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Abstract

Scientific visualization applications are very data-
intensive, with high demands for I/O and data management.
Developers of many visualization tools hesitate to use tradi-
tional DBMSs, due to the lack of support for these DBMSs
on parallel platforms and the risk of reducing the portabil-
ity of their tools and the user data. In this paper, we propose
the GODIVA framework, which provides simple database-
like interfaces to help visualization tool developers man-
age their in-memory data, and I/O optimizations such as
prefetching and caching to improve input performance at
run time. We implemented the GODIVA interfaces in a
stand-alone, portable user library, which can be used by all
types of visualization codes: interactive and batch-mode,
sequential and parallel. Performance results from running
a visualization tool using the GODIVA library on multiple
platforms show that the GODIVA framework is easy to use,
alleviates developers’ data management burden, and can
bring substantial I/O performance improvement.

1 Introduction

Visualization of scientific and engineering data is be-
coming increasingly popular due to its ability to represent
objects graphically, track their evolution over time using
animations, and allow interactive exploration of data. Typ-
ically, visualization applications are data-intensive, and vi-
sualization software developers face challenges in both data
management and I/O performance. In this paper, we ad-
dress such challenges in visualization codes that visualize
time-series data.

As a result of advances in scientific simulation codes
and earth/space observational data collection, visualization
tools today often need to manage a large number of datasets
and do a lot of bookkeeping. In many scientific codes, in-
cluding both simulation and visualization codes, program-
mers directly manage their raw datasets and meta data in a
straight forward manner as arrays, to represent mesh coordi-
nates, geometric interconnection graphs, unknowns in finite
element method applications, DNA sequences, text strings,
etc. Of course, keeping track of thousands of flat arrays that
might be scattered through a complex code creates a huge
management and code maintenance headache.

The fact that traditional database management systems
are not suitable for managing scientific data has long been
observed by researchers, and many previous studies address
this problem [14, 15, 20]. We will discuss such related work
in more detail in Section 2. In short, these previously pro-
posed approaches and products provided database solutions
to handle scientific data, but most of these solutions might
be tooheavyweight for the majority of parallel scientific ap-
plications.

Many scientific data management systems [14, 20] were
built on top of full-fledged relational DBMSs such as POST-
GRES and MySQL. In practice, most high performance
computing users are reluctant to use such systems since
it is difficult to build parallel scientific codes as database
applications on high-performance platforms. The first rea-
son for this is the lack of inexpensive support for database
software on today’s popular parallel platforms for scientific
computing. Parallel scientific codes typically need to be
ported to and run on multiple machines, often with different
architectures and operating systems. Also, scientific appli-
cation users are used to accessing their data stored in plain



arrays rather than through databases [13]. Further, in the
previously proposed approaches, all the application data or
else all the application meta data are stored in the database,
creating data portability and flexibility problems. For ex-
ample, many scientists need to perform pre-processing or
post-processing on different machines than where the sim-
ulation or data collection program runs, by migrating their
data written in portable files. It is hard to migrate user data
when all or part of them are managed by a DBMS and are
not externally accessible.

Another drawback is that many DBMS features, such as
transaction processing, concurrency control, complex query
processing and recovery, are not required or are required
in a different form by most scientific applications. For ex-
ample, scientific applications often periodically save their
intermediate computation states, which serve as both snap-
shots for visualization and checkpoints for flexible restart,
making the checkpointing scheme of a DBMS both redun-
dant and unsuitable.

As data management problems have grown, I/O perfor-
mance has deteriorated, primarily due to the enlarging gap
between the performance of the CPU and the secondary
storage system. Meanwhile, higher processing power and
larger storage capacity enable scientists to produce and save
more data, so visualization tools need to process larger vol-
umes of time-series data and their periodic input operations
are now more bottleneck-prone than ever.

Visualization applications may also have demands for
output. For example, a visualization tool that processes a se-
ries of time-step snapshots to make pictures or movies needs
to periodically write image files. However, the output work-
load is usually considerably smaller than the input work-
load, because the generated image files are normally much
smaller in size compared to the input raw data files. Also,
scientists often like to write data files using popular, stan-
dardized scientific data libraries [12] such as HDF, netCDF,
and FITS, which have at visualization time a higher input
cost than do plain binary files. In addition, interactive visu-
alization tools often require much more input than output,
since the users of these tools may browse a lot of datasets
without saving anything, or may save only a small fraction
of the data that they have viewed. As a result, input cost is
very likely to dominate the total I/O cost in the execution of
visualization applications. Therefore, we only examine the
input problems of time-series data visualization tools in this
paper.

In the past, we showed how to reduce the user-visible
periodic output cost in simulation codes [11] by maximiz-
ing the overlap between output and other tasks. However, it
is more difficult to overlap input operations with data pro-
cessing in visualization codes. One reason is that a visual-
ization code’s data processing module depends on the data
read from input files. Another reason is that how the input

operations are performed often depends on information re-
trieved at runtime from the input files, making it hard for
a general-purpose I/O library to make required interpreta-
tions of input data when performing background I/O. On
the other hand, the two key conditions that allowed us to
hide output costs in simulations, i.e., idle memory resources
and computation phases that hide at least part of the I/O
cost, do exist in visualization applications too. This is es-
pecially true with parallel visualization codes, where data
can be partitioned onto multiple processors for higher ag-
gregate I/O bandwidth, shorter response time and/or shorter
total processing time. Exploiting memory space and I/O re-
sources should benefit a visualization application’s apparent
I/O performance and overall performance. In addition, the
idle memory can be used for caching as well, as data may
need to be read more than once.

In fact, data access patterns in visualization codes show
some advantages for high-level prefetching and caching.
Normally, visualization software runs in eitherinteractive
mode orbatch mode. In the interactive mode, users are pro-
vided with tools to interactively navigate through the data
and can manipulate the visual rendering of the data, such
as the view angle, color scale, level of detail, etc. In this
mode, users’ access patterns often bear a certain degree of
locality [2]. For example, users may frequently switch back
and forth between snapshot images from two different time-
steps to observe the changes. Efficient caching can help
reduce response time in this case. In the batch processing
mode, the user specifies a series of files and lets the visual-
ization program perform similar processing on all of them.
The visualization program will go through these files and
automatically generate a series of images, often for anima-
tion. In this scenario, data are read once and caching is
not helpful. However, the set of files is pre-specified and
the order of processing is known in advance, making batch-
mode visualization applications wonderful candidates for
user-level prefetching.

In this paper, we provide a novel solution to the data
management and I/O performance problems in visualiza-
tion applications:lightweight database support through the
GODIVA (General Object Data Interfaces for Visualization
Applications) framework. All data, including raw data ar-
rays and meta data, are still externally stored as disk files
in user chosen formats. Meanwhile, visualization tool de-
velopers are provided with interfaces to store datasets in
an in-memory database (called the GODIVA database here-
after) when they read the file data in. The developers also
have interfaces to query a dataset’s buffer location during
data processing. Further, there are high level interfaces for
developers to specify the units for background I/O and to
have a certain degree of control over library-level prefetch-
ing/caching performed automatically by the database sys-
tem. Such high-level and general-purpose interfaces are to-



tally independent of the underlying operating system and
architecture, and are easily implemented as a portable user
library. Because reading the input files and interpreting
their contents are done through developer-provided func-
tions, this approach imposes no requirements on file for-
mats whatsoever. If visualization tool developers decide to
use GODIVA, they do not have to change how input files
are written, and can switch to another input file format just
by supplying a different read function.

We implemented the GODIVA interfaces in a stand-
alone user library. Through our experience of using the li-
brary in a real-world parallel visualization suite, we found
that GODIVA can both alleviate visualization tool program-
mers’ data management burden, and bring significant over-
all performance improvement. In the following sections, we
present our data access interfaces, describe our implemen-
tation of these interfaces, and present performance results
and analysis.

2 Related work

Three projects closely related to our work are the Tioga
system [20], the USD system [7], and the ADR frame-
work [9]. Our GODIVA framework is similar to Tioga and
USD in the sense that it was designed as a data manage-
ment tool for scientific data visualization or analysis. The
difference is that the GODIVA framework foregoes most
of the standard database functionality, as well as graphical
data modeling tools, in exchange for ease-of-use and porta-
bility. The ADR framework and GODIVA both facilitate
parallel visualization, but unlike ADR, GODIVA does not
have any specification regarding the software architecture
of visualization applications using the framework or user
dataset properties. In addition, as a general-purpose data
management facility, GODIVA can be utilized by scientific
data management systems that have more specialized data
models (e.g., the IBM Visualization Data Explorer [1] and
Conquest [19]).

Doshi et al. investigated caching and prefetching strate-
gies to improve interactive visualization performance in ex-
ploring huge datasets [2]. These caching and prefetching
techniques are built-in features of the authors’ software for
visualizing multivariate data, XmdvTool [17], and may re-
quire manual application-by-application analysis [2]. In
contrast, the I/O optimizations in our framework are inde-
pendent of visualization codes and the data they process.

No and colleagues proposed a scientific data manage-
ment system [14, 15], which combines database and high-
performance file I/O techniques. Their method uses a
DBMS for meta data and file I/O for raw array data, cre-
ating a portability problem for both the scientific codes and
their data. We address the same problem with a different
approach: leave the array data and the meta data in user-

accessible, portable files, and provide high-level data man-
agement interfaces that facilitate both computation and I/O.

Patterson et al. studied informed prefetching and caching
[16], in which application codes can disclose future access
patterns. This optimization is made at the operating system
level and is based on file system buffer cache performance
modeling. In contrast, our approach works in a portable
user-level library, and allows visualization programmers to
control user-level prefetching and caching through high-
level interfaces.

Josifovski et al. constructed a lightweight, in-memory
object-oriented DBMS named AMOS II [8]. AMOS II is
designed for integrating distributed data sources and still
provides full database query functionality. In contrast, the
GODIVA framework is designed to work directly from user-
owned disk files and only provides very limited database
support.

3 The GODIVA interfaces

First, we briefly describe the “big picture” of the GO-
DIVA framework. Figure 1 shows how visualization ap-
plications use the GODIVA interfaces. In this figure, solid
arrows represent data flow and dotted arrows represent con-
trol flow.

The GODIVA interfaces can be grouped into three cat-
egories: for record operations, for background I/O, and for
dataset queries. Typically, the background I/O interfaces
and dataset query interfaces are used in the data processing
code of a visualization program, while the record operation
interfaces are used by developer-supplied read functions in
allocating input buffers and reading data from input files
into the GODIVA database.

The GODIVA database manages data buffer locations,
without interpreting their contents, for a visualization ap-
plication. The read function supplied by the visualization
tool developer creates buffers in the GODIVA database and
fills those buffers with data read from input files, while the
data processing modules query the GODIVA database to
find out data buffer locations and then access the buffers
directly during their computation.

In addition, the GODIVA database manages a separate
I/O thread for performing I/O in the background. The
I/O thread carries out input operations using the developer-
supplied read functions. The main thread, which executes
the visualization program, can control the background I/O
activities through the background I/O interfaces. For ex-
ample, the main thread may tell the GODIVA library a
sequence of files that are going to be processed, along
with read functions for reading each file, and the GODIVA
database will automatically initiate prefetching using the
I/O thread and the specified read functions.
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Figure 1. Sample usage of the GODIVA interfaces in a visualization code

In the next two sections, we present the three groups of
GODIVA interfaces and their usage in more detail.

3.1 Data management and query interfaces

In this section, we introduce four GODIVA framework
concepts: fields, records, field types, and record types.

The GODIVA framework does not distinguish raw ar-
ray data from meta data. The basic data unit is a named
developer-definedfield, composed of an integer storing the
data size and a pointer to a data buffer. Each field data buffer
holds a piece of user data, either raw array data or meta
data, stored contiguously in memory. Datasets, which may
contain both raw array data and meta data items, are orga-
nized asrecords. In some sense, a record is very similar
to a compound structure in C programming. Each record
is a structure and each field of the record is a structure it-
self, containing a size and a data buffer. Formally, a record
is a set of developer-defined fields. GODIVA manages the
field data buffer addresses rather than the buffer contents. A
program may retrieve a field buffer location from GODIVA,
and subsequently access the buffer directly as if the buffer
is a user-allocated array. This way, tool developers get the
convenience of having a database to manage their datasets
without changing the style of their computation code.

Just as database users can add data to a relational
database by predefining the schema of a relational table
and repeatedly inserting records that adhere to that schema,
here tool developers can first define certainfield types and
record types, and then repeatedly create records with prede-
fined record types. The interfacesdefineField andde-
fineRecord allow developers to define and name a new
field or record type. A record type contains a set of field
types, and each newly defined record type has an empty set

of field types to begin with. Each field type has three ele-
ments: a field name, a field data type, and a pre-defined field
data buffer size, all of which are defined through thede-
fineField interface. If the data buffer size is not known
when the field type is defined, it can be given the valueUN-
KNOWN. TheinsertField interface is used to add a pre-
defined field type into the field type set of a record type.
When all field types needed have been added to a record
type, thecommitRecordType interface is used to con-
clude the record definition. Because data accesses in visu-
alization codes using GODIVA are performed on individual
fields, the ordering of fields in a record’s internal storage is
not important.

Table 1 shows a simplified record structure for the
datasets recording intermediate results from a fluid dynam-
ics simulation. The record shown stores fluid geometry and
physics measurements on a structured 2-D mesh block, used
to simulate a part of the fluid propellant in a rocket booster.
This record type contains six field types, and each row in
Table 1 shows the definition of one field type. The first two
fields are meta data items with known sizes. The next four
fields store raw array data whose sizes cannot be determined
until the input data files are read. Besides the set of field
types, a record type contains extra information regarding its
key fields, as explained later in this section. In essence, field
types and record types provide “templates” for datasets and
their logical organization. Listed below is a sample code
segment that defines the record type and related field types
shown in Table 1.

defineField("block id", STRING, 11);
defineField("time-step id", STRING, 9);
defineField("x coordinates", DOUBLE, UNKNOWN);
defineField("x coordinates", DOUBLE, UNKNOWN);
defineField("pressure", DOUBLE, UNKNOWN);



field name data type buffer size

block ID STRING 11
time-step ID STRING 9
x coordinates DOUBLE UNKNOWN
y coordinates DOUBLE UNKNOWN
gas pressure DOUBLE UNKNOWN

gas temperature DOUBLE UNKNOWN

Table 1. Sample field types in a record type for a fluid data block

defineField("temperature", DOUBLE, UNKNOWN);

defineRecord("fluid", 2); // has 2 key fields

// Insert fields. The last parameter specifies
// whether the field is a key field.
insertField("fluid", "block id", true);
insertField("fluid", "time-step id", true);
insertField("fluid", "x coordinates", false);
insertField("fluid", "y coordinates", false);
insertField("fluid", "pressure", false);
insertField("fluid", "temperature", false);

commitRecordType("fluid");

After a record type has been finalized, record instances
can be created using this committed record type through the
newRecord interface. This will create, in the GODIVA
database, a new record object with all the fields defined in
the specified record type. If a field’s size is notUNKNOWN,
its data buffer will be allocated when the new record is cre-
ated. Otherwise, the developer needs to explicitly allocate
the field buffer using theallocFieldBuffer interface,
passing the buffer size, field name, and a pointer to the pre-
viously created record object. This flexibility is especially
useful in the common case where the data array size is not
known until the meta data are read.

Figure 2 shows a record created withnewRecord using
the record type shown in Table 1, with all of its field buffers
allocated. More specifically, this record stores a 2-D struc-
tured mesh block, which contains a100×100 grid, with101
coordinates each in thex andy directions. It therefore has
10, 000 rectangular elements, each with two element-based
variables: pressure and temperature. All the coordinates
and element-based variables are double-precision floating
point numbers, as defined in Table 1.

To facilitate queries on data stored in the GODIVA
database, we adopt the concept of akey from relational
database systems. The combination of all the data buffer
values associated with thekey fields in a record uniquely
identifies this record among all records with the same record
type. Tool developers can specify a field as a key field when

inserting this field type into a record type. When the key
fields are filled with appropriate values, developers can use
thecommitRecord interface to insert the record into the
GODIVA database’s index system. The application code
can then locate data stored in the database through theget-
FieldBuffer and thegetFieldBufferSize inter-
faces. ThegetFieldBuffer interface takes a record
type name, a field type name and an array of pointers to
buffers holding key field values, and returns a pointer to the
data buffer of the specified field in the record identified by
the key value combination. ThegetFieldBufferSize
works similarly, but returns the buffer size instead of its lo-
cation. Unlike traditional databases, the GODIVA database
does not handle queries over data buffer values, except for
the above key lookup queries. For example, it can not re-
turn all the records whose fieldF has a value greater thana.
The GODIVA database only organizes data as a collection
of buffers, and field value checking is only used in key fields
to identify a record. This minimal query interface design al-
lows the GODIVA interfaces to work with all scientific data
formats, and reduces the number of modifications for exist-
ing codes to use these interfaces.

For example, the record type shown in Table 1 has two
key fields: “block ID” and “time-step ID”. The GODIVA
database can answer queries such as “give me the address
of the pressure data buffer of the block with ID block0003
from the time-step with ID 0.000075”.

How does the application code know such key field val-
ues? Information such as the range of valid meta data values
can be passed from the developer-provided read functions
to the data processing modules via shared buffers known to
both components, either managed by the GODIVA database
or explicitly by the visualization code.

In summary, user data in the GODIVA database are or-
ganized in a way that can be viewed as a combination of
the conventional database approach and the flat, straight-
forward “array-and-buffer” approach used in most scientific
codes. We use database concepts such as records and fields
to help developers keep track of their data, based on shared
structures of datasets. At the same time, the database only
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manages data locations rather than data values, and the vi-
sualization code can directly access field buffers managed
by the GODIVA database.

3.2 Overlapping I/O with data processing

In this section, we present the scheme for automatic yet
developer-controllable prefetching to overlap I/O with data
processing in visualization programs.

A processing unit is a set of records that will be brought
in or evicted from the GODIVA database as a whole. De-
velopers can define their own processing units by giving a
unit name and a function that reads records belonging to
this unit into the GODIVA database. A processing unit is
the unit of data flow from the background I/O module to the
data processing module. For example, a visualization tool
developer may decide to define the set of all records read
from the same input file as a processing unit. Or she may
group records read from multiple input files that are part of
the same time-step snapshot as a processing unit (data from
these files are likely to be processed together to generate
one or more images), and have a coarser prefetching granu-
larity. Or she may use a subset of records from the same file
or even a single record as a processing unit, and have a finer
granularity. For brevity, we simply call a processing unit a
unit in the rest of the paper.

Meanwhile, developers are provided with high-level in-
terfaces to trigger prefetching or cache eviction. There
are five such interfaces:addUnit, readUnit, waitU-
nit, finishUnit, anddeleteUnit. These interfaces
allow the application code to give hints to the GODIVA
database regarding how prefetching and caching should be
performed. When a unit is added with the non-blocking
calladdUnit, it is appended to GODIVA’s prefetching list,
and gets into line for its records to be prefetched into the
database through the developer-provided read function for
this unit. This read function will typically create records,
allocate field buffers if necessary, and fill the buffers with

contents read from input files.readUnit is a blocking
call that explicitly reads a unit into the database using a
developer-supplied read function. AwaitUnit call will
block the caller until the named unit has been read into the
database.finishUnit tells the database that the process-
ing of the named unit has been completed and the database
may feel free to evict all its records.deleteUnit, on the
other hand, explicitly orders the database to delete records
of the named unit.

The GODIVA interfaces enable simple and effective
prefetching or caching at the application level. For exam-
ple, a visualization program running in batch mode can no-
tify the GODIVA database about all the units to be read
from all the input files (using theaddUnit interface) in
the order that they are going to be processed, and wait for
each unit before the processing of that unit begins. The
GODIVA database will automatically prefetch those units
with the corresponding developer-provided read functions
in the same order. Therefore, I/O to read subsequent units
is overlapped as much as possible with the computation on
the unit currently being processed. TheaddUnit interface
allows developers to express their knowledge of future data
access patterns, which can be far more accurate than the
guesses of the GODIVA database or the underlying file sys-
tem. Meanwhile, the batch-mode processing program code
may want to issue thedeleteUnit request immediately
after a unit has been processed because it knows that the
data will not be needed again. In contrast, an interactive vi-
sualization program may not be able to add units in advance
since it does not know what the user sitting in front of the
monitor will request next, and may simply use the explicit
readUnit interface to perform foreground blocking I/O.
However, an interactive tool perhaps will not delete units
voluntarily, hoping that the user revisits some data that are
still in the database. It is more likely for such a tool to mark
a processed unit “finished” usingfinishUnit instead of
deleting it. When GODIVA’s memory space is low, it will
choose “finished” units to evict from the database.



How much can the database prefetch or cache? This is
limited by the amount of idle memory available. The max-
imum amount of memory that can be used for prefetching
and caching is set by the visualization code when the GO-
DIVA database is created, and this limit can be adjusted
dynamically at runtime by the GODIVA interfaceset-
MemSpace. We assume that all the active data currently
needed for processing can fit into the memory and whatever
memory is left can be used for prefetching and/or caching,
minus a small overhead for the record indexing system. The
GODIVA database will keep prefetching as long as there are
more units to prefetch, and there is memory space to hold
more data. When there is no unit to prefetch, the database
will try to keep as much data in memory as allowed by the
developer-specified maximum database memory space. If
the application code needs to read in more units and there is
not enough memory space left, a caching replacement pol-
icy is used to choose units to evict from the database and
make room for the incoming data.

To get benefits from the prefetching or caching mecha-
nism, there must be at least enough idle space to hold one
more processing unit than those currently being processed.
This memory requirement is similar to that of the traditional
double buffering approach. Scientific applications normally
have very stable or at least predictable memory consump-
tion, and today’s parallel visualization tools can spread their
work across more nodes to reduce the memory usage per
node. In the GODIVA framework, a visualization code can
set the maximum memory space to be used by the GODIVA
database, and all the work in managing background I/O is
hidden behind the high-level interfaces and taken care of by
the database.

3.3 GODIVA interface implementation

In this section, we describe our implementation of the
GODIVA interfaces and the GODIVA database as a user li-
brary. The library performs background I/O using an I/O
thread that calls back developer-supplied functions to per-
form the file I/O and bring data into the database. There-
fore, the GODIVA library does not have to understand how
the actual reading is performed, which makes it independent
of file formats, data layouts in files, meta data definition,
and underlying scientific data library upgrades. Treating the
developer-supplied read functions as black boxes does for-
feit opportunities for the GODIVA library to perform addi-
tional I/O performance optimization. However, it allows the
library to work with existing and future visualization tools
in a much more flexible way and contributes to the library’s
portability.

We implemented the GODIVA library in C++, and im-
plemented the GODIVA database as one object called GBO
(GODIVA Buffer Object). The GODIVA user APIs are im-

plemented as class member functions of the GBO class. We
use the portablepthread library and a single background I/O
thread is used for all the prefetching work. Each proces-
sor has its own database, which manages its local data, and
there is no need for any communication between the GBO
objects on different processors. Therefore the GODIVA li-
brary itself does not use parallel communication libraries
such as MPI, making it more lightweight and portable.

Note that the read functions passed by the visualization
code to the GODIVA database may perform parallel I/O that
requires inter-processor communication between the back-
ground threads. In this case, it is the developer’s respon-
sibility to ensure that the communication library is thread
safe when prefetching is used.

Once the GBO object is created, the background I/O
thread is spawned and will start prefetching if there are
units added. These units are internally organized in a FIFO
queue, where each newly added unit is appended to the
end of the queue. The records in the GODIVA database
are organized in a C++ STL (Standard Template Library)
map [18], indexed with the key field values in a RB-tree.
Also, the records are indexed by units, so that when a unit
is evicted from the cache, all of its records can be deleted ef-
ficiently. ThewaitUnit implementation blocks the main
thread until the named unit is ready in the database, which is
done through inter-thread communication mechanisms such
as signals and semaphores. Reference counts are kept at
the unit level. When memory space runs low and there is
more reading to do, the database uses the LRU algorithm
for cache replacement.

Listed below is a sample main program using the high-
level unit interfaces. The whole GODIVA interface is man-
aged by one GBO object, whichgodiva in the sample
code below points to, and all the GODIVA interfaces are
invoked through this object. In the code below,godiva
is created with one integer parameter, which specifies the
total memory size, in MB, that can be used by this GO-
DIVA database. The program shown uses a file as a pro-
cessing unit, andread file is a pointer to a developer-
defined function that reads datasets from an input file into
the GODIVA database as one unit. Typically, this function
defines the field and record types, creates and commits new
records in the database, and fills field buffers with data read
from the specified file. Here the same function is passed in
adding both units, “fluidfile1” and “fluid file2”. This is be-
cause the unit name is passed back to the read function, and
two different names can trigger different operations such as
reading different files. The functionprocess data, on
the other hand, is likely to contain the bulk of computation,
where it uses the query interfaces to access datasets read
into the memory. The background I/O thread is terminated
when the GBO object is deleted.



main()
{

GBO *godiva;

godiva = new GBO(400);

// add all units. "read_file" is the
// function to read each file
godiva->addUnit("fluid_file1", read_file);
godiva->addUnit("fluid_file2", read_file);

// process array records in fluid_file1
godiva->waitUnit("fluid_file1");
process_data("fluid_file1");
godiva->deleteUnit("fluid_file1");

// process array records in fluid_file2
godiva->waitUnit("fluid_file2");
process_data("fluid_file2");
godiva->deleteUnit("fluid_file2");

delete godiva;
}

As the GODIVA library is aimed at the needs of scientific
applications, we do not provide as much concurrency con-
trol and data integrity checking as conventional business-
oriented database systems do. For example, a developer
may allocate field buffers without reading valid data into
those buffers. It is the visualization tool’s responsibility to
make sensible use of buffer contents. Similarly, since key
field values are stored in ordinary field buffers too, there
is no way to prevent visualization codes from modifying
key field values after a record has been committed to the
database, rendering the indexing in the GODIVA database
inconsistent with the actual key field values. However, as
key fields store meta data items that should not require any
modification in a visualization application, we believe this
is not a problem. We do provide deadlock detection in our
program, for the case when the main thread is waiting for
a unit to be ready, and the background thread is blocked
for lack of memory space. Given our assumption that the
“active” data under processing can all fit into the memory,
this should only happen when developers neglect to delete
processed units or mark those units “finished”.

4 Performance studies

4.1 The Rocketeer visualization tool overview

We evaluated the performance and ease-of-use of the
GODIVA interfaces using Rocketeer, the in-house visu-
alization tool at the Center for the Simulation of Ad-
vanced Rockets (CSAR) at Illinois, used in visualizing
the rocket simulation data produced by CSAR’s simula-
tion code GENx. For example, the images and videos

at www.csar.uiuc.edu/Fviz are all produced by Rocketeer.
The Rocketeer visualization suite contains an interactive
serial tool, an interactive tool with parallel processing in
a client-server mode called Apollo/Houston, and a paral-
lel batch mode program called Voyager. Programs in the
Rocketeer suite are written in C++ and use the Visualiza-
tion Toolkit [6]. As of this writing, Rocketeer reads data
written in the HDF4 format [5]1. Currently the tools run on
Linux, Solaris, AIX, and Microsoft Windows.

Rocketeer is a powerful visualization tool. It can handle
many different types of grids on which the data is defined:
non-uniform, structured, unstructured, and multi-block. It
can display data from multiple files and/or multiple datasets
from the same file in a single image. Unlike many visual-
ization tools, Rocketeer provides users with both interactive
and batch operation modes and users often need to use both
of them. They can first take a look at the images generated
from a few sample time-steps, rotate the camera angle, play
with the color scale, etc., until they are satisfied with the
visualization results. Then they may initiate a batch mode
processing program, which grinds through a collection of
files and makes a series of images with the visualization
parameter settings chosen from the interactive process. The
option of parallel processing enables Rocketeer to spread its
work onto more processors, increase the utilization of I/O
bandwidth, and potentially, have enough memory to hide
I/O costs as proposed in this paper. This is especially impor-
tant because we have observed relatively low data transfer
rates in accessing files written using scientific data libraries
such as HDF [11].

In this paper, we present results from Voyager [3], the
batch mode parallel visualization tool of Rocketeer. Voy-
ager is a command line tool that takes as arguments a cam-
era position file, a graphics operations file, and a list of HDF
files to process. The camera position and graphics oper-
ations files are generated during an interactive session of
Rocketeer using a representative snapshot. Voyager uses
MPI for inter-processor message passing and is scalable to
a large number of processors.

4.2 Performance results with Voyager

In our experiments, we processed a subset of the snap-
shot files generated in a GENx simulation run. These snap-
shots store intermediate states of the solid propellant in
a NASA Titan IV rocket body. The datasets contain the
unstructured tetrahedral mesh, the connectivity informa-
tion, and several node-based or element-based quantities:

1Upgrades to HDF5 or other scientific data libraries have been planned
for Rocketeer and the rocket simulation codes that generate the data. Based
on our previous experience with other file formats including HDF5 [10],
we believe that our approach will deliver comparable performance ben-
efit with file formats other than HDF4, in addition to the file-format-
independent data management functionality.



a scalar measure of average stress, six components of the
stress tensor stored as scalars, the displacement, velocity,
and acceleration vectors, and several other quantities re-
quired for restarting. The original mesh contains 120481
nodes and 679008 elements in total, partitioned into 120
blocks (with a small amount of duplication of the boundary
data). For each time-step snapshot, there are eight HDF4
files. In all of our experiments, we process 32 time-step
snapshots. When GODIVA is used, Voyager uses all the
files in the same time-step snapshot as a processing unit.
Voyager calls GODIVA to add all the units to be processed
at the beginning of the run, and to delete a unit after the
processing of that snapshot finishes.

To test Voyager’s performance with background I/O, we
varied the relative amount of I/O by performing three vi-
sualization tests, called “simple”, “medium”, and “com-
plex”. The tests process different variables (e.g., veloc-
ity and stress) or have different visualization features (such
as the requested surfaces, slices, and cutting planes). The
“simple” test has the smallest ratio of computation work
load to I/O load, while the “complex” test has the largest.
For “simple”, “medium”, and “complex”, the total size of
input data per snapshot is 19.2MB, 30.1MB, and 16.6MB
respectively.

We found that GODIVA brings a two-fold I/O perfor-
mance benefit to Voyager. As expected, the background
prefetching overlaps I/O with computation. In addition,
GODIVA’s data management facilities can help Voyagerre-
duce the amount of I/O. With the original Voyager, read-
ing data and processing data are closely coupled, and cer-
tain mesh data may need to be read in repeatedly if there is
more than one variable to visualize. With GODIVA, when
Voyager knows a particular unit is ready in the GODIVA
database, it can retrieve the locations of the data buffers us-
ing the query interfaces, and reuse the data in those buffers.
Therefore, redundant reads are eliminated. To separate GO-
DIVA’s effect in reducing I/O volume from its effect in hid-
ing periodic input costs, we used two versions of the GO-
DIVA library: single-thread and multi-thread. The single-
thread version has all of GODIVA’s usual record operation
and query interfaces, but the background I/O is disabled:
there is no I/O thread performing thereadUnit opera-
tions in the background. Instead, areadUnit operation is
performed inside the correspondingwaitUnit call. This
way, eachwaitUnit operation is equivalent to an explicit,
blockingreadUnit operation. The multi-thread version
does the standard background I/O.

For each of the three visualization tests, we measured the
total computation time and visible I/O time using three ver-
sions of Voyager: the original implementation without GO-
DIVA (O), with the single-thread GODIVA library (G), and
with the multi-thread one (TG). For each visualization test,
these three versions of Voyager process the same datasets

and the same visualization tasks. The visible I/O time (more
accurately, visible input time) is the total time spent on read-
ing the datasets with explicit, blocking read operations or
waiting for units to be ready in memory. The computation
time is calculated by subtracting the visible I/O time from
the total execution time. We ran the tests on two platforms, a
single-processor workstation and a dual-processor PC clus-
ter. For each test, we report the average results from five
runs. The error bars in the performance charts show 95%
confidence intervals.

First, we discuss experiment results from a single-
processor workstation called Engle. Engle is a Dell Pre-
cision 340 workstation with a 2.0 GHz Pentium 4 processor
running Linux 2.4.20. It has 1GB RDRAM memory, and
an 80 GB ATA-100 IDE 7200 RPM hard disk. Our exper-
iments used the Linux ext2 file system. GODIVA’s total
memory space is configured as 384MB.

Results from Engle are shown in Figure 3(a). For all
three visualization tests, GODIVA brings improvements to
Voyager in both the I/O and the overall performance. By an-
alyzing the Voyager code and the input datasets, we know
that by using the GODIVA database, the volume of reads
can be reduced by approximately 14%, 24%, and 16%, in
the “simple”, “medium”, and “complex” tests respectively.
These numbers tell us the difference in I/O volume between
the original Voyager (O) and the one using single-thread
GODIVA (G). Since O and G do not overlap I/O with com-
putation, their total visible I/O time is the total actual I/O
time. By comparing the I/O time of O and G, we can see
that GODIVA reduces the total I/O time by 17.6%, 37.2%,
and 20.1% respectively, in the corresponding tests. The ex-
tra savings in I/O time are mainly due to the much reduced
disk seek time: the original Voyager needs to go back and
force in a file to read the mesh data multiple times.

To measure how much I/O time can be hidden by per-
forming prefetching, we compare the performance of the
Voyager version using the multi-thread GODIVA library
(TG) against that of Voyager using the single-thread one
(G). These two versions perform the same amount of I/O,
but with TG, all the units are added at the beginning of
the run and GODIVA keeps prefetching as long as there is
enough memory. In contrast, G does not overlap I/O with
computation at all. From Figure 3(a), we see that with TG,
the visible I/O time is dramatically reduced, but at the same
time, the computation is considerably slowed down.

We measure the fraction of I/O time that is hidden behind
computation by calculating what percentage of the total I/O
time is saved:total execution timeG−total execution timeT G

total I/O timeG
.

The percentage of I/O cost that is hidden is 24.7% in the
“simple” test, 33.1% in the “medium” test, and 37.8% in
the “complex” test. The “medium” test results show larger
variances and larger visible I/O time than those of the other
two tests. This is primarily because the “medium” test has
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utilization of idle resources that are normally not used ef-
fectively by the original visualization code running on such
systems.

It is worth noting that the datasets we used are rela-
tively small, with arrays (for mesh and variable data) rang-
ing from 9600 to 48000 bytes. Therefore, our tests issued a
large number of relatively small I/O requests, which is not
ideal for overlapping I/O and computation. Applications
that have larger data granularity should see bigger perfor-
mance improvement using GODIVA.

We mentioned that GODIVA can work with both sequen-
tial and parallel visualization codes, and Voyager is indeed a
parallel visualization tool. Currently however, Voyager can
use at most one processor per node in parallel processing.
Because Voyager partitions its workload between proces-
sors by assigning different processors different snapshots to
process, there is little communication involved during the
parallel processing except at the beginning of the run. In
this case, we expect the speedup brought by GODIVA in
parallel mode to be similar to that obtained in our sequen-
tial mode tests discussed above. This is confirmed by the
results from a series of parallel experiments on Turing us-
ing four Voyager processes [10].

5 Conclusions and future work

Recently, computer scientists have realized that new
DBMS technology is needed for scientists. For example,
Peter Freeman and Lawrence Landweber, both of NSF,
noted that such technology “should be able to manage
data in a format dictated by the scientists rather than by
the DBMS” [4]. Our work presented in this paper can
be viewed as an effort to find an affordable and portable
database solution for scientific applications.

The main contributions of this paper are as follows:

1. We designed the GODIVA framework, which contains
an in-memory database and a small set of interfaces
that provide light-weight data management support for
visualization tools. The GODIVA database manages
data buffer locations only, and helps developers bet-
ter organize visualization data without modifying the
way visualization computation is done. The GODIVA
interfaces provide relational-database-like query inter-
faces for visualization codes to easily access their in-
memory data. This is especially helpful for applica-
tions that need to process a large number of datasets.

2. We proposed a general-purpose approach to prefetch-
ing and caching for visualization tools. Our approach
is not tailored to any specific visualization application
or problem domain.

3. The GODIVA interfaces are portable and flexible.
They have no requirements regarding the underlying

machine architecture/operating system, or the visual-
ization tool’s software architecture, and can be used
in either sequential or parallel visualization programs.
Also, they place no restrictions regarding dataset prop-
erties or file formats. In addition, GODIVA inter-
faces allow visualization tool developers to supply
their own input modules, and to specify the granularity
of prefetching and caching. This way, developers can
customize their codes in domain-specific ways, read
data in any format, and perform prefetching/caching in
the granularity most appropriate for their specific kind
of visualization. GODIVA interfaces may also be used
as a building block in implementing previously pro-
posed domain-specific prefetching/caching techniques
[2].

4. GODIVA’s prefetching and caching can benefit both
interactive and batch processing tools. Visualization
tool developers can choose which GODIVA facilities
to use in their codes.

Both the GODIVA framework and the Voyager visual-
ization suite are on-going projects and we have several stud-
ies planned as future work:

1. We plan to evaluate the performance of GODIVA in
the interactive versions of Voyager, when enough user
traces are accumulated.

2. Voyager currently has problems in running multiple
processes within an SMP node. When these problems
are solved, we plan to experiment with GODIVA in a
fully parallel version of Voyager, and investigate the
GODIVA framework’s performance benefit, as well as
its scalability. Also, we plan to evaluate GODIVA on
multiple parallel platforms.

3. We plan to experiment with GODIVA and other paral-
lel visualization tools. Because parallel visualization is
a new technology, this analysis of GODIVA must wait
for such tools to become available.

4. Finally, as a relatively long-term plan, we plan to
expand the GODIVA interfaces and implementation
to support output through developer-supplied output
functions, and enable the GODIVA database to facil-
itate developer-controllable caching that is not neces-
sarily related to I/O.
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