
Copyright © Microsoft Corporation 2006. All Rights Reserved.

The LINQ Project
.NET Language Integrated Query

May 2006

Don Box, Architect, Microsoft Corporation and

Anders Hejlsberg, Technical Fellow, Microsoft Corporation

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 1

.NET Language Integrated Query
After two decades, the industry has reached a stable point in the evolution of object
oriented programming technologies. Programmers now take for granted features like
classes, objects, and methods. In looking at the current and next generation of
technologies, it has become apparent that the next big challenge in programming
technology is to reduce the complexity of accessing and integrating information that is
not natively defined using OO technology. The two most common sources of non-OO
information are relational databases and XML.

Rather than add relational or XML-specific features to our programming languages and
runtime, with the LINQ project we have taken a more general approach and are adding
general purpose query facilities to the .NET Framework that apply to all sources of
information, not just relational or XML data. This facility is called .NET Language
Integrated Query (LINQ).

We use the term language integrated query to indicate that query is an integrated feature
of the developer’s primary programming languages (e.g., C#, Visual Basic). Language
integrated query allows query expressions to benefit from the rich metadata, compile-
time syntax checking, static typing and IntelliSense that was previously available only to
imperative code. Language integrated query also allows a single general purpose
declarative query facility to be applied to all in-memory information, not just information
from external sources.

.NET Language Integrated Query defines a set of general purpose standard query
operators that allow traversal, filter, and projection operations to be expressed in a direct
yet declarative way in any .NET-based programming language. The standard query
operators allow queries to be applied to any IEnumerable<T>-based information
source. LINQ allows third parties to augment the set of standard query operators with
new domain-specific operators that are appropriate for the target domain or technology.
More importantly, third parties are also free to replace the standard query operators with
their own implementations that provide additional services such as remote evaluation,
query translation, optimization, etc. By adhering to the conventions of the LINQ pattern,
such implementations enjoy the same language integration and tool support as the
standard query operators.

The extensibility of the query architecture is used in the LINQ project itself to provide
implementations that work over both XML and SQL data. The query operators over
XML (XLinq) use an efficient, easy-to-use in-memory XML facility to provide
XPath/XQuery functionality in the host programming language. The query operators over
relational data (DLinq) build on the integration of SQL-based schema definitions into the
CLR type system. This integration provides strong typing over relational data while
retaining the expressive power of the relational model and the performance of query
evaluation directly in the underlying store.

.NET Language Integrated Query

2 Copyright © Microsoft Corporation 2006. All Rights Reserved.

Getting Started with Standard Query Operators
To see language integrated query at work, we’ll begin with a simple C# 3.0 program that
uses the standard query operators to process the contents of an array:

using System;
using System.Query;
using System.Collections.Generic;

class app {
 static void Main() {
 string[] names = { "Burke", "Connor", "Frank",
 "Everett", "Albert", "George",
 "Harris", "David" };

 IEnumerable<string> expr = from s in names
 where s.Length == 5
 orderby s
 select s.ToUpper();

 foreach (string item in expr)
 Console.WriteLine(item);
 }
}

If you were to compile and run this program, you’d see this as output:
BURKE
DAVID
FRANK

To understand how language integrated query works, we need to dissect the first
statement of our program.

IEnumerable<string> expr = from s in names
 where s.Length == 5
 orderby s
 select s.ToUpper();

The local variable expr is initialized with a query expression. A query expression
operates on one or more information sources by applying one or more query operators
from either the standard query operators or domain-specific operators. This expression
uses three of the standard query operators: Where, OrderBy, and Select.

Visual Basic 9.0 supports LINQ as well. Here’s the preceding statement written in Visual
Basic 9.0:

Dim expr As IEnumerable(Of String) = From s in names _
 Where s.Length = 5 _
 Order By s _
 Select s.ToUpper()

Both the C# and Visual Basic statements shown here use query syntax. Like the foreach
statement, query syntax is a convenient declarative shorthand over code you could write

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 3

manually. The statements above are semantically identical to the following explicit
syntax shown in C#:

IEnumerable<string> expr = names
 .Where(s => s.Length == 5)
 .OrderBy(s => s)
 .Select(s => s.ToUpper());

The arguments to the Where, OrderBy, and Select operators are called lambda
expressions, which are fragments of code much like delegates. They allow the standard
query operators to be defined individually as methods and strung together using dot
notation. Together, these methods form the basis for an extensible query language.

Language features supporting the LINQ Project
LINQ is built entirely on general purpose language features, some of which are new to
C# 3.0 and Visual Basic 9.0. Each of these features has utility on its own, yet collectively
these features provide an extensible way to define queries and queryable API’s. In this
section we explore these language features and how they contribute to a much more
direct and declarative style of queries.

Lambda Expressions and Expression Trees
Many query operators allow the user to provide a function that performs filtering,
projection, or key extraction. The query facilities build on the concept of lambda
expressions, which provides developers with a convenient way to write functions that can
be passed as arguments for subsequent evaluation. Lambda expressions are similar to
CLR delegates and must adhere to a method signature defined by a delegate type. To
illustrate this, we can expand the statement above into an equivalent but more explicit
form using the Func delegate type:

Func<string, bool> filter = s => s.Length == 5;
Func<string, string> extract = s => s;
Func<string, string> project = s => s.ToUpper();

IEnumerable<string> expr = names.Where(filter)
 .OrderBy(extract)
 .Select(project);

Lambda expressions are the natural evolution of C# 2.0’s anonymous methods. For
example, we could have written the previous example using anonymous methods like
this:

.NET Language Integrated Query

4 Copyright © Microsoft Corporation 2006. All Rights Reserved.

Func<string, bool> filter = delegate (string s) {
 return s.Length == 5;
 };

Func<string, string> extract = delegate (string s) {
 return s;
 };

Func<string, string> project = delegate (string s) {
 return s.ToUpper();
 };

IEnumerable<string> expr = names.Where(filter)
 .OrderBy(extract)
 .Select(project);

In general, the developer is free to use named methods, anonymous methods, or lambda
expressions with query operators. Lambda expressions have the advantage of providing
the most direct and compact syntax for authoring. More importantly, lambda expressions
can be compiled as either code or data, which allows lambda expressions to be processed
at runtime by optimizers, translators, and evaluators.

LINQ defines a distinguished type, Expression<T> (in the System.Expressions
namespace), which indicates that an expression tree is desired for a given lambda
expression rather than a traditional IL-based method body. Expression trees are efficient
in-memory data representations of lambda expressions and make the structure of the
expression transparent and explicit.

The determination of whether the compiler will emit executable IL or an expression tree
is determined by how the lambda expression is used. When a lambda expression is
assigned to a variable, field, or parameter whose type is a delegate, the compiler emits IL
that is identical to that of an anonymous method. When a lambda expression is assigned
to a variable, field, or parameter whose type is Expression<T>, the compiler emits an
expression tree instead.

For example, consider the following two variable declarations:
Func<int, bool> f = n => n < 5;
Expression<Func<int, bool>> e = n => n < 5;

The variable f is a reference to a delegate that is directly executable:
bool isSmall = f(2); // isSmall is now true

The variable e is a reference to an expression tree that is not directly executable:
bool isSmall = e(2); // compile error, expressions == data

Unlike delegates, which are effectively opaque code, we can interact with the expression
tree just like any other data structure in our program. For example, this program:

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 5

Expression<Func<int, bool>> filter = n => n < 5;

BinaryExpression body = (BinaryExpression)filter.Body;
ParameterExpression left = (ParameterExpression)body.Left;
ConstantExpression right = (ConstantExpression)body.Right;

Console.WriteLine("{0} {1} {2}",
 left.Name, body.NodeType, right.Value);

decomposes the expression tree at runtime and prints out the string:
n LT 5

This ability to treat expressions as data at runtime is critical to enable an ecosystem of
third-party libraries that leverage the base query abstractions that are part of the platform.
The DLinq data access implementation leverages this facility to translate expression trees
to T-SQL statements suitable for evaluation in the store.

Extension Methods
Lambda expressions are one important piece of the query architecture. Extension methods
are another. Extension methods combine the flexibility of “duck typing” made popular in
dynamic languages with the performance and compile-time validation of statically-typed
languages. With extension methods third parties may augment the public contract of a
type with new methods while still allowing individual type authors to provide their own
specialized implementation of those methods.

Extension methods are defined in static classes as static methods, but are marked with the
[System.Runtime.CompilerServices.Extension] attribute in CLR metadata.
Languages are encouraged to provide a direct syntax for extension methods. In C#,
extension methods are indicated by the this modifier which must be applied to the first
parameter of the extension method. Let’s look at the definition of the simplest query
operator, Where:

namespace System.Query {
 using System;
 using System.Collections.Generic;

 public static class Sequence {
 public static IEnumerable<T> Where<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate) {

 foreach (T item in source)
 if (predicate(item))
 yield return item;
 }
 }
}

The type of the first parameter of an extension method indicates what type the extension
applies to. In the example above, the Where extension method extends the type
IEnumerable<T>. Because Where is a static method, we can invoke it directly just like
any other static method:

.NET Language Integrated Query

6 Copyright © Microsoft Corporation 2006. All Rights Reserved.

IEnumerable<string> expr = Sequence.Where(names,
 s => s.Length < 6);

However, what makes extension methods unique is that they can also be invoked using
instance syntax:

IEnumerable<string> expr = names.Where(s => s.Length < 6);

Extension methods are resolved at compile-time based on which extension methods are in
scope. When a namespace is imported with C#’s using statement or VB’s Import
statement, all extension methods that are defined by static classes from that namespace
are brought into scope.

The standard query operators are defined as extension methods in the type
System.Query.Sequence. When examining the standard query operators, you’ll
notice that all but a few of them are defined in terms of the IEnumerable<T> interface.
This means that every IEnumerable<T>-compatible information source gets the
standard query operators simply by adding the following using statement in C#:

using System.Query; // makes query operators visible

Users that wish to replace the standard query operators for a specific type may either (a)
define their own same-named methods on the specific type with compatible signatures or
(b) define new same-named extension methods that extend the specific type. Users that
want to eschew the standard query operators altogether can simply not put
System.Query into scope and write their own extension methods for
IEnumerable<T>.

Extension methods are given the lowest priority in terms of resolution and are only used
if there is no suitable match on the target type and its base types. This allows user-defined
types to provide their own query operators that take precedence over the standard
operators. For example, consider the custom collection shown here:

public class MySequence : IEnumerable<int> {
 public IEnumerator<int> GetEnumerator() {
 for (int i = 1; i <= 10; i++)
 yield return i;
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }

 public IEnumerable<int> Where(Func<int, bool> filter) {
 for (int i = 1; i <= 10; i++)
 if (filter(i))
 yield return i;
 }
}

Given this class definition, the following program:

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 7

MySequence s = new MySequence();
foreach (int item in s.Where(n => n > 3))
 Console.WriteLine(item);

will use the MySequence.Where implementation, not the extension method, as instance
methods take precedence over extension methods.

The OfType operator is one of the few standard query operators that doesn’t extend an
IEnumerable<T>-based information source. Let’s look at the OfType query operator:

public static IEnumerable<T> OfType<T>(this IEnumerable source) {
 foreach (object item in source)
 if (item is T)
 yield return (T)item;
}

OfType accepts not only IEnumerable<T>-based sources, but also sources that are
written against the non-parameterized IEnumerable interface that was present in
version 1 of the .NET Framework. The OfType operator allows users to apply the
standard query operators to classic .NET collections like this:

// "classic" cannot be used directly with query operators
IEnumerable classic = new OlderCollectionType();

// "modern" can be used directly with query operators
IEnumerable<object> modern = classic.OfType<object>();

In this example, the variable modern yields the same sequence of values as does
classic, however, its type is compatible with modern IEnumerable<T> code,
including the standard query operators.

The OfType operator is also useful for newer information sources, as it allows filtering
values from a source based on type. When producing the new sequence, OfType simply
omits members of the original sequence that that are not compatible with the type
argument. Consider this simple program that extracts strings from a heterogeneous array:

object[] vals = { 1, "Hello", true, "World", 9.1 };
IEnumerable<string> justStrings = vals.OfType<string>();

When we enumerate the justStrings variable in a foreach statement, we’ll get a
sequence of two strings “Hello” and “World”.

Deferred Query Evaluation
Observant readers may have noted that the standard Where operator is implemented
using the yield construct introduced in C# 2.0. This implementation technique is
common for all of the standard operators that return sequences of values. The use of
yield has an interesting benefit which is that the query is not actually evaluated until it
is iterated over, either with a foreach statement or manually using the underlying
GetEnumerator and MoveNext methods. This deferred evaluation allows queries to be
kept as IEnumerable<T>-based values that can be evaluated multiple times, each time
yielding potentially different results.

.NET Language Integrated Query

8 Copyright © Microsoft Corporation 2006. All Rights Reserved.

For many applications, this is exactly the behavior that is desired. For applications that
want to cache the results of query evaluation, two operators, ToList and ToArray, are
provided that force the immediate evaluation of the query and return either a List<T> or
an array containing the results of the query evaluation.

To see how deferred query evaluation works consider this program that runs a simple
query over an array:

// declare a variable containing some strings
string[] names = { "Allen", "Arthur", "Bennett" };

// declare a variable that represents a query
IEnumerable<string> ayes = names.Where(s => s[0] == 'A');

// evaluate the query
foreach (string item in ayes)
 Console.WriteLine(item);

// modify the original information source
names[0] = "Bob";

// evaluate the query again, this time no "Allen"
foreach (string item in ayes)
 Console.WriteLine(item);

The query is evaluated each time the variable ayes is iterated over. To indicate that a
cached copy of the results is needed, we can simply append a ToList or ToArray
operator to the query like this:

// declare a variable containing some strings
string[] names = { "Allen", "Arthur", "Bennett" };

// declare a variable that represents the result
// of an immediate query evaluation
string[] ayes = names.Where(s => s[0] == 'A').ToArray();

// iterate over the cached query results
foreach (string item in ayes)
 Console.WriteLine(item);

// modifying the original source has no effect on ayes
names[0] = "Bob";

// iterate over result again, which still contains "Allen"
foreach (string item in ayes)
 Console.WriteLine(item);

Both ToArray and ToList force immediate query evaluation. The same is true for the
standard query operators that return singleton values (e.g., First, ElementAt, Sum,
Average, All, Any).

The IQueryable<T> interface
The same deferred execution model is usually desired for data sources that implement the
query functionality using expression trees, such as DLinq. These data sources can benefit

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 9

from implementing the IQueryable<T>, for which all the query operators required by
the LINQ pattern are implemented using expression trees. Each IQueryable<T> has a
representation of “the code needed to run the query” in the form of an expression tree. All
the deferred query operators return a new IQueryable which augments that expression
tree with a representation of a call to that query operator. Thus, when it becomes time to
evaluate the query, typically because the IQueryable is enumerated, the data source can
process the expression tree representing the whole query in one batch. As an example, a
complicated DLinq query obtained by numerous calls to query operators, may result in
only a single SQL query getting sent to the database.

The benefit for data source implementers of reusing this deferring functionality by
implementing the IQueryable<T> interface is obvious. To the clients who write the
queries, on the other hand, it is a great advantage to have a common type for remote
information sources. Not only does it allow them to write polymorphic queries that can
be used against different sources of data, but it also opens up the possibility for writing
queries that go across domains.

Initializing Compound Values
Lambda expressions and extension methods provide us with everything we need for
queries that simply filter members out of a sequence of values. Most query expressions
also perform projection over those members, effectively transforming members of the
original sequence into members whose value and type may differ from the original. To
support writing these transforms, LINQ relies on a new construct called object
initialization expressions to create new instances of structured types. For the rest of this
document, we’ll assume the following type has been defined:

public class Person {
 string name;
 int age;
 bool canCode;

 public string Name {
 get { return name; } set { name = value; }
 }

 public int Age {
 get { return age; } set { age = value; }
 }

 public bool CanCode {
 get { return canCode; } set { canCode = value; }
 }
}

Object initialization expressions allow us to easily construct values based on the public
fields and properties of a type. For example, to create a new value of type Person, we
can write this statement:

.NET Language Integrated Query

10 Copyright © Microsoft Corporation 2006. All Rights Reserved.

Person value = new Person {
 Name = "Chris Smith", Age = 31, CanCode = false
};

Semantically, this statement is equivalent to the following sequence of statements:
Person value = new Person();
value.Name = "Chris Smith";
value.Age = 31;
value.CanCode = false;

Object initialization expressions are an important feature for language integrated query,
as they allow the construction of new structured values in contexts where only
expressions are allowed (such as within lambda expressions and expression trees). For
example, consider this query expression that creates a new Person value for each value
in the input sequence:

IEnumerable<Person> expr = names.Select(s => new Person {
 Name = s, Age = 21, CanCode = s.Length == 5
});

Object initialization syntax is also convenient for initializing arrays of structured values.
For example, consider this array variable that is initialized using individual object
initializers:

static Person[] people = {
 new Person { Name="Allen Frances", Age=11, CanCode=false },
 new Person { Name="Burke Madison", Age=50, CanCode=true },
 new Person { Name="Connor Morgan", Age=59, CanCode=false },
 new Person { Name="David Charles", Age=33, CanCode=true },
 new Person { Name="Everett Frank", Age=16, CanCode=true },
};

Structured values and types
The LINQ project supports a data-centric programming style in which some types exist
primarily to provide a static “shape” over a structured value rather than a full-blown
object with both state and behavior. Taking this premise to its logical conclusion, it is
often the case that all the developer cares about is the structure of the value, and the need
for a named type for that shape is of little use. This leads to the introduction of
anonymous types that allow new structures to be defined “inline” with their initialization.

In C#, the syntax for anonymous types is similar to the object initialization syntax except
that the name of the type is omitted. For example, consider the following two statements:

object v1 = new Person {
 Name = "Chris Smith", Age = 31, CanCode = false
};

object v2 = new { // note the omission of type name
 Name = "Chris Smith", Age = 31, CanCode = false
};

The variables v1 and v2 both point to an in-memory object whose CLR type has three
public properties Name, Age, and CanCode. The variables differ in that v2 refers to an

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 11

instance of an anonymous type. In CLR terms, anonymous types are no different than any
other type. What makes anonymous types special is that they have no meaningful name
in your programming language – the only way to create instances of an anonymous type
is using the syntax shown above.

To allow variables to refer to instances of anonymous types yet still benefit from static
typing, C# introduces the var keyword that may be used in place of the type name for
local variable declarations. For example, consider this legal C# 3.0 program:

var s = "Bob";
var n = 32;
var b = true;

The var keyword tells the compiler to infer the type of the variable from the static type
of the expression used to initialize the variable. In this example, the types of s, n, and b
are string, int, and bool, respectively. This program is identical to the following:

string s = "Bob";
int n = 32;
bool b = true;

The var keyword is a convenience for variables whose types have meaningful names,
but it is a necessity for variables that refer to instances of anonymous types.

var value = new {
 Name = "Chris Smith", Age = 31, CanCode = false
};

In the example above, variable value is of an anonymous type whose definition is
equivalent to the following pseudo-C#:

internal class ??? {
 string _Name;
 int _Age;
 bool _CanCode;

 public string Name {
 get { return _Name; } set { _Name = value; }
 }

 public int Age{
 get { return _Age; } set { _Age = value; }
 }

 public bool CanCode {
 get { return _CanCode; } set { _CanCode = value; }
 }

 public bool Equals(object obj) { … }

 public bool GetHashCode() { … }
}

Anonymous types cannot be shared across assembly boundaries; however, the compiler
ensures that there is at most one anonymous type for a given sequence of property
name/type pairs within each assembly.

.NET Language Integrated Query

12 Copyright © Microsoft Corporation 2006. All Rights Reserved.

Because anonymous types are often used in projections to select one or more members of
an existing structured value, we can simply reference fields or properties from another
value in the initialization of an anonymous type. This results in the new anonymous type
getting a property whose name, type, and value are all copied from the referenced
property or field.

For instance, consider this example that creates a new structured value by combining
properties from other values:

var bob = new Person { Name = "Bob", Age = 51, CanCode = true };
var jane = new { Age = 29, FirstName = "Jane" };

var couple = new {
 Husband = new { bob.Name, bob.Age },
 Wife = new { Name = jane.FirstName, jane.Age }
};

int ha = couple.Husband.Age; // ha == 51
string wn = couple.Wife.Name; // wn == "Jane"

The referencing of fields or properties shown above is simply a convenient syntax for
writing the following more explicit form:

var couple = new {
 Husband = new { Name = bob.Name, Age = bob.Age },
 Wife = new { Name = jane.FirstName, Age = jane.Age }
};

In both cases, the couple variable gets its own copy of the Name and Age properties
from bob and jane.

Anonymous types are most often used in the select clause of a query. For example,
consider the following query:

var expr = people.Select(p => new {
 p.Name, BadCoder = p.Age == 11
 });

foreach (var item in expr)
 Console.WriteLine("{0} is a {1} coder",
 item.Name,
 item.BadCoder ? "bad" : "good");

In this example, we were able to create a new projection over the Person type that
exactly matched the shape we needed for our processing code yet still gave us the
benefits of a static type.

More Standard Query Operators
On top of the basic query facilities described above, a number of operators provide useful
ways of manipulating sequences and composing queries, giving the user a high degree of
control over the result within the convenient framework of the standard query operators.

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 13

Sorting and Grouping
In general, the evaluation of a query expression results in a sequence of values that are
produced in some order that is intrinsic in the underlying information sources. To give
developers explicit control over the order in which these values are produced, standard
query operators are defined for controlling the order. The most basic of these operators is
the OrderBy operator.

The OrderBy and OrderByDescending operators can be applied to any information
source and allow the user to provide a key extraction function that produces the value that
is used to sort the results. OrderBy and OrderByDescending also accept an optional
comparison function that can be used to impose a partial order over the keys. Let’s look
at a basic example:

string[] names = { "Burke", "Connor", "Frank", "Everett",
 "Albert", "George", "Harris", "David" };

// unity sort
var s1 = names.OrderBy(s => s);
var s2 = names.OrderByDescending(s => s);

// sort by length
var s3 = names.OrderBy(s => s.Length);
var s4 = names.OrderByDescending(s => s.Length);

The first two query expressions produce new sequences that are based on sorting the
members of the source based on string comparison. The second two queries produce new
sequences that are based on sorting the members of the source based on the length of
each string.

To allow multiple sort criteria, both OrderBy and OrderByDescending return
SortedSequence<T> rather than the generic IEnumerable<T>. Two operators are
defined only on SortedSequence<T>, namely ThenBy and ThenByDescending
which apply an additional (subordinate) sort criterion. ThenBy/ThenByDescending
themselves return SortedSequence<T>, allowing any number of
ThenBy/ThenByDescending operators to be applied:

string[] names = { "Burke", "Connor", "Frank", "Everett",
 "Albert", "George", "Harris", "David" };

var s1 = names.OrderBy(s => s.Length).ThenBy(s => s);

Evaluating the query referenced by s1 in this example would yield the following
sequence of values:

"Burke", "David", "Frank",
"Albert", "Connor", "George", "Harris",
"Everett"

In addition to the OrderBy family of operators, the standard query operators also include
a Reverse operator. Reverse simply enumerates over a sequence and yields the same
values in reverse order. Unlike OrderBy, Reverse doesn’t consider the actual values

.NET Language Integrated Query

14 Copyright © Microsoft Corporation 2006. All Rights Reserved.

themselves in determining the order, rather it relies solely on the order the values are
produced by the underlying source.

The OrderBy operator imposes a sort order over a sequence of values. The standard
query operators also include the GroupBy operator, which imposes a partitioning over a
sequence of values based on a key extraction function. The GroupBy operator returns a
sequence of IGrouping values, one for each distinct key value that was encountered. An
IGrouping is an IEnumerable that additionally contains the key that was used to
extract its contents:

public interface IGrouping<K, T> : IEnumerable<T> {
 public K Key { get; }
}

The simplest application of GroupBy looks like this:
string[] names = { "Albert", "Burke", "Connor", "David",
 "Everett", "Frank", "George", "Harris"};

// group by length
var groups = names.GroupBy(s => s.Length);

foreach (IGrouping<int, string> group in groups) {
 Console.WriteLine("Strings of length {0}", group.Key);

 foreach (string value in group)
 Console.WriteLine(" {0}", value);
}

When run, this program prints out the following:
Strings of length 6
 Albert
 Connor
 George
 Harris
Strings of length 5
 Burke
 David
 Frank
Strings of length 7
 Everett

A la Select, GroupBy allows you to provide a projection function that is used to
populate members of the groups.

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 15

string[] names = { "Albert", "Burke", "Connor", "David",
 "Everett", "Frank", "George", "Harris"};

// group by length
var groups = names.GroupBy(s => s.Length, s => s[0]);
foreach (IGrouping<int, char> group in groups) {
 Console.WriteLine("Strings of length {0}", group.Key);

 foreach (char value in group)
 Console.WriteLine(" {0}", value);
}

This variation prints out the following:
Strings of length 6
 A
 C
 G
 H
Strings of length 5
 B
 D
 F
Strings of length 7
 E

Note from this example that the projected type does not need to be the same as the
source. In this case, we created a grouping of integers to characters from a sequence of
strings.

Aggregation Operators
Several standard query operators are defined for aggregating a sequence of values into a
single value. The most general aggregation operator is Aggregate, which is defined like
this:

public static U Aggregate<T, U>(this IEnumerable<T> source,
 U seed, Func<U, T, U> func) {
 U result = seed;

 foreach (T element in source)
 result = func(result, element);

 return result;
}

The Aggregate operator makes it simple to perform a calculation over a sequence of
values. Aggregate works by calling the lambda expression once for each member of the
underlying sequence. Each time Aggregate calls the lambda expression, it passes both
the member from the sequence and an aggregated value (the initial value is the seed
parameter to Aggregate). The result of the lambda expression replaces the previous
aggregated value, and Aggregate returns the final result of the lambda expression.

For example, this program uses Aggregate to accumulate the total character count over
an array of strings:

.NET Language Integrated Query

16 Copyright © Microsoft Corporation 2006. All Rights Reserved.

string[] names = { "Albert", "Burke", "Connor", "David",
 "Everett", "Frank", "George", "Harris"};

int count = names.Aggregate(0, (c, s) => c + s.Length);
// count == 46

In addition to the general purpose Aggregate operator, the standard query operators also
include a general purpose Count operator and four numeric aggregation operators (Min,
Max, Sum, and Average) that simplify these common aggregation operations. The
numeric aggregation functions work over sequences of numeric types (e.g., int,
double, decimal) or over sequences of arbitrary values as long as a function is
provided that projects members of the sequence into a numeric type.

This program illustrates both forms of the Sum operator just described:
int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
string[] names = { "Albert", "Burke", "Connor", "David",
 "Everett", "Frank", "George", "Harris"};

int total1 = numbers.Sum(); // total1 == 55
int total2 = names.Sum(s => s.Length); // total2 == 46

Note that the second Sum statement is equivalent to the previous example using
Aggregate.

Select vs. SelectMany
The Select operator requires the transform function to produce one value for each value
in the source sequence. If your transform function returns a value that is itself a sequence,
it is up to the consumer to traverse the sub-sequences manually. For example, consider
this program that breaks strings into tokens using the existing String.Split method:

string[] text = { "Albert was here",
 "Burke slept late",
 "Connor is happy" };

var tokens = text.Select(s => s.Split(' '));

foreach (string[] line in tokens)
 foreach (string token in line)
 Console.Write("{0}.", token);

When run, this program prints out the following text:
Albert.was.here.Burke.slept.late.Connor.is.happy.

Ideally, we would have liked our query to have returned a coalesced sequence of tokens
and not exposed the intermediate string[] to the consumer. To achieve this, we use the
SelectMany operator instead of the Select operator. The SelectMany operator works
similarly to the Select operator. It differs in that the transform function is expected to
return a sequence that is then expanded by the SelectMany operator. Here’s our
program rewritten using SelectMany:

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 17

string[] text = { "Albert was here",
 "Burke slept late",
 "Connor is happy" };

var tokens = text.SelectMany(s => s.Split(' '));

foreach (string token in tokens)
 Console.Write("{0}.", token);

The use of SelectMany causes each intermediate sequence to be expanded as part of
normal evaluation.

SelectMany is ideal for combining two information sources:
string[] names = { "Burke", "Connor", "Frank", "Everett",
 "Albert", "George", "Harris", "David" };

var query = names.SelectMany(n =>
 people.Where(p => n.Equals(p.Name))
);

In the lambda expression passed to SelectMany, the nested query applies to a different
source, but has in scope the n parameter passed in from the outer source. Thus
people.Where is called once for each n, with the resulting sequences flattened by
SelectMany for the final output. The result is a sequence of all the people whose name
appears in the names array.

Join Operators
In an object oriented program, objects that are related to each other will typically be
linked up with object references which are easy to navigate. The same usually does not
hold true for external information sources, where data entries often have no option but to
“point” to each other symbolically, with IDs or other data that can uniquely identify the
entity pointed to. The concept of joins refers to the operation of bringing the elements of
a sequence together with the elements they “match up with” from another sequence.

The previous example with SelectMany actually does exactly that, matching up strings
with people whose names are those strings. However, for this particular purpose, the
SelectMany approach isn’t very efficient – it will loop through all the elements of
people for each and every element of names. By bringing all the information of this
scenario – the two information sources and the “keys” by which they are matched up –
together in one method call, the Join operator is able to do a much better job:

string[] names = { "Burke", "Connor", "Frank", "Everett",
 "Albert", "George", "Harris", "David" };

var query = names.Join(people, n => n, p => p.Name, (n,p) => p);

This is a bit of a mouthful, but see how the pieces fit together: The Join method is called
on the “outer” data source, names. The first argument is the “inner” data source,
people. The second and third arguments are lambda expressions to extract keys from the
elements of the outer and inner sources, respectively. These keys are what the Join
method uses to match up the elements. Here we want the names themselves to match the

.NET Language Integrated Query

18 Copyright © Microsoft Corporation 2006. All Rights Reserved.

Name property of the people. The final lambda expression is then responsible for
producing the elements of the resulting sequence: It is called with each pair of matching
elements n and p, and is used to shape the result. In this case we choose to discard the n
and return the p. The end result is the list of Person elements of people whose Name is
in the list of names.

A more powerful cousin of Join is the GroupJoin operator. GroupJoin differs from Join in
the way the result shaping lambda expression is used: Instead of being invoked with each
individual pair of outer and inner elements, it will be called only once for each outer
element, with a sequence of all of the inner elements that match that outer element. To
make that concrete:

string[] names = { "Burke", "Connor", "Frank", "Everett",
 "Albert", "George", "Harris", "David" };

var query = names.GroupJoin(people, n => n, p => p.Name,

 (n, matching) =>
 new { Name = n, Count = matching.Count() }
);

This call produces a sequence of the names you started out with paired with the number
of people who have that name. Thus, the GroupJoin operator allows you to base your
results on the whole “set of matches” for an outer element.

Query syntax
C#’s existing foreach statement provides a declarative syntax for iteration over the
.NET Framework’s IEnumerable/IEnumerator methods. The foreach statement is
strictly optional, but it has proven to be a very convenient and popular language
mechanism.

Building on this precedent, query syntax simplifies query expressions with a declarative
syntax for the most common query operators: Where, Join, GroupJoin, Select,
SelectMany, GroupBy, OrderBy, ThenBy, OrderByDescending, and
ThenByDescending.

Let’s start by looking at the simple query we began this paper with:
IEnumerable<string> expr = names
 .Where(s => s.Length == 5)
 .OrderBy(s => s)
 .Select(s => s.ToUpper());

Using query syntax we can rewrite this exact statement like this:
IEnumerable<string> expr = from s in names
 where s.Length == 5
 orderby s
 select s.ToUpper();

Like C#’s foreach statement, query syntax expressions are more compact and easier to
read, but are completely optional. Every expression that can be written in query syntax
has a corresponding (albeit more verbose) syntax using dot notation.

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 19

Let’s begin by looking at the basic structure of a query expression. Every syntactic query
expression in C# begins with a from clause and ends with either a select or group
clause. The initial from clause can be followed by zero or more from, let or where
clauses. Additionally, any number of join clauses can follow immediately after a from
clause. Each from clause is a generator that introduces an iteration variable ranging over
a sequence, each let clause gives name to the result of an expression and each where
clause is a filter that excludes items from the result. Every join clause correlates a new
data source with the results of a previous from or join. The final select or group
clause may be preceded by an orderby clause that specifies an ordering for the result:

query-expression ::= from-clause query-body

query-body ::=
join-clause*
(from-clause join-clause* | let-clause | where-clause)*
orderby-clause?
(select-clause | groupby-clause)

 query-continuation?

from-clause ::= from itemName in srcExpr

join-clause ::=

join itemName in srcExpr on keyExpr equals keyExpr
(into itemName)?

let-clause ::= let itemName = selExpr

where-clause ::= where predExpr

orderby-clause ::= orderby (keyExpr (ascending | descending)?)*

select-clause ::= select selExpr

groupby-clause ::= group selExpr by keyExpr

query-continuation ::= into itemName query-body

For example, consider these two query expressions:
var query1 = from p in people
 where p.Age > 20
 orderby p.Age descending, p.Name
 select new {
 p.Name, Senior = p.Age > 30, p.CanCode
 };

var query2 = from p in people
 where p.Age > 20
 orderby p.Age descending, p.Name
 group new {
 p.Name, Senior = p.Age > 30, p.CanCode
 } by p.CanCode;

The compiler treats these query expressions as if they were written using the following
explicit dot-notation:

.NET Language Integrated Query

20 Copyright © Microsoft Corporation 2006. All Rights Reserved.

var query1 = people.Where(p => p.Age > 20)
 .OrderByDescending(p => p.Age)
 .ThenBy(p => p.Name)
 .Select(p => new {
 p.Name,
 Senior = p.Age > 30,
 p.CanCode
 });

var query2 = people.Where(p => p.Age > 20)
 .OrderByDescending(p => p.Age)
 .ThenBy(p => p.Name)
 .GroupBy(p => p.CanCode,
 p => new {
 p.Name,
 Senior = p.Age > 30,
 p.CanCode
 });

Query expressions perform a mechanical translation into calls of methods with specific
names. The exact query operator implementation that is chosen therefore depends both on
the type of the variables being queried and the extension methods that are in scope.

The query expressions shown so far have only used one generator. When more than one
generator is used, each subsequent generator is evaluated in the context of its
predecessor. For example, consider this slight modification to our query:

var query = from s1 in names where s1.Length == 5
 from s2 in names where s1 == s2
 select s1 + " " + s2;

When run against this input array:
string[] names = { "Burke", "Connor", "Frank", "Everett",
 "Albert", "George", "Harris", "David" };

we get the following results:
Burke Burke
Frank Frank
David David

The query expression above expands to this dot notation expression:
var query = names.Where(s1 => s1.Length == 5)
 .SelectMany(s1 =>
 names.Where(s2 => s1 == s2)
 .Select(s2 => s1 + " " + s2)
);

Note that the use of SelectMany causes the inner query expression to be flattened in the
outer result.

A special kind of generator is the join clause, which will introduce elements of another
source that match up with the elements of the preceding from or join clause according
to given keys. A join clause may yield the matching elements one by one, but if
specified with an into clause, the matching elements will be given as a group:

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 21

var query = from n in names
 join p in people on n equals p.Name into matching
 select new { Name = n, Count = matching.Count() };

Not surprisingly, this query expands quite directly into one we have seen before:
var query = names.GroupJoin(people, n => n, p => p.Name,

 (n, matching) =>
 new { Name = n, Count = matching.Count() }
);

It is often useful to treat the results of one query as a generator in a subsequent query. To
support this, query expressions use the into keyword to splice a new query expression
after a select or group clause.

The into keyword is especially useful for post-processing the results of a group by
clause. For example, consider this program:

var query = from item in names
 orderby item
 group item by item.Length into lengthGroups
 orderby lengthGroups.Key descending
 select lengthGroups;

foreach (var group in query) {
 Console.WriteLine("Strings of length {0}", group.Key);

 foreach (var val in group.Group)
 Console.WriteLine(" {0}", val);
}

This program outputs the following:
Strings of length 7
 Everett
Strings of length 6
 Albert
 Connor
 George
 Harris
Strings of length 5
 Burke
 David
 Frank

This section described how C# implements query expressions. Other languages may elect
to support additional query operators with explicit syntax, or not to have query
expressions at all.

It is important to note that the query syntax is by no means hard-wired to the standard
query operators. It is a purely syntactic feature that applies to anything which fulfills the
LINQ pattern by implementing underlying methods with the appropriate names and
signatures. The standard query operators described above do so by using extension
methods to augment the IEnumerable<T> interface. Developers may exploit the query
syntax on any type they wish, as long as they make sure that it adheres to the LINQ

.NET Language Integrated Query

22 Copyright © Microsoft Corporation 2006. All Rights Reserved.

pattern, either by direct implementation of the necessary methods or by adding them as
extension methods.

This extensibility is exploited in the LINQ project itself by the provision of two LINQ-
enabled API’s, namely DLinq, which implements the LINQ pattern for SQL-based data
access, and XLinq which allows LINQ queries over XML data. Both of these are
described in the following sections.

DLinq: SQL Integration
.NET Language Integrated Query can be used to query relational data stores without
leaving the syntax or compile-time environment of the local programming language.
This facility, code-named DLinq, takes advantage of the integration of SQL schema
information into CLR metadata. This integration compiles SQL table and view
definitions into CLR types that can be accessed from any language.

DLinq defines two core attributes, [Table] and [Column], which indicate which CLR
types and properties correspond to external SQL data. The [Table] attribute can be
applied to a class and associates the CLR type with a named SQL table or view. The
[Column] attribute can be applied to any field or property and associates the member
with a named SQL column. Both attributes are parameterized to allow SQL-specific
metadata to be retained. For example, consider this simple SQL schema definition:

create table People (
 Name nvarchar(32) primary key not null,
 Age int not null,
 CanCode bit not null
)

create table Orders (
 OrderID nvarchar(32) primary key not null,
 Customer nvarchar(32) not null,
 Amount int
)

The CLR equivalent looks like this:

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 23

[Table(Name="People")]
public class Person {
 [Column(DbType="nvarchar(32) not null", Id=true)]
 public string Name;

 [Column]
 public int Age;

 [Column]
 public bool CanCode;
}

[Table(Name="Orders")]
public class Order {
 [Column(DbType="nvarchar(32) not null", Id=true)]
 public string OrderID;

 [Column(DbType="nvarchar(32) not null")]
 public string Customer;

 [Column]
 public int? Amount;
}

Note from this example that nullable columns map to nullable types in the CLR (nullable
types first appeared in version 2 of the .NET Framework), and that for SQL types that
don’t have a 1:1 correspondence with a CLR type (e.g., nvarchar, char, text), the
original SQL type is retained in the CLR metadata.

To issue a query against a relational store, the DLinq implementation of the LINQ pattern
translates the query from its expression tree form into a SQL expression and ADO.NET
DbCommand object suitable for remote evaluation. For example, consider this simple
query:

.NET Language Integrated Query

24 Copyright © Microsoft Corporation 2006. All Rights Reserved.

// establish a query context over ADO.NET sql connection
DataContext context = new DataContext(
 "Initial Catalog=petdb;Integrated Security=sspi");

// grab variables that represent the remote tables that
// correspond to the Person and Order CLR types
Table<Person> custs = context.GetTable<Person>();
Table<Order> orders = context.GetTable<Order>();

// build the query
var query =
 from c in custs
 from o in orders
 where o.Customer == c.Name
 select new {
 c.Name, o.OrderID, o.Amount, c.Age
 };

// execute the query
foreach (var item in query)
 Console.WriteLine("{0} {1} {2} {3}",
 item.Name, item.OrderID, item.Amount, item.Age);

The DataContext type provides a lightweight translator that does the work of
translating the standard query operators to SQL. DataContext uses the existing
ADO.NET IDbConnection for accessing the store and can be initialized with either an
established ADO.NET connection object or a connection string that can be used to create
one.

The GetTable method provides IEnumerable-compatible variables that can be used in
query expressions to represent the remote table or view. Calls to GetTable do not cause
any interaction with the database – rather they represent the potential to interact with the
remote table or view using query expressions. In our example above, the query does not
get transmitted to the store until the program iterates over the query expression, in this
case using the foreach statement in C#. When the program first iterates over the query,
the DataContext machinery translates the expression tree into the following SQL
statement that is sent to the store:

SELECT [t0].[Age], [t1].[Amount],
 [t0].[Name], [t1].[OrderID]
FROM [Customers] AS [t0], [Orders] AS [t1]
WHERE [t1].[Customer] = [t0].[Name]

It’s important to note that by building query capability directly into the local
programming language, developers get the full power of the relational model without
having to statically bake the relationships into the CLR type. That stated, full blown
object/relational mapping can also take advantage of this core query capability for users
that want that functionality. DLinq provides object-relational mapping functionality with
which the developer can define and navigate relationships between objects. You can refer
to Orders as a property of the Customer class using mapping, so that you do not need
explicit joins to tie the two together. External mapping files allow the mapping to be
separated from the object model for richer mapping capabilities.

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 25

XLinq: XML Integration
.NET Language Integrated Query for XML (XLinq) allows XML data to be queried using
the standard query operators as well as tree-specific operators that provide XPath-like
navigation through descendants, ancestors, and siblings. It provides an efficient in-
memory representation for XML that integrates with the existing System.Xml
reader/writer infrastructure and is easier to use than W3C DOM. There are three types
that do most of the work of integrating XML with queries: XName, XElement and
XAttribute.

XName provides an easy to use way to deal with the namespace-qualified identifiers
(QNames) used as both element and attribute names. XName handles the efficient
atomization of identifiers transparently and allows either symbols or plain strings to be
used wherever a QName is needed.

XML elements and attributes are represented using XElement and XAttribute
respectively. XElement and XAttribute support normal construction syntax, allowing
developers to write XML expressions using a natural syntax:

var e = new XElement("Person",
 new XAttribute("CanCode", true),
 new XElement("Name", "Loren David"),
 new XElement("Age", 31));

var s = e.ToString();

This corresponds to the following XML:
<Person CanCode="true">
 <Name>Loren David</Name>
 <Age>31</Age>
</Person>

Notice that no DOM-based factory pattern was needed to create the XML expression, and
that the ToString implementation yielded the textual XML. XML elements can also be
constructed from an existing XmlReader or from a string literal:

var e2 = XElement.Load(xmlReader);
var e1 = XElement.Parse(
@"<Person CanCode='true'>
 <Name>Loren David</Name>
 <Age>31</Age>
</Person>");

XElement also supports emitting XML using the existing XmlWriter type.

XElement dovetails with the query operators, allowing developers to write queries
against non-XML information and produce XML results by constructing XElements in
the body of a select clause:

.NET Language Integrated Query

26 Copyright © Microsoft Corporation 2006. All Rights Reserved.

var query = from p in people
 where p.CanCode
 select new XElement("Person",
 new XAttribute("Age", p.Age),
 p.Name);

This query returns a sequence of XElements. To allow XElements to be built out of the
result of this kind of query, the XElement constructor allows sequences of elements to
be passed as arguments directly:

var x = new XElement("People",
 from p in people
 where p.CanCode
 select
 new XElement("Person",
 new XAttribute("Age", p.Age),
 p.Name));

This XML expression results in the following XML:
<People>
 <Person Age="11">Allen Frances</Person>
 <Person Age="59">Connor Morgan</Person>
</People>

The statement above has a direct translation to Visual Basic. However, Visual Basic 9.0
also supports the use of XML literals, which allow query expressions to be expressed
using a declarative XML syntax directly from Visual Basic. The previous example could
be constructed with the Visual Basic statement:

 Dim x = _
 <People>

<%= From p In people __
 Select <Person Age=<%= p.Age %>>p.Name</Person> _
 Where p.CanCode _
%>

 </People>

The examples so far have shown how to construct new XML values using language
integrated query. The XElement and XAttribute types also simplify the extraction of
information from XML structures. XElement provides accessor methods that allow
query expressions to be applied to the traditional XPath axes. For example, the following
query extracts just the names from the XElement shown above:

IEnumerable<string> justNames =
 from e in x.Descendants("Person")
 select e.Value;

//justNames = ["Allen Frances", "Connor Morgan"]

To extract structured values from the XML, we simply use an object initializer expression
in our select clause:

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 27

IEnumerable<Person> persons =
 from e in x.Descendants("Person")
 select new Person {
 Name = e.Value,
 Age = (int)e.Attribute("Age")
 };

Note that both XAttribute and XElement support explicit conversions to extract the
text value as a primitive type. To deal with missing data, we can simply cast to a nullable
type:

IEnumerable<Person> persons =
 from e in x.Descendants("Person")
 select new Person {
 Name = e.Value,
 Age = (int?)e.Attribute("Age") ?? 21
 };

In this case, we use a default value of 21 when the Age attribute is missing.

Visual Basic 9.0 provides direct language support for the Elements, Attribute, and
Descendants accessor methods of XElement, allowing XML-based data to be accessed
using a more compact and direct syntax called Xml axis properties. We can use this
functionality to write the preceding C# statement like this:

Dim persons = _
From e In x...<Person> _
Select new Person { _

 .Name = e.Value, _
 .Age = e.@Age.Value ?? 21 _
 }

In Visual Basic x...<Person> gets all items in the Descendants collection of x with the
name Person, while the expression e.@Age finds all the XAttributes with the name
Age. The Value property gets the first attribute in the collection and calls the Value
property on that attribute.

Summary
.NET Language Integrated Query adds query capabilities to the CLR and the languages
that target it. The query facility builds on lambda expressions and expression trees to
allow predicates, projections, and key extraction expressions to be used as opaque
executable code or as transparent in-memory data suitable for downstream processing or
translation. The standard query operators defined by the LINQ project work over any
IEnumerable<T>-based information source, and are integrated with ADO.NET (DLinq)
and System.Xml (XLinq) to allow relational and XML data to gain the benefits of
language integrated query.

.NET Language Integrated Query

28 Copyright © Microsoft Corporation 2006. All Rights Reserved.

Standard Query Operators in a Nutshell
Where Restriction operator based on predicate function
Select/SelectMany Projection operators based on selector function
Take/Skip/
TakeWhile/SkipWhile

Partitioning operators based on position or predicate
function

Join/GroupJoin Join operators based on key selector functions
Concat Concatenation operator
OrderBy/ThenBy/
OrderByDescending/
ThenByDescending

Sorting operators sorting in ascending or descending
order based on optional key selector and comparer
functions

Reverse Sorting operator reversing the order of a sequence
GroupBy Grouping operator based on optional key selector and

comparer functions
Distinct Set operator removing duplicates
Union/Intersect Set operators returning set union or intersection
Except Set operator returning set difference
ToSequence Conversion operator to IEnumerable<T>
ToArray/ToList Conversion operator to array or List<T>
ToDictionary/ToLookup Conversion operators to Dictionary<K,T> or

Lookup<K,T> (multi-dictionary) based on key
selector function

OfType/Cast Conversion operators to IEnumerable<T> based on
filtering by or conversion to type argument

EqualAll Equality operator checking pairwise element equality
First/FirstOrDefault/

Last/LastOrDefault/

Single/SingleOrDefault

Element operators returning initial/final/only element
based on optional predicate function

ElementAt/

ElementAtOrDefault

Element operators returning element based on position

DefaultIfEmpty Element operator replacing empty sequence with
default-valued singleton sequence

Range Generation operator returning numbers in a range
Repeat Generation operator returning multiple occurrences of

a given value

 .NET Language Integrated Query

Copyright © Microsoft Corporation 2006. All Rights Reserved. 29

Empty Generation operator returning an empty sequence
Any/All Quantifier checking for existential or universal

satisfaction of predicate function
Contains Quantifier checking for presence of a given element
Count/LongCount Aggregate operators counting elements based on

optional predicate function
Sum/Min/Max/Average Aggregate operators based on optional selector

functions
Aggregate Aggregate operator accumulating multiple values

based on accumulation function and optional seed

