deleted

object then the dangling pointers will reference this object,

QuickStore doesn’t fully support object identity or “checked refer-
ences” to objects because the overhead would be prohibitive. For

example, the meta-data that would be required to associate every
unique pointer on a page with its corresponding OID would likely

be an order of magnitude greater than the current scheme used by

QuickStore. Furthermore, we are aware of no commercial or
research system (including ObjectStore) that supports “checked
references” for normal pointers in the context of a memory-

mapped scheme. E, on the other hand, supports object identity

fully, including checked references. E implements this by storing

pointers as full 12 byte OIDS within objects. This is a reasonable
approach, but it does incur certain costs. For example, since

objects are larger in E than in QuickStore the database as a whole
is larger, and E generally performs more 1/0. Also, dereferencing

big pointers is more expensive in terms of CPU requirements than
dereferencing virtual memory pointers.

Because of these differences, we included a third system in the per-

formance study. This system is identical to QuickStore, except

that each object in the database has been padded so that it is the
same size as the corresponding object in E. Comparing the perfor-
mance of this system to the performance of E in the experiments

where faults take place gives insight into the overhead of faulting
for the memory-mapped approach, while comparing it with @rick-
Store indicates the advantage gained by QuickStore due to its

smaller object size. In addition, one can think of this system as
approximating the performance of a hybrid memory-mapped
scheme that allows large pointers to be embedded within objects,
thus supporting both checked and unchecked references.

4.4. Hardware and Software Used

As a test vehicle we used a pair of Sun workstations on an isolated

Ethernet. A Sun IPX workstation configured with 48 megabytes of
memory, one 424 megabyte disk drive (model Sun0424) and one
1.3 gigabyte disk drive (model Sunl .3G) was used as the server.

The Sun 1.3G drive was used by ESM to hold the database, and the

second Sun 0424 drive was used to hold the ESM transaction log.
The data and recovery disks were configured as raw disks. For the

client we used a Sun Spare ELC workstation (about 20MIPS)
configured with 24 megabytes of memory.

The systems included in the study used the client-server version of

EXODUS (ESM V3.0). During the experiments ESM used a disk

page size of 8 Kbytes (this is also the unit of transfer between a

client and the server). The client and server buffer pools were set
to 1,536 (12 MBytes) and 4,608 pages (36 Mbytes) respectively.
Release 4.1.3 of the SunOS was run on both workstations used in

the experiments. QuickStore was compiled using the GNU g++

compiler V2.3. 1. The E compiler is a modified version of the

GNU compiler.

5. Performance Results

5.1. Database Sizes

The size of the 007 database
performance results. Table 2

is important in understanding the
shows the database sizes for E,

QuickStore (QS), and QuickStore with big objects (QS-B)2. The
QS database is roughly 60% as big as the E database for both the
small and medium cases. This is because of the different schemes

used by the systems to store pointers. The QS-B database is bigger
than the E database due to the overhead for storing bitmaps that
indicate the locations of pointers on pages and mapping tables.

Table 2. Database Sizes (in megabytes)

5.2. Small Cold Results

This section presents the cold results for the small database experi-

ments. The cold results were obtained by running the 007 bench-
mark operations when no data was cached in memory at either the

client or server machines. The times presented represent the aver-

age of 10 runs of the benchmark operations, except where noted
otherwise. The times were computed by calling the Unix function

gelimeofday which had a granularity of several microseconds on

the client machine.

Figure 3 presents the cold response times for the read-only traver-
sals included in the study. Table 3 gives the number of client I/O

requests. As Figure 3 shows, QS is 37% faster than E during T13.

This difference in performance is largely due to the smaller data-
base size for QS which causes it to read 53% fewer pages from
disk than E (Table 3). The overwhelming majority of 1/0 activity
during T1 is due to reading clusters of composite parts. Each com-

posite part cluster occupied a little less than one page for QS, while

‘Objects in QS-B are padded to the same size as the corresponding objects
in the E implementation.

3T 1: DFS of assembly hierarchy visiting all atomic parts
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for E close to two disk pages were required. This accounts for the

roughly 2 to 1 ratio in the number of disk reads between the two

systems. Comparing E with QS-B, shows that QS-B is 15%

slower than E during T1. QS-B always issues slightly more I/O

requests than E since QS-B must also read mapping tables to sup-

port the memory-mapping scheme.

The performance of QS is only 4% better than E during T64. As in
T1, differences in the size of composite part clusters between the
two systems play an important role in determining their relative
performance. Table 3 shows that the amount of 110 for QS is
almost the same during both T1 and T6, while the number of disk

reads for E decreases by 41 YO during T6. E does noticeably fewer

1/0 operations during T6 because it generally doesn’t read the

entire composite part cluster as QS does. The performance of QS-

B is 27% slower than E during T6. As the detailed faulting times

(shown below) will illustrate, this difference in performance is

close to the actual percentage difference in individual page fault

costs for the systems, as CPU costs have less of an overall impact
on performance during T6 than during T1.

E has the best performance during T75. QS is 20% slower than E

because of increased faulting costs relative to T1 and T6. Faults

are more expensive for QS during T7 because a large fraction of
faults (86%) are spent reading pages of assembly objects. These

pages have larger mapping tables because pointers from associa-
tion objects to composite part objects are uniformly distributed
among all composite part objects in the database. This increases
the average 1/0 cost for reading the mapping tables and the number
of table entries (139 on average for T7 vs 20 on average for T1)
that must be examined per fault. QS-B is 34% slower overall

t]

m Qs
WE

- QS-B

1.5

1

1.0
{

tl t8 t9

Figure 3, Read-only traversal cold times, small database.

T1 T6 T7 T8 T9

QS 474 467 26 19 9

E 1018 600 25 18 7

QS-B 1047 639 31 19 9

Table 3. Client 1/0 requests, small database.

4T6: DFS of assembly hierarchy visiting only the root atomic part.

‘T7: Traverse starting from a randomly selected atomic part up the assem-
bly hierarchy.

during T7 relative to E.

Turning to T86, Figure 3 shows that E is roughly 3 times slower

than QS. This is because the E interpreter is invoked once for each

character of the manual that is examined by T8, while QS simply
has to dereference a virtual memory pointer to access each charac-

ter. By contrast, Figure 3 shows that E is nearly twice as fast as

QS on T97. This difference is due almost entirely to faulting costs
since very little work is done on the objects faulted in during T9.
It is not surprising that faulting costs for QS are relatively high in
this case since T9 touches very few pages. QS and QS-B have

similar performance during T8 and T9 since character data is the

same size for both systems.

The results presented in Figure 3 for the read-only traversals have

demonstrated that the per page faulting cost for the memory

mapped approach is higher than for the software approach. For

example, QS-B almost always has slower performance than E. To

determine the magnitude of this difference, we next examine the
individual faulting costs of the systems in more detail. Table 4

shows the average cost per fault in milliseconds for each of the

systems during T1 and T6. These times were calculated by sub-

tracting the time required to execute a hot traversal from the time
required for a cold traversal, and then dividing the result by the

number of page faults to get the average per fault cost. To make

sure that the results obtained were accurate, the numbers used to

perform the calculation represented the average of 100 runs of each

traversal experiment.

According to Table 4, the faulting cost for QS-B is slightly higher

than for QS. We speculated that this was because the mapping
tables for QS-B were larger than in QS. However, this turned out
not to be the case since the average number of mapping table

entries in the small database was 16 for QS and only 12 for QS-B.
The comparison between QS and E in Table 4 is more interesting,

It shows that individual page faults are roughly 20% more expen-
sive for QS during the T1 and T6 traversals. The corresponding
figure for QS-B and E averages 26%, which correlates closely with
the difference in response time between QS-B and E during T6.

To better understand the additional faulting overhead of the
memory mapped scheme, Table 5 shows a detailed breakdown of

the average faulting time for QS. As a check we present detailed
numbers for both T1 and T6. One would expect most of the costs
for T1 and T6 to be similar since they fault in many of the same

pages. The min fault entry in Table 5 is present due to the way our
implementation interacts with the virtually mapped CPU cache of
the client machine (see Section 3). This effect increased the aver-

age fault time by 6% and 5%, respectively for T1 and T6. The

entry labeled page fault in Table 5 is the time that was required to

detect the illegal page access and invoke the fault handler. Page

faults comprised 3% of average faulting time for T1 and 2% for
T6. We note that it was not possible to measure the times given

for the min fault and page fault entries directly by running the
benchmark. These times were obtained instead by measuring a test

application that performed the operations several thousand times in

a tight loop.

The remaining table entries break down the time spent in the fault
handling routine. The entry for misc. cpu overhead includes time
for looking up the address that caused the fault in the in-memory
table, various residency and status checks to determine the
appropriate action to take in handling the fault, and other miscel-

laneous work. Data 1/0 is the time needed to read the page of
objects from disk and update the buffer manager’s data structures.

6T8: Scan the manual object counting occurrences of a specified character.

7T9: Compare first and last characters of the manual to seeif they are equal.
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=

time(ms.)
system

T1 T6

QS 29.4 33.1

E 23.7 26.5
QS-B 31.6 34.5

Table 4. Average Time Per Fault,

H
overhead .5 .2
data I/O 24,8 28.5

map I/O 1.1 1.1

swizzling .4 .4

mma .8 .8
total 30. 33.3

Table5. Detailed QSFaulting Times.

This accounted for largest fraction of faulting time, 82% for Tl

and85%for T6. Theportion oftimespent reading mapping tables

(map I/0) was3.5% for Tla.nd3.2%for T6. Theswixling entry
gives thetime needed toprocess themapping table entfies. Swiz-
zlingcosts were quite low, accounting for l%to2Yo of the faulting

cost on average. Since all of the pages read were mapped to the

locations in memory that they occupied previously, the swizzling
time doesn’t include any overhead forupdating pointers on pages

that are inconsistent with the current mapping. The final entry,

labeled remap, gives the average time taken by the remap system
call to change the access protections. This accounted for a modest

3% of the faulting time. Finally, we note that the sums of the
detailed times given in Table 5 correlate closely with the total per
fault times given in Table 4.

We next consider traversals T2 and T3 which include updates.
Figure 4 shows the total response time for these traversals run as a

t2a t2b t2G t3a t3b t3G

Figure 4. T2, T3 cold times, small database.

single transaction. The I/O requests for T2 were nearly identical to

T1 (Table 3), while the T3 traversals performed a few additional
I/Os to read index pages. During T2a, which updates the root

atomic part of each composite part, QS is l~o faster than E (Figure
4). This may seem surprising given that QS was 37% faster than E
during TI which does the same traversal as T2a, but without
updates. The difference in performance between QS and E dimin-
ishes during T2a because the page-at-a time scheme for handling
updates of QS is more expensive than the object-at-a time
approach of E when sparseupdates are done,

Part of the increase in response time for QS is due to the fact that

the number of page access violations increases from 454 during T1

to 878 during T2a, nearly doubling. The additional access viola-
tions occur when the first attempt is made to update an object on a
page during the transaction. When this happens, the fault-handling

routine is invoked to handle the access violation. As explained in

Section 3, this routine performs several main functions. First, it

copies the objects contained on the page into a side buffer so that

the original values contained in the objects may be used to gen-

erate logging information for updates (by diffing) at a later time,

Next, it calls ESM, if necessary, to obtain an update (exclusive)

lock on the page, and finally, it changes the virtual memory protec-
tions on the page, so that the instruction that caused the exception

can be restarted. Our measurements showed that during T2a$ a
total of 5.198 seconds were needed to carry out this work for QS,
which amounted to 12.3 ms. for each of the 423 pages updated. Of
this, 7.3 ms. was spent copying the objects on the page, 2.8 ms,

was used to upgrade the lock on the page, and .9 ms. on average

was spent calling remap to change the page’s protection to allow
write access.

The response time of QS also increases relative to E during T2a
because transaction commit is more expensive for QS. The com-

mit time for QS can be broken down into the time required to per-

form three basic activities, plus a small amount of additional time

to perform minor functions like reinitializing data structures, etc.

The first of the basic operations involves dtfing objects on pages

that have been updated, and calling ESM to generate log records
when it is determined that updates did occur. The diffing phase
required a total of 3.035 seconds during T2a, of which .182

seconds was spent calling ESM to generate the 491 log records
needed. Thus, the time needed on average to dzff each of the 423

modified pages (not counting time to generate log records) was 6.7

milliseconds. The second major task performed during transaction
commit is updating the mapping tables associated with each
modified page. Our measurements showed that 3.084 seconds (7.2

ms. per page) were required for this phase of commit processing.

The final step in committing a transaction is performed-by ESM.

This involves writing all log records to disk at the server, and
flushing all dirty pages back to the server from the client. This

phase of commit processing required 3.501 seconds during T2a.

Turning to T2b and T2c, we see that QS is 1‘)%. and 207. faster

than E, respectively. As one would expect, QS does better relative
to E during T2b and T2c when updates are more dense since QS
copies and difis fewer objects unnecessarily. In fact the perfor-

mance of QS degrades only slightly during T2b relative to T2a.
This is due almost entirely to increased time during commit for

dzfing objects and generating log records. More precisely, during
T2b 5,804 seconds was required do the di&rg (.280 seconds of this
was for generating log records). The average dtfing cost per page
was 12.9 ms during T2b (not counting logging). We also note that
the performance of QS was basically the same during T2b and T2c,

while the performance of E was 570 slower. This is because
repeatedly updating an object is very cheap for QS since objects
are accessed via virtual memory pointers while updating an object
in E requires a function call.
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The performance difference between QS and E narrows further

during T3 relative to T2 and T1. QS has better performance than E

in all cases, but nearly similar overheads for index maintenance
make this difference less noticeable. In contrast to the relatively

stable performance of the systems during T2, the response times of
the systems steadily increase when going from T3a to T3b to T3c.
This is because each update of an indexed attribute results in the
immediate update and logging of the update to the corresponding

index. QS-B is always much slower than the other systems during
T2 and T3, especially during the B and C traversals. This is

because the 4Mg area used to hold recovery data wasn’t big

enough to hold all of the objects from modified pages during these
traversals for QS-B which caused additional log records to be gen-

erated.

5.3. Small Hot Results

The hot results were obtained by re-rtmning the 007 benchmark
operations after all of the data needed by each operation had been

cached in the client’s memory by the cold traversal. Figure 5
shows hot times for the traversals run on the small database. The
times for QS-B are omitted since they are identical to those shown

for QS.

As one would expect, the performance of QS is generally better
than E. It is somewhat surprising, however, that E is just 23%

slower than QS during T1. To determine the reasons for this rela-

tively small difference, we used qpt[Bal192] to profile the bench-

mark application. Table 6 presents the results of the profiling for

TI. The T1 hot traversal time has been broken down in Table 6

based on the percentage of CPU time spent in several groups of

10

1mQS

msE

0.151

tl t6 t7 ts t9

Figure 5. Traversal Hot Times.

% of time
description OS

E

EPVM 3.0 : 33.31
malloc 56.13 24.99

part set 35.18 24.57

traverse 8.03 17.12

do nothing 0.64 0.70

misc. 0.02 0.01

total 100.00 100.00

Table 6. T1 hot traversal detail.

functions. Table 6 shows that E spent 337. of the time executing

EPVM 3.0 interpreter functions. Most of this time was spent dere-

ferencing unswizzled pointers. Both QS and E spent a consider-

able amount of time allocating and deallocating space in the tran-

sient heap (see the entry for malloc). This is because an “iterator”
object is allocated in the heap for every node (assembly object,
composite part, and atomic part) in the object graph that is visited
during the traversal. The “iterator” object establishes a cursor over
the collection of pointers to sub-objects so that the sub-objects can

be traversed.

The entry labeled part set in Table 6 gives the time spent in func-

tions that maintain a set of the atomic part ids visited in each com-

posite part’s subgraph of atomic parts. This set is needed so that

the same atomic part is not visited more than once by the DFS

traversal, The time spent in other functions that implement the

traversal, such as functions that iterate over collections of pointers
to sub-objects and that implement the recursive traversal was 8%

for QS and 17% for E. The higher percentage for E reflects the

additional cost of dereferencing large pointers in E. When each
node in the object graph is visited, a simple function is called that
examines a field in the object to make sure that the object is faulted

into memory. The time spent in these functions was .770 for both
systems. The detailed numbers in Table 6 are surprising because
the small amount of additional work involving transient data struc-

tures that was needed to implement T1 accounts for a such a large

percentage of the overall cost. The results show how quickly a

small amount of additional computation can mask differences in

the cost of accessing persistent data between the systems.

E is 3.6 times slower than QS during T6. QS performs better rela-

tive to E during T6 (the sparse traversal) than during T1 (the dense
traversal) since there is less overhead for maintaining transient data
structures during T6. For example, the sets of part ids are not

maintained since only the root part is visited during T6. The per-
formance of the systems is very close during T7. T7 visits very

few objects in the database (10 to be precise) since it simply fol-

lows pointers from a single atomic part up to the root of the
module. Thus, differences in traversal cost are easily diminished
by other costs, such as the overhead for looking up the atomic part

up in the index to begin the traversal, etc. Figure 4 shows that E is

a factor of 32 slower than QS during T8. T8 scans the manual
object, a large object spaming several pages on disk. In the case

of E, an EPVM 3.0 function call is performed for each character of

the manual that is scanned while QS accessed each character of the
manual via a virtual memory pointer. Profiling showed that E
spent 91% of its time executing EPVM functions during T8. Dur-
ing T9 the systems have identical performance. Profiling showed
that the hot results for T9 largely reflect similarities in things such
as index lookup costs between the systems since an index lookup is

performed to locate the module object.

5.4. Medium Cold Results

This section presents the cold times for the 007 benchmark opera-

tions when run on the medium database. The results presented
represent the average of 5 runs of the benchmark exprximmrts.
Figure 6 presents the cold response times for the traversal opera-
tions and Table 7 gives the number of client I/O requests. We see

in Figure 6 that, as in the case of the small database, QS has the

best performance during T1. QS is 41% faster than E during T1
while it performs 63% fewer 1/0s. E, on the other hand, is 36%
faster than QS-B during T1.

E has better performance than QS during T6 and T7. QS is slower
during T6 because the number of page-faults between the two sys-
tems is similar and OS has higher costs uer fault. The relative

times shown for T7 and T8 ar~ close to the small database case.
QS is slower due to higher per fault costs during T7. E is slower
than QS during T8 due to the overhead of calling EPVM to scan
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each character of the manual. The results for T9 (not shown) were

identical to the small case.

Turning now to traversals T2 and T3 (Figure 7) which perform

updates, we see that QS outperforms E during the T2a and T3a

traversals which only update the root atomic part of each compo-
site part. This is understandable when one considers that both QS

and do basically the same amount of work to process the updates

that they did in the small case for T2a and T3a. This makes the
cost difference for doing the traversal itself the main factor effect-
ing their relative performance. The relative performance of QS

worsens during T2b and T2c causing QS and E to have similw per-
formance. Recovery is more expensive for QS during T2b and T2c

since the buffer used for recovery is much smaller than the fraction

of the database that is updated, QS-B has much worse perfor-

mance than both QS and E in Figure 7. This is caused by the fact
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Figure 6. Cold Times, Medium Database.

T1 T6 T7 T8

QS 13216 610 27 130

E 35622 558 25 129

QS-B 36963 802 32 130

Table 7. Traversal Cold I/Os,

8000

1

u Qs
WE

t2a t2b t2c t3a t3b

Figure 7. T2, T3 cold times, medium database.

that in addition to higher traversal costs, QS-B has higher costs for

recovery as well.

5.5. Effect of Relocating Pages

Recall that QuickStore always tries to assign a disk page to the vir-

tual memory locations that it last occupied when in memory. This

section considers the effect on performance of relocating pages at
different memory addresses. This increases faulting costs because
pointers between persistent objects then have to be updated to
reflect the new assignment of disk pages to virtual memory

addresses. We consider two approaches to dealing with page relo-
cations. The first approach updates or swizzles pointers that need

to be modified when pages are faulted into memory, but these

changes are not written back to the database. This implies that the

changes will have to be made again if the same data is accessed in

subsequent program runs. We refer to this system as QS-NW. The

second approach commits the changed mapping to the database.
This approach is more costly initially, but may be able to avoid

further relocations in the future. This approach also has the disad-
vantage that it can turn a read-only transaction into an update tran-

saction. We refer to this approach as QS-WR.

Table 8 presents the results for T1 run on the small database when
the percentage of pages that are relocated in memory is varied

from O to 100%. The pages that were relocated in the experiment

were picked at random. Table 8 shows that when the number of
relocations is small (5%), the performance of the systems is not

greatly affected, however, when the relocation percentage is 20%,

QS-WR is 25% slower than when no relocations occur. The differ-
ence in performance between the two schemes at this point is also

about 25%. The performance of QS-NW slows by 7% and 3870

when the percentage of relocated pages is 50% and 100% respec-
tively, while QS-WR suffers a 67% reduction in performance when
the relocation probability is 50%. QS-WR is much slower than
C)S-NW when ;11 uages ;re relocated ;ince it must commit updates
f& alt of the page; i; the database.

6. Conclusions

This paper has presented the design of QuickStore, a memory-

mapped storage system built on top of the Exodus Storage

Manager. The paper also compared the performance of Quick-

Store with E, a persistent version of C++ that uses a software inter-

preter to support access to persistent data. The 007 benchmark
was used as a basis for comparing the performance of the two sys-

tems. The purpose of the study was to accurately measure the

differences in performance of the hardware and software based
pointer swizzling schemes. The results of the study give a clear
picture of the tradeoffs between the two approaches, which we

summarize below.

The results of the cold traversal experiments showed that when

object accesses are dense (Tl ), QuickStore has the best perfor-
mance. This is because object sizes in QuickStore are smaller than
in E, due to the different schemes used by the systems to represent

pointers on disk. Its smaller object size allowed QuickStore to per-
form significantly fewer disk 1/0 operations to read the same
amount of data when accesses were clustered. When object

o% 5% 2070 so~o 100%

“ QS-tWV 20.085 19.74s 20.252 21.454 27.842

QS-WR 20.085 20.183 25.066 33.594 60.297

Table 8. T1 response time (in seconds), vary % of relocations.
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accesses were uncluttered (T6), the performance of Quick Store

was comparable (small database) or worse (medium database) than
the performance of E. The reason for this change, relative to the
clustered case, was that there was less difference between the sys-

tems in the number of pages faulted into memory per object access
during the uncluttered experiments. This exposed the fact that

QuickStore has higher per faults costs than E. In addition, there

were some cases (T7 and T9) when QuickStore always had slower

performance due to higher faulting costs. The slower performance
for QuickStore during T7 was influenced by the cost of reading a

relatively large amount of mapping information to support the
memory-mapping scheme that it uses.

The higher faulting costs for the memory-mapping scheme were
also highlighted by the performance of QS-B (QuickStore with big
objects). QS-B always had slower performance than E during the

read-only cold experiments, except during the experiments that
manipulated large objects (T8). The memory-mapped schemes
had better performance than E when large objects were accessed

because large object accesses require significantly more CPU work
under the software approach. This additional cost caused E to be

slower even in the cold case.

For the traversals in which faulting costs were examined in detail,

it was shown that the average cost per fault for QuickStore was

roughly 20% higher than for E. The largest component of the

additional faulting cost for the memory mapping scheme was the
time required to read mapping information from disk. This
comprised 4~0 of the average cost per fault. The detailed cost
analysis also showed that the overhead for handling page protec-
tion faults and manipulating page access protections were each 3~o.

The smallest component of the faulting cost for QuickStore was

the CPU cost for swizzling pointers. This was just 1YOof the aver-

age cost per fault.

The performance of QuickStore was generally better than E when

updates were performed. The results of the update experiments

showed, however, that the page-based diffing scheme used by
QuickStore to generate log records was more expensive when

updates were sparse and when the update activity was heavy

enough to cause log records to be generated before transaction
commit. QuickStore performed better relative to E when a higher
percentage of objects were updated on each page since QuickStore
copied and diffed fewer objects unnecessarily in this case. The
detailed times for the update experiments showed that the cost of

diffing was ranged from 7 to 12 milliseconds per page.

The hot results helped to quantify the performance advantage of

the memory-mapped scheme when working on in-memory objects.
In some cases (Tl) the difference in performance between Quick-

Store and E was only 23%, while in others (T6) QuickStore was
over 3 times faster than E. This showed how quickly the perfor-
mance of the systems converged when a small amount of addi-
tional work was performed. The results also showed that E was

significantly slower than QuickStore when doing in-memory work

on large objects since this required all accesses to be handled by
the E interpreter.

We also examined the performance of QuickStore when pages of

objects must be relocated in memory. This increases the amount of
swizzling work performed by QuickStore. When the percentage of
pages that were relocated was small, the performance of the sys-

tems did not noticeably worsen. However, a high percentage of
relocations did have a noticeable effect on overall performance. In
particular, when the new mapping tables were written back to the
database, performance worsened by a factor of three.

In the future we would like to consider the performance impact of
different swizzling approaches on query workloads. Queries tend
to have sparse access patterns, so systems that do pure hardware

swizzling may not perform well during queries. We are also

interested in the impact of versioned data on the performance of

different pointer swizzling techniques. It would also be interesting

to investigate alternatives to the page-based diffing approach used
by QuickStore to support recovery. For example, the approach

used by ObjectStore is to log entire pages of modified objects. The
performance of the diffing approach could also be made more

efficient if some level of compiler support were available.
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