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Abstract

The Salamander distribution system is a wide-

area network data dissemination substrate that has

been used daily for over a year by several group-

ware and webcasting Internet applications. Speci�-

cally, Salamander is designed to support push-based

applications and provides a variety of delivery se-

mantics. These semantics range from basic data de-

livery, used by the Internet Performance Measure-

ment and Analysis (IPMA) project, to collabora-

tive group communication used by the Upper At-

mospheric Research Collaboratory (UARC) project.

The Salamander substrate is designed to accom-

modate the large variation in Internet connectivity

and client resources through the use of application-

speci�c plug-in modules. These modules provide a

means for placing application code throughout the

distribution network, thereby allowing the applica-

tion to respond to network and processor resource

constraints near their bottlenecks. The delivery

substrate can be tailored by an application for use

with a heterogeneous set of clients. For example the

IPMA and UARC projects send and receive data

from: Java applets and applications; Perl, C and

C++ applications; and Unix and Windows 95/NT

clients. This paper illustrates the architecture and

design of the Salamander system driven by the needs

of its set of current applications. The main archi-

tectural features described include: the data distri-

bution mechanism, persistent data queries, negoti-

ated push-technology, resource announcement and

discovery, and support for Application-level Qual-

ity of Service policies.

�This work is supported by the National Science Foun-

dation under the cooperative agreement IRI-92-16848 and a
generous gift from the Intel Corporation.

1 Introduction

The availability of ubiquitous network connec-

tions in conjunction with signi�cant advances in

hardware and software technologies have led to the

emergence of a new class of distributed applications.

The Salamander data distribution substrate pro-

vides the systems support needed for two of these

applications: groupware and webcasting. Partic-

ipants in these wide-area distributed applications

vary in their hardware resources, software support

and quality of connectivity[11]. In an environment

such as the Internet they are connected by network

links with highly variable bandwidth, latency, and

loss characteristics. In fact, the explosive growth of

the Internet and the proliferation of intelligent de-

vices is widening an already large gap between these

members. These conditions make it di�cult to pro-

vide a level of service that is appropriate for every

member of a collaboratory or webcasting receiver.

Webcasting applications use push technology to

send data from network servers to client machines.

In group collaboratories, people from a global pool

of participants come together to perform work or

take part in meetings without regard to geographic

location. A distributed collaboratory provides: (1)

human-to-human communications and shared soft-

ware tools and workspaces; (2) synchronized group

access to a network of data and information sources;

and (3) remote access and control of instruments for

data acquisition. A collaboratory software environ-

ment includes tools such as whiteboards, electronic

notebooks, chat boxes, multi-party data acquisition

and visualization software, synchronized informa-

tion browsers, and video conferencing to facilitate

e�ective interaction between dispersed participants.

A key challenge for the designers of wide-area col-

laboratories is the creation of scalable distribution



and dissemination mechanisms for the shared data.

The Salamander substrate provides support for

both webcasting and groupware applications by pro-

viding virtual distribution channels in an attribute-

based data space. In a Salamander system, a tree of

distribution nodes (servers) can be dynamically con-

structed to provide points of service into the data

space. Clients can connect to this tree to both pub-

lish and subscribe to data channels. The data is

pushed from suppliers to the clients through the dis-

tribution tree. Opaque data objects are constructed

by clients that are described using text-based at-

tribute lists. Clients provide persistent queries to

the Salamander substrate using attribute expres-

sions that represent the data ows they wish to re-

ceive, thereby subscribing to a virtual data chan-

nel. Salamander connections are �rst-class objects

and are addressable if desired. This addressability

allows for feedback from subscribers to data pub-

lishers. Additionally, Salamander allows for plug-in

modules at any point in the distribution tree for ap-

plication code to a�ect the data distribution. These

plug-in modules provide the mechanism to support

application-level Quality of Service policies.

Although the terminology is relatively new, Push

technologies have been around for many years. The

seminal push technology is electronic mail . Email

has been pushed from publisher to subscribers for

decades through mailing lists. Moreover, USENET

news[9] has been used to push data objects (arti-

cles) based on text attributes (group names). Ex-

tending netnews, the SIFT tool[18] has been used

to redistribute netnews articles based on text-based

user pro�les. At a lower level the combination

of native IP multicast support and speci�c Mbone

[5] routers provides a mechanism for the push of

IP datagrams throughout portions of the Internet.

Multicast datagrams are pushed based on a single

attribute, namely the IP multicast group address.

Recently, many commercial push-based compa-

nies have started: BackWeb, IFusion, InCommon,

Intermind, Marimba, NETdelivery, PointCast, and

Wayfarer. These commercial ventures promise to

manage the complexity of the web by providing data

to users by means of subscription; similar to what

current mailing lists provide, only more intrusively.

In fact, many of these products are really poll and

pull instead of push. The clients in these systems

periodically poll the servers for new data, and then

fetch it if it is available, reducing scalability.

The Salamander substrate di�ers from past tech-

nologies in several ways. First, it is not user-centric,

but application-centric. Salamander is an under-

lying substrate that applications can plug into to

transparently connect di�erent portions of a wide-

area application. This connectivity is achieved

through the use of a channel subscription service.

Second, Salamander allows for the addition of appli-

cation plug-in modules along the distribution path

to allow for a variety of data modi�cations and deliv-

ery decisions. The remainder of the paper will fur-

ther describe the Salamander substrate. Section 2

provides background material on Salamander's cur-

rent applications. Section 3 enumerates the main ar-

chitectural features. Section 4 provides an overview

of the Salamander application programming inter-

face (API) as well as describes its administration

and security features. Section 5 gives both a quali-

tative and quantitative performance evaluation. Fi-

nally, in Section 6 we conclude and describe our cur-

rent and future research interests.

2 Application Domain

The Salamander substrate currently supports two

applications with diverse needs: the UARC and

IPMA projects. The Upper Atmospheric Research

Collaboratory (UARC)[3, 17] is a distributed sci-

enti�c collaboratory over the Internet. The UARC

project is a multi-institution research e�ort, whose

focus is the creation of an experimental testbed

for wide-area scienti�c collaboratory work. The

UARC system provides a collaboratory environment

in which a geographically dispersed community of

space scientists perform real-time experiments at

a remote facilities, in locations such as Greenland,

Puerto Rico, and Alaska. Essentially, the UARC

project enables this group to conduct team science

without ever leaving their home institutions. These

scientists perform experiments on remote instru-

ments, evaluate their work, and discuss the experi-

mental results in real-time over the Internet. This

community of space scientists has extensively used

the UARC system for over three years; during the

winter months, a UARC campaign { the scientists

use the term campaign to denote one of their experi-

ments { takes place almost every day. This commu-

nity has grown to include regular users from such

geographically diverse sites as: SRI International

in Menlo Park, California; the Southwest Research

Institute; the Danish Meteorological Institute; the

Universities of Alaska, Maryland, and Michigan;

and the Lockheed Palo Alto Research Laboratory.

The UARC system provides a variety of services

to its users including shared synchronized displays

for instrument data, multiparty chat boxes, a shared

annotation database, and a distributed text editor.



However, the primary mechanism for collaboration

is the real-time distribution of atmospheric data to

the experiment's participants. This data is collected

at remote sites such as Kangerlussuaq, Greenland,

and is distributed over the Internet to the scien-

ti�c collaboratory using the Salamander substrate

described in this paper. Figure 1 shows several dif-

ferent data feeds displayed during a real-time cam-

paign.

Figure 1: Example screen grab from April 1997

UARC campaign.

The second project that uses Salamander is the

Internet Performance Measurement and Analysis

(IPMA) project[8], a joint e�ort of the University

of Michigan and Merit Network. The IPMA project

collects a variety of network and interdomain perfor-

mance and routing statistics at Internet Exchange

Points (IXPs), internal ISP backbones, and campus

LAN/WAN borders. A key objective of the IPMA

project has been to develop and deploy tools for

real-time measurement, analysis, dissemination and

visualization of performance statistics. Two major

tools from the IPMA projects are ASExplorer and

NetNow. They both use Salamander to webcast the

real-time data from the IPMA Web servers to their

connected Java applets. ASExplorer is intended to

explore real-time autonomous system (AS) routing

topology and instability in the Internet. It supports

measurement and analysis of interdomain routing

statistics, including: route ap, growth of routing

tables, network topology, invalid routing announce-

ments, characterization of network growth and sta-

bility. An example of the ASExplorer client is shown

in Figure 2. NetNow is tool for measuring network

loss and latency. The NetNow daemon collects a

variety of loss and latency statistics between net-

work peers. The NetNow client is a Java applet

which provides a graphical look at real-time condi-

tions across an instrumented network.

Figure 2: Example screen grab from ASExplorer

session.

3 Architecture

The Salamander substrate's architecture can be

described in terms of its coarse-grained processes,

channel subscription interfaces, and distribution se-

mantics. The key contributions of the architecture

are its:

� Channel Subscription Service: The Sala-

mander substrate uses a publish/subscribe ser-

vice that combines the strength of database re-

trieval with a dynamic distribution mechanism.

This service is used to provide a continuous ow

of data from publishers to subscribers.

� Application-level Quality of Service:

Application-level quality of service policies are

supported that provide the ability to adapt

the delivery channels in response to changes in

client and network resources and subscriptions.

These policies are supported by the use of ap-

plication speci�c plug-in modules that can be

used for data ow manipulation.

� Lightweight Data Persistence: Salamander

employs the use of a caching and archival mech-

anism to provide the basis for high-level mes-

sage orderings. A two-tiered cache keeps cur-

rent data in memory while migrating older data

to permanent storage. This storage takes the

form of a lightweight temporal database tai-

lored to Salamander's needs.



A Salamander-based system is composed from

two basic units: servers that act as distribution

points and are usually collocated with Web servers;

and clients that act as both data publishers and sub-

scribers. These units can be connected together in

arbitrary topologies to best support a given applica-

tion (see Figure 3 for an example). The Salamander

server is designed from a utilitarian perspective, in

that it can stand alone, or like a software backplane

can be multiplied to increase scalability. The cur-

rent version of the server is a POSIX thread imple-

mentation on Solaris. Salamander clients can both

publish and subscribe to virtual data channels. In

both the IPMA and UARC projects, the main data

suppliers are written in either Perl or C; whereas

the mainstay of the subscribers are Java applets.

Applet development has progressed for over a year

and a half on the UARC project, and Web browsers

are the de facto subscriber platform. In the absence

of multicast support in Java 1.0.2, and the lack of

universal Mbone[5] connectivity, the decision was

made to create our own distribution topology using

Salamander servers in place of existing Mbone in-

frastructure. With the advent of Java 1.1 we are

beginning to implement the Salamander interface

using native multicast support.
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Figure 3: Example UARC campaign topology used

during the April 1997 campaign

3.1 Channel Subscription Service

The Salamander substrate provides an abstrac-

tion for the distribution of data from publishers

to subscribers through its channel subscription in-

terface with both anonymous and negotiated push

techniques. The basic idea in anonymous push is

that publishers package opaque data objects, or Ap-

plication Data Units as termed in [2], with text-

based attribute lists. These attributes can then be

used by Salamander to \lookup" destinations for the

object. Subscribers place persistent queries to the

Salamander substrate using lists of attribute expres-

sions that can be used to match both current and

future objects published to the Salamander space.

Alternatively, this procedure can be thought of as

accessing a distributed database where the queries

are persistent. These persistent queries are matched

by both the objects archived in Salamander's per-

sistent repositories as well as future updates to the

database space. These future updates and additions

are dynamically matched with outstanding queries

that are then pushed to the queries' corresponding

clients. The query aspect of Salamander's attribute-

based subscription service di�ers those in traditional

nameservice and database systems, in that instead

of the queries acting once on a static snapshot of

the dataspace, they are dynamic entities that act

on both the current state of the system and fu-

ture updates. Publishers may come and go with-

out a�ecting the connection between the Salaman-

der database and the subscribers.

Salamander allows for feedback from subscribers

to their publishers in the form of negotiated push.

This is accomplished though the combination of

unique endpoint addresses, endpoint namespace

registration, and the ability to send unicast mes-

sages between Salamander clients. Each Salaman-

der connection is given a unique address that it can

insert into a global namespace. Connections man-

age their entries in this global namespace using the

supply command. The supply command is given an

attribute list, similar to the one used in the query

command, that is paired with its identi�er in the

namespace. Other clients can then �nd entries in

the namespace by matching the attributes with a

supply query. Having obtained the identi�er of an

endpoint, the connection can then send it a unicast

message. In practice, these sets of commands are

used to denote the availability of data or member-

ship in a group. In negotiated push, this mechanism

can be used to allow subscribers to ask publishers

to begin data distribution, or to modify a supplier's

data ows at the source. The UARC application

uses this mechanism to turn di�erent data ows on

and o�. These data ows are computationally ex-

pensive, and should only be generated when there

is a demand for the data.

A noti�cation service is also provided within the

Salamander namespace to allow for propagation of

various system events to endpoints. For example,

a connection can register a close event with their

server that will cause the generation of a close no-

ti�cation message to a speci�ed endpoint. In this



way, clients can maintain membership information

within their groups.

3.2 Application-Level Quality of Ser-
vice

The Salamander architecture provides

application-level Quality of Service policies to

deliver data to clients as best �ts their connectivity

and processing resources[10]. These policies can

rely on either best e�ort service or utilize network-

level QoS guarantees[19] if available. Application

speci�c policies are used to allocate the available

bandwidth between a client's subscribed ows, pro-

viding a client with an e�ective throughput based

on semantic thresholds that only the application

and user can specify. These application-level QoS

policies are achieved through the use of plug-in

policy modules at points in the distribution tree.

Figure 4 shows an example topology with several

types of modules.

Applet 1 Applet 2
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Discrete Delivery Policy Module

Degredation/Conversion Module

Intergration/Synchronization Module

Figure 4: Example collaboratory topology with

plug-in modules at suppliers, servers and clients.

The architecture allows for the placement of data

processing modules at any point in the distributed

datapath. This speci�c example shows the path

data takes from two suppliers to two client applets.

To illustrate the use of these modules, we use

UARC as an example. Speci�cally, the UARC ap-

plication uses discrete delivery, data degradation,

and data conversion plug-in modules. By multi-

plexing the subscribed ows, discrete delivery mod-

ules can be used to prioritize, interleave, and dis-

card discrete data objects. We have constructed a

exible interface that allows the client to both: de-

termine its current performance level with respect

to the supply, and to gracefully degrade its qual-

ity of service from an application-level standpoint

so that it best matches the client connection's ser-

vice level. These quality of service parameters are

taken directly from the user in the UARC applica-

tion. When users discover that they are oversub-

scribed, they can use the interface to specify prior-

ities among the subscribed ows, and assign drop

policies for the individual ows. A skipover policy

can be used to specify �ne-grained drop orders. Cur-

rent skipover policies consist of both a FIFO thresh-

old, and a drop distance parameter. The threshold

is used to allow for transient congestion; once this

threshold of data has accumulated in the proxy, the

drop distance parameter is used to determine which

data are discarded, and which are delivered.

In addition to discrete delivery policies, the Sala-

mander substrate provides for on-demand data

degradation and conversion of data objects. In gen-

eral, these mechanisms are used to convert one ob-

ject into another. In order to support real-time

collaboration between heterogeneous clients, some

mechanism for graceful data degradation must be

made available to provide useful data to the slower

participants. At the application level, we under-

stand something about the semantics of the shared

data. We can exploit this knowledge, and pro-

vide a graceful degradation of the data based upon

these semantics. The Salamander substrate uses on-

demand (lossless and lossy) compression on seman-

tically typed data, tailoring contents to the speci�c

requirements of the clients. Lossless compression

techniques are used for those data that cannot be

degraded, such as raw text, binary executables, and

interpreted program text. Lossy compression tech-

niques are applied to data that can su�er some loss

of �delity without losing their semantic information,

examples of which are: still and moving images; au-

dio; and higher level text like postscript or hypertext

markup languages. We give the application layer

control over this quality by providing an interface

that adjusts the �delity of the real-time data ow

on a per-client basis.

We were surprised by our experiences with the

UARC project, in discovering that the system bot-

tleneck was not network bandwidth, but was instead

the processing power on the clients. The UARC sys-

tem uses sophisticated Java applets to process raw

scienti�c data as they arrive. During the April 1997

campaign, the Salamander substrate could deliver

the UARC data to a large number of clients with-

out di�culty; however, the clients' Java interpreters

couldn't keep up with the incoming data rate. Our

solution was to put plug-in modules in the distribu-

tion tree that could convert the data in-transit to a

more manageable format.



Previous work has addressed the variability in

client resources. Client resources are addressed in

the Odyssey[13] system by sending di�erent versions

of the same object from the server depending on

the client's resources. In [6], Fox et.al. provide a

general proxy architecture for dynamic distillation

of data at the server. The use of hierarchically en-

coded data distributed over several multicast groups

is discussed in [12] for the delivery of di�erent qual-

ities of audio and video data. Balachandran et.al

target mobile computing in [1] and argue for adding

active �lters at base stations. Active network pro-

ponents [15] argue that Internet routers should be

enabled to run arbitrary application-level code to

assist in protocol processing. The contribution of

our work is the use of client feedback to allow for

prioritization among ows; the construction of ap-

plication and user interfaces for ow modi�cation;

and the ability to place modules at any point in the

distribution tree.

3.3 Lightweight Temporal Database

Salamander provides data persistence by incor-

porating a custom lightweight temporal database.

This database supports Salamander's needs by:

storing a virtual channel's data as a sequence of

write-once updates that are primarily based on

time; and satisfying requests for data based on tem-

poral ranges within the update stream. A temporal

database [14] generally views a single data record

as an ordered sequence of temporally bounded up-

dates. In the Salamander database these records

correspond to virtual channels. An administrator

can determine which sets of virtual channels will be

archived by the system. The Salamander system ex-

ports only a simple query interface to this database

based on ranges of time and attribute lists. By fore-

going the complexity of most commercial and re-

search temporal databases, we could build a small

and e�cient custom database that met our simpler

needs.

Salamander's synergy between real-time data dis-

semination and traditional temporal and relational

databases is one of its signi�cant contributions. It is

taken for granted that queries on a relational or tem-

poral database act as a static atomic action against

a snapshot of a system's dynamic data elements.

Our model alters this, by providing support for per-

sistent queries that act over both a snapshot of the

data elements present in the database and any mod-

i�cations (real-time updates) to the database ele-

ments that may occur in the future. We plan to fur-

ther address the impact of this model on database

technologies in the future.

In addition to persistent state, Salamander main-

tains a memory cache used to bu�er objects in-

transit through the system. Together, the memory

bu�er and database act as a two-level cache that

provides both high-level delivery semantics on the

virtual ows and the ability to replay sections of

ows from an archive. Salamander's virtual chan-

nels in the object space denote implicit groups. The

delivery semantics within these groups varies de-

pending on an application's needs. Groups can stay

anonymous where the suppliers have no knowledge

of the receivers, or they can become more explicit

where the suppliers keep a tally of their receivers. A

persistent disk-based cache of data objects, in con-

junction with the use of application level framing[2],

can be used to provide high-level delivery semantics.

This includes: FIFO, causal, ordered atomic, etc[7].

4 Salamander Interfaces

There are two interfaces to the Salamander sub-

strate: the application programmer interface (API)

and the administration interface. The API has sev-

eral layers and implementations, depending on the

developer's needs. At the lowest level, the substrate

provides a simple interface in both C and Java that

gives four primitive operations: send, receive, con-

nect, and disconnect. These operations are used

in conjunction with a property list manipulation li-

brary to send and receive Salamander data objects.

Much of this API can be illustrated by the exam-

ple application code in Figure 5. This example is a

small subroutine that subscribes to a simple virtual

channel consisting of a single attribute.

The connect operation is demon-

strated on line 8 of the listing, where a

connectToSalamanderServer call is made. While

hostname is straightforward, the sskey parameter

requires some explanation. The sskey is a simple

form of access control to the Salamander substrate.

In the current implementation this key is very

small, but one can imagine using a more robust key

in conjunction with a secure socket implementation

to achieve a greater level of con�dence. Another

security measure, implicit to the client, is an IP

access list that restricts the access of data channels

and administrative commands. This IP ACL is

maintained on a per server basis.

After connecting to the substrate, the example

then subscribes to the virtual channel by creating a

query and submitted it to the server. This query is

constructed in lines 14 through 19. The property list



1 void

subscribeToChannel(char * hostname, unsigned long sskey, char * queryName) {

plist_t plist;

5 void * dataptr;

unsigned long data_length;

if (connectToSalamanderServer(hostname, sskey) != SALAMANDER_OK) {

fprintf(stderr, "Connection Error.");

10 return;

}

/* Create the query. */

plist = createPropertyList();

15 updateProperty(plist, COMMAND_PROPERTY, QUERY_COMMAND);

updateProperty(plist, NAME_PROPERTY, queryName);

updateProperty(plist, COOKIE_PROPERTY, "queryCookie");

sprintf(tmpbuf, "RANGE %d %d", begin, end);

updateProperty(plist, TIMESTAMP_PROPERTY, tmpbuf);

20

/* Send it to the Server. */

if (salamanderSendServerData(plist, NULL, 0) != SALAMANDER_OK) {

fprintf(stderr, "Error making query.");

return;

25 }

destroyPropertyList(plist);

/* Read the responses as they come. */

for (;;) {

30 if (salamanderReadServerData(&plist, &dataptr, &data_length) != SALAMANDER_OK)

break;

handleResponse(plist, dataptr, data_length);

}

35

disconnectFromSalamanderServer();

}

Figure 5: Simple C example that connects to a Salamander server and makes a single persistent query.



(plist t) is the data structure that contains a data

object's header and attribute information. Certain

attributes are considered well-known by the system.

An example, is the COMMAND PROPERTY shown in line

15. The command property tells the substrate what

to do with the data object upon receipt. In the ex-

ample, the command is a query, which is intercepted

by the substrate and is processed at the server.

The NAME property is the only mandatory query at-

tribute in the current implementation. While any

number of attributes can be used to describe a vir-

tual channel, one of them must be the NAME prop-

erty. The COOKIE property on line 17 is used to

match queries with a unique identi�er that is re-

turned by the Salamander substrate. This query

identi�er is added to any object that is returned

by a subsequent receive operation, and is used to

match responses with virtual channels. Finally, on

lines 18 and 19, the well-known TIMESTAMP prop-

erty is de�ned that designates the range of data for

which the query corresponds. The send operation

is carried out on line 22, followed by the destruction

of the property list.

After the routine subscribes to the virtual chan-

nel, it goes into a loop that reads data objects from

the substrate on lines 29 through 34. When the con-

nection is severed, or another error occurs, the code

disconnects and exits on line 36.

In addition to the base API, Salamander also ex-

ports an administrative interface. The substrate

can be administered both remotely from a higher

level API, and directly on the servers as con�gura-

tion �les. When used remotely, special commands

are sent to the server using the base API. Example

commands include: list current connections, list ac-

tive virtual channels, prune a connection, resize a

channel's memory bu�er, establish a server peering

connection, modify debugging level, etc. A server's

con�guration �le is used primarily to establish static

server peering relationships, to de�ne default bu�er

sizes, and specify delivery semantics for speci�c vir-

tual channels.

5 Performance Evaluation

The performance of the Salamander substrate can

be characterized by both empirical and experimen-

tal results. Salamander is currently implemented

as a multithreaded server on Solaris, and supports

a set of complex Java applets that run on a va-

riety of browsers1;2. Empirically, the Salamander

substrate is used by both the UARC and IPMA

projects as their base middleware for daily opera-

tion. Salamander has been used for over a year by

the UARC scientists and has made a signi�cant im-

pact in the space science research community. The

IPMA project has been using Salamander around

the clock for over nine months for a variety of tasks.

These tasks include: acting as the data collection

mechanism for the NetNow probes at the Internet

Exchange Points, and as the webcasting delivery

mechanism from a central server tree to a collec-

tion of Java applets available from its website[8].

The UARC project has gone through several week-

long campaigns using Salamander as the data dis-

tribution substrate that connects the remote instru-

ment sites to the scientists' Java applets. During

these campaigns over sixty scientists have had mul-

tiple connections receiving many di�erent types of

data. The empirical results from these two projects

demonstrate that the Salamander system is both

extremely robust and scalable.

ClientsR R

Server

Figure 6: Experimental apparatus for Salamander

server performance tests.

A series of experiments were performed on a sin-

gle Salamander server to help quantify its perfor-

mance. For all of the following experiments, the

same setup was used. This corresponds to the net-

work con�guration shown in Figure 6. In this �gure,

the single Salamander server, shown in the upper

left corner, is a SUN Ultrasparc-1 with a 140 MHz

processor and 192 Mbytes of memory. A 10 Mbps

Ethernet segment connects the server to a router

1Although counter-intuitive, cross browser compatibility
is not a given. There are signi�cant variations in Java VM

implementations between browsers, and it was common dur-
ing UARC applet development for code that would work un-
der Netscape to break under Microsoft IE or HotJava (and
vice versa).

2Coincidentally, HotJava continues to be the UARC de-
velopers' browser of choice for applet execution.



that is connected by a switching fabric to a second

router. This second router has two interfaces that

connect to university computing laboratories. Both

of these laboratories consist of Ultrasparc-1 work-

stations connected by 10 Mbps Ethernet LANs.

The performance experiments highlight the scal-

ability of the server in several dimensions: the num-

ber of simultaneous connections, and a throughput

metric of objects per second. Both of these exper-

iments characterize the substrate's performance in

terms of a data object's end-to-end latency from a

data supplier to a receiving client. To measure this

latency, a timestamp is written into the object's at-

tribute list as it ows down the distribution tree.

These timestamps are written to a log �le upon re-

ceipt at the subscribers. By analyzing the log �les

o�ine, the experiment's latency statistics can be ex-

tracted. Since the analysis of data in these exper-

iments relies on this distributed timestamp infor-

mation, a method for synchronizing the clocks on

an experiment's hosts was applied. To compensate

for the di�erence in the clocks, a probabilistic clock

synchronization technique, similar to the protocols

developed by Cristian [4] was used.
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Figure 7: Results from a single supplier Salamander

scalability experiment.

Figure 7 shows the results of experiments that

evaluate the scalability of a single Salamander server

in terms of both number of concurrent receivers and

size of the data payload. Three payload sizes were

used: 0, 1 Kbyte, and 10 Kbytes. However while the

payload varied, each of the object's headers were

�lled with approximately 100 bytes of testing and

channel information. For all of these results, a sin-

gle data supplier was used that sent an object once

per second for a period of �ve minutes. The hori-

zontal axis represents the number of concurrent re-

ceivers during the experiment; whereas the vertical

axis shows the mean delivery latency for the objects

on a logarithmic scale. These results show that for

a small data payload a signi�cant number of clients

can be supported. During the execution of these

tests the available bandwidth between the server

and the laboratories was approximately 400 Kbytes

per second. This bandwidth was measured both

informally using FTP latency and rigorously with

the treno tool[16]. This explains the steep rise in

the 10 Kbyte payloads between 40 and 50 receivers,

that corresponds to 400 Kbytes and 500 Kbytes per

second respectively. At levels of throughput above

a link's capacity, Salamander's memory bu�er �lls

and all latencies reach a steady state due to the �-

nite bu�er space and drop tail delivery semantics.

A virtual channel's bu�er space can be speci�cally

tailored to bound this maximal latency of received

objects.
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Figure 8: Measured latency of objects through the

system when objects per second is varied.

The second set of experiments shows the scalabil-

ity of a single Salamander server in terms of maxi-

mumobjects per second (ops) that can be processed.

This is similar to a datagram router's packets per

second (pps) metric. The results of this set of exper-

iments is shown is Figure 8. The data points in this

graph represent the mean and standard deviation of

the latency of objects from supplier to client under

increasing server load. These points were generated

by running experiments that sent an object with a

header of 100 bytes and a payload of length zero

from a set of senders to a set of receivers. Each



sender sent a single object once per second. For

example, in order to generate the 2400 ops data

point a series of experiements were run using sets

of 40 suppliers and 60 receivers. Unfortunately, the

bandwidth between the server and the laboratories

never exceeded 500 Kbytes per second for sustained

periods while these experiments were undertaken.

However, during the 4900 ops experiments the rel-

atively slow 140 MHz processor was approximately

25% idle, leaving room for further scaling. The vari-

ation between the data points results from using an

active testbed.

Together, these two sets of experiments show that

a single server substrate scales with the available

network bandwidth. Further improvements in scala-

bility can be made by utilizing a heirarchy of servers

in the substrate to o�oad bandwidth and process-

ing overhead. The empirical results concur, showing

Salamander to be both scalable and robust.

6 Conclusion

This paper presented both a functional descrip-

tion of the Salamander distribution substrate's ar-

chitecture and interfaces; and a quantitative anal-

ysis of its performance characteristics. The con-

tributions of the architecture are its combination

of channel subscription service with a lightweight

temporal database, and the de�nition and use of an

application-level QoS framework.

The Salamander substrate's channel subscription

service provides for both an anonymous and a ne-

gotiated push of data from a set of suppliers to a

set of receivers. The support for anonymous push is

straightforward, the suppliers know nothing about

its set of receivers. In contrast, negotiated push sup-

port enables subscribers and publishers to negotiate

the content of their data channels. To provide this

functionality, Salamander includes: a registration

and matching service, similar to a name service; and

a noti�cation service that propagates various system

events, including client termination, to Salamander

endpoints.

Application-level Quality of Service is de�ned and

supported in the Salamander substrate as a way of

tailoring the available resources to best �t the user

and application. This is done by utilizing seman-

tic knowledge that only the application has about

its data and providing mechanisms for the graceful

degradation of its virtual data channels. The spe-

ci�c contribution of our work is the use of client

feedback to allow for prioritization among virtual

channels; the construction of application and user

interfaces for channel modi�cation; and the ability

to place channel conversion modules at any point in

the distribution tree.

Salamander's incorporation of a lightweight tem-

poral database provides the basis for a powerful

synergy between real-time data dissemination and

traditional temporal and relational databases. Our

model provides support for persistent queries that

act over both a snapshot of the data elements

present in the database and any modi�cations (real-

time updates) to the database elements that may

occur in the future.

Salamander's research contribution is comple-

mented by the utility and robustness of the cur-

rent implementation. Several Internet applications

were described that motivated Salamander's push-

based approach to data distribution. These ap-

plications, namely the UARC and IPMA project

applets, use Salamander around the clock to pro-

vide application connectivity throughout the Inter-

net. Through day-to-day use, these applications

have shown Salamander's empirical performance to

be good. Moreover, the quantitative performance

experiments show that a single server scales well

for a signi�cant number of connections; the server's

bandwidth was the �rst-order bottleneck in these

experiments.

Our current work is focused on enhancing the

scalability of the system. Speci�cally, we are investi-

gating the applicability of scalable routing technolo-

gies to Salamander's attribute-based data dissemi-

nation. Additionally, we are addressing several sys-

tem administration aspects of the multiserver sub-

strate, including pairing it with a key distribution

mechanism. In concert with these activities, we plan

to further address the impact of Salamander's per-

sistent query model on database technologies. Fi-

nally, we are in the process of porting the server to

both Java and Win32 based platforms, in order to

objectively compare the base system in a variety of

settings.

7 Availability

Additional informationon the Salamander system

can be found at the following URL:

www.eecs.umich.edu/~rmalan/salamander/

Information that can be found there includes:

� Binaries and source code for the Solaris version

of the Salamander server,



� Generic C and Java interface libraries for both

data suppliers and clients,

� Status of both a Java and Win32 port of the

Salamander server.

� Information about ongoing research e�orts

based on Salamander.
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