
CS242: Probabilistic Graphical Models
Lecture 7A: Particle Belief Propagation

Guest Lecturer:
Jason Pacheco

Some figures and materials courtesy of:
Silvia Zuffi, Michael Black, MPI Tubingen

Pairwise Graphical Models

Likelihood Compatibility

Ø Nodes are continuous random variables
Ø Potentials encode statistical relationships
Ø Edges indicate direct pairwise energetic interaction
Ø Facilitates efficient statistical inference

: Vertices , edges

xs 2 Rd

Example: Stereo Vision
Grid GraphDepth MapInput Images

Can’t use particle filter, not a time series…

: Likelihood scores disparity / obeys occlusion

: Compatibility encourages similar disparities,
allows discontinuity at image edges

Non-Gaussian continuous model:

Discrete: BP updates
well-defined, matrix-
vector products.

Continuous: no general
closed-form updates.

Max-Product Belief PropagationSum-Product Belief Propagation
Passing messages in graphical model:

Solution: Approximate continuous
messages with discrete particles.

Importance Sampling
ØDraw samples from proposal distribution,

ØApproximate expectation,

ØImportance weights account for proposal,

Main Idea: Approximate BP messages
with importance sampling.

ØRewrite BP message as expectation,

ØImportance weighted expectation,

ØImportance weights,

Particle Belief Propagation

Sample particles from BP marginal.

Stereo Vision Results
True Disparity Estimate Prediction Error

ØComparison to related Nonparametric BP
ØL1 error w.r.t. true beliefs via discretization
ØErrors decrease at rate

A. Ihler and D. McAllester, AISTATS 2009

Maximum a Posteriori (MAP)

Data Unknowns Posterior MAP Estimate
*

Maximizer of the posterior probability:

Issues with continuous models:
Ø Analytically intractable posterior density

Maximum a Posteriori (MAP)

Data Unknowns Posterior MAP Estimate
*

Maximizer of the posterior probability:

Issues with continuous models:
Ø Analytically intractable posterior density
Ø Multiple local optima (these can be useful too…)

*

Message Passing

Global MAP inference
decomposes into local
computations via graph

structure…

Max-Product Belief PropagationMax-Product (MP) Belief Propagation

Message

Max-Marginal

Passing messages in a graphical model…

Poses & Discrete Probabilities

Ø Pairwise MRF with rigid geometry
Ø MAP estimate of pose via discrete max-product BP
Ø Discrete state space limits allowable deformations

Pictorial Structures for Object Recognition 73

Finding the maximum likelihood estimate of σ 2
s is easy

since we just have a Gaussian distribution over si −
s j . Similarly, there are known methods for finding the
ML parameters (θi j , k) of a von Mises distribution (see
Gumbel et al., 1953). The ML estimate of the joint
location in each part are the values (xi j , yi j , x ji , y ji)
which minimize the sum of square distances between
(x ′

i , y′
i) and (x ′

j , y′
j) over the examples. We can compute

this as a linear least squares problem.
We need to write the joint distribution of li and l j in

the specific form required by our algorithms. It must
be a Gaussian distribution with zero mean and diagonal
covariance in a transformed space, as shown in Eq. (6).
First note that a von Mises distribution over angular
parameters can be specified in terms of a Gaussian over
the unit vector representation of the angles. Let α⃗ and β⃗

be the unit vectors corresponding to two angles α and
β. That is, α⃗ = [cos(α), sin(α)]T , and similarly for β⃗.
Then,

cos(α − β) = α⃗ · β⃗ = −∥α⃗ − β⃗∥2 − 2
2

.

Now let

Ti j (li) = (x ′
i , y′

i , si , cos(θi + θi j), sin(θi + θi j)),

Tji (l j) = (x ′
j , y′

j , s j , cos(θ j), sin(θ j)),

Di j = diag(σ 2
x , σ 2

y , σ 2
s , 1/k, 1/k),

which allow us to write Eq. (16) in the right form,

p(li , l j | ci j) ∝ N (Tji (l j) − Ti j (li), 0, Di j).

For these models, the number of discrete locations h′ in
the transformed space is a little larger than the number
of locations h for each part. This is because we repre-
sent the orientation of a part as a unit vector which lives
in a two-dimensional grid. In practice, we use 32 pos-
sible angles for each part, and represent them as points
in a 11 × 11 grid, which makes h′ about four times h.

6.3. Experiments

We use a coarse articulated model to represent the hu-
man body. Our model has ten parts, corresponding to
the torso, head, two parts per arm and two parts per
leg. To generate training examples we labeled the lo-
cation of each part in ten different images (without too
much precision). The learned model is illustrated in
Fig. 11. The crosses indicate joints between parts. We

Figure 11. Human body model learned from example configura-
tions.

never told the system which parts should be connected
together, this is automatically learned during the ML
learning procedure. Note that the correct structure was
learned, and the joint locations agree with the human
body anatomy (the joint in the middle of the torso con-
nects to the head). The configuration of parts shown in
Fig. 11 was obtained by fixing the position of the torso
and placing all other parts in their optimal location with
respect to each other.

We tested the model by matching it to novel im-
ages. As described in Section 6.1, we sample config-
urations from the posterior distribution to obtain mul-
tiple hypotheses and rate each sample using a sepa-
rate measure. For each sample we compute the Cham-
fer distance between the shape of the object under the
hypothesized configuration and the binary image ob-
tained from the input. The Chamfer distance is a robust
measure of binary correlation (Borgefors, 1988). The
matching process is illustrated in Fig. 12. First, a binary
image is obtained from the original image using back-
ground subtraction. We use this binary image as input
to the sampling algorithm to obtain a number of dif-
ferent pose hypotheses. The best pose is then selected
using the Chamfer measure.

More matching results are shown in Fig. 13. For
each image, we sampled two-hundred object configu-
rations from the posterior distribution and picked the
best one under the Chamfer distance. Using a desk-
top computer it took about one minute to process each
image. The space of possible locations for each part
was discretized into a 70 × 70 × 10 × 32 grid, corre-
sponding to (x, y, s, θ) parameters. There are over 1.5
million locations for each part, making any algorithm
that considers locations for pairs of parts at a time im-
practical.

Pictorial Structures for Object Recognition 69

Figure 5. Matching results on occluded faces. The top row shows some input images and the bottom row shows the corresponding matching
results. The MAP estimate was a good match when the faces had up to two of five parts occluded and incorrect when three parts were occluded.

that we can learn a useful model from training
examples.

Figure 5 illustrates matching results on images with
partially occluded faces. The matching algorithm au-
tomatically handles such partial occlusion in a robust
way, finding a good configuration of all the parts when
up to two of the five parts are occluded. The occluded
parts are placed at reasonable locations because of the
constraints between parts. Moreover, it does not matter
which parts are occluded because our matching algo-

Figure 6. Matching results on an image with multiple faces. See text for description.

rithm finds the global minimum of the energy function,
independent of the choice of root used by the dynamic
programming approach. When three of the five parts
are occluded the best match of the model to the image
was incorrect.

Figure 6 illustrates matching results on an image that
contains multiple faces. Recall that our energy mini-
mization algorithm computes the optimal location for
the model as a function of the location of a root part.
To detect multiple faces we first find the best overall

68 Felzenszwalb and Huttenlocher

Figure 3. Three examples from the first training set showing the locations of the labeled features and the structure of the learned model.

that all model parameters were automatically estimated
with the maximum likelihood procedure. Thus, there
are no “knobs” to tune in the matching algorithm. Some
matching results are shown in Fig. 4. Both the learning

Figure 4. Matching results.

and matching algorithms are extremely fast. Using a
desktop computer it took a few seconds to learn the
model and less than a second to compute the MAP es-
timate in each image. These experiments demonstrate

76 Felzenszwalb and Huttenlocher

Figure 14. In this case, the binary image doesn’t provide enough information to estimate the position of one arm.

Figure 15. This example illustrates how our method works well with noisy images.

Pictorial Structures for Object Recognition 75

Figure 13. Matching results (sampling 200 times).

Of course, sometimes the estimated pose is not cor-
rect. The most common source of error comes from
ambiguities in the binary images. Figure 14 shows an
example where the image does not provide enough in-

formation to estimate the position of one arm. Even in
that case we get a fairly good estimate. We can detect
when ambiguities happen because we obtain many dif-
ferent poses with equally good Chamfer score. Thus

Felzenszwalb & Huttenlocher, 2005

SCAPE
Shape Completion and Animation of People, Anguelov et al. 2004

Figure 17. Scans from the CEASAR dataset after hole-filling [3].

to match the data, a marker term, that favors the markers to overlap, and a smooth-

ness term, that favors solutions where neighboring triangles undergo the same a�ne

transformation. The registration technique employs markers in a first stage, where

the data term is disabled, then in a successive stage markers have weaker relevance,

as they are not reliable for a precise alignment. Also, the optimization proceeds in a

multi-scale fashion, first on low-resolution meshes, to avoid local minima. The energy

minimization is robust to holes: if the data point closest to a vertex in the template

is on a boundary edge of the data mesh, its data term is disabled, and its a�ne

transformation is defined through the smoothness terms from neighboring triangles.

This has the e↵ect that holes in the data mesh are filled by seamlessly transformed

triangles of the template surface. The template mesh is obtained by aligning a mesh

generated from an artist to one of the CAESAR scans using 58 manually selected

landmarks.

Given a set of k meshes aligned to a template with n vertexes, Allen et al. [3]

compute Principal Component Analysis (PCA) on the k⇥n vertexes of the template

transformed according to the estimated alignment transformations for each data mesh.

The resulting PCA space describes the variability in the intrinsic shape of people.

Note that here the authors assume body pose is fixed, but it is likely that there

is some pose variation among subjects, which could have been partially removed

by exploiting the markers location. Exploiting the PCA model, data meshes can

then be parametrized by PCA coe�cients instead of a�ne transformations. This

generates a new form for the energy to optimize for the alignment, where instead

of the smoothness term for neighboring a�ne transformations one would minimize

35

Figure 4: Examples of muscle deformations that can be captured in the SCAPE pose model.

Figure 5: The first four principal components in the space of body shape
deformation

5 Body-Shape Deformation

The SCAPE model also encodes variability due to body shape
across different individuals. We now assume that the scans of our
training set Y i correspond to different individuals.

5.1 Deformation Process

We model the body-shape variation independently of the pose vari-
ation, by introducing a new set of linear transformation matrices
Sik, one for each instance i and each triangle k. We assume that
the triangle pk observed in the instance mesh i is obtained by first
applying the pose deformation Qik, then the body shape deforma-
tion Sik, and finally the rotation associated with the corresponding
joint Ri`[k]. The application of consecutive transformation matrices
maintains proper scaling of deformation. We obtain the following
extension to Eq. (1):

vik, j = Ri`[k]S
i
kQ

i
kv̂k, j. (6)

The body deformation associated with each subject i can thus be
modeled as a set of matrices Si = {Sik : k = 1, . . . ,P}.

5.2 Learning the Shape Deformation Model

To map out the space of body shape deformations, we view the dif-
ferent matrices Si as arising from a lower dimensional subspace. For
each example mesh, we create a vector of size 9£N containing the
parameters of matrices Si. We assume that these vectors are gener-
ated from a simple linear subspace, which can be estimated by using
PCA:

Si = SU,µ (β i) =Uβ i+µ (7)

whereUβ i+µ is a (vector form) reconstruction of the 9£N matrix
coefficients from the PCA, andUβ i+µ is the representation of this
vector as a set of matrices. PCA is appropriate for modeling the ma-
trix entries, because body shape variation is consistent and not too
strong. We found that even shapes which are three standard devia-
tions from the mean still look very much like humans (see Fig. 5).
If we are given the affine matrices Sik for each i,k we can easily

solve for the PCA parameters U , µ , and the mesh-specific coeffi-
cients β i. However, as in the case of pose deformation, the indi-
vidual shape deformation matrices Sik are not given, and need to be
estimated. We use the same idea as above, and solve directly for Sik,
with the same smoothing term as in Eq. (5):

argmin
Si

∑
k
∑
j=2,3

kRikS
i
kQ

i
kv̂k, j°v

i
k, jk

2+ws ∑
k1,k2 adj

kSik1 °S
i
k2k

2. (8)

Importantly, recall that our data preprocessing phase provides us
with an estimate Ri for the joint rotations in each instance mesh,
and therefore the joint angles 4ri. From these we can compute the
predicted pose deformations Qik = Qak (4ri`[k]) using our learned
pose deformation model. Thus, the only unknowns in Eq. (8) are
the shape deformation matrices Sik. The equation is quadratic in
these unknowns, and therefore can be solved using a straightforward
least-squares optimization.

5.3 Application to Our Data Set

We applied this method to learn a SCAPE body shape deformation
model using the 45 instances in the body shape data set, and taking
as a starting point the pose deformation model learned as described
in Sec. 4.3. Fig. 5 shows the mean shape and the first four prin-
cipal components in our PCA decomposition of the shape space.
These components represent very reasonable variations in weight
and height, gender, abdominal fat and chest muscles, and bulkiness
of the chest versus the hips.

Figure 4: Examples of muscle deformations that can be captured in the SCAPE pose model.

Figure 5: The first four principal components in the space of body shape
deformation

5 Body-Shape Deformation

The SCAPE model also encodes variability due to body shape
across different individuals. We now assume that the scans of our
training set Y i correspond to different individuals.

5.1 Deformation Process

We model the body-shape variation independently of the pose vari-
ation, by introducing a new set of linear transformation matrices
Sik, one for each instance i and each triangle k. We assume that
the triangle pk observed in the instance mesh i is obtained by first
applying the pose deformation Qik, then the body shape deforma-
tion Sik, and finally the rotation associated with the corresponding
joint Ri`[k]. The application of consecutive transformation matrices
maintains proper scaling of deformation. We obtain the following
extension to Eq. (1):

vik, j = Ri`[k]S
i
kQ

i
kv̂k, j. (6)

The body deformation associated with each subject i can thus be
modeled as a set of matrices Si = {Sik : k = 1, . . . ,P}.

5.2 Learning the Shape Deformation Model

To map out the space of body shape deformations, we view the dif-
ferent matrices Si as arising from a lower dimensional subspace. For
each example mesh, we create a vector of size 9£N containing the
parameters of matrices Si. We assume that these vectors are gener-
ated from a simple linear subspace, which can be estimated by using
PCA:

Si = SU,µ (β i) =Uβ i+µ (7)

whereUβ i+µ is a (vector form) reconstruction of the 9£N matrix
coefficients from the PCA, andUβ i+µ is the representation of this
vector as a set of matrices. PCA is appropriate for modeling the ma-
trix entries, because body shape variation is consistent and not too
strong. We found that even shapes which are three standard devia-
tions from the mean still look very much like humans (see Fig. 5).
If we are given the affine matrices Sik for each i,k we can easily

solve for the PCA parameters U , µ , and the mesh-specific coeffi-
cients β i. However, as in the case of pose deformation, the indi-
vidual shape deformation matrices Sik are not given, and need to be
estimated. We use the same idea as above, and solve directly for Sik,
with the same smoothing term as in Eq. (5):

argmin
Si

∑
k
∑
j=2,3

kRikS
i
kQ

i
kv̂k, j°v

i
k, jk

2+ws ∑
k1,k2 adj

kSik1 °S
i
k2k

2. (8)

Importantly, recall that our data preprocessing phase provides us
with an estimate Ri for the joint rotations in each instance mesh,
and therefore the joint angles 4ri. From these we can compute the
predicted pose deformations Qik = Qak (4ri`[k]) using our learned
pose deformation model. Thus, the only unknowns in Eq. (8) are
the shape deformation matrices Sik. The equation is quadratic in
these unknowns, and therefore can be solved using a straightforward
least-squares optimization.

5.3 Application to Our Data Set

We applied this method to learn a SCAPE body shape deformation
model using the 45 instances in the body shape data set, and taking
as a starting point the pose deformation model learned as described
in Sec. 4.3. Fig. 5 shows the mean shape and the first four prin-
cipal components in our PCA decomposition of the shape space.
These components represent very reasonable variations in weight
and height, gender, abdominal fat and chest muscles, and bulkiness
of the chest versus the hips.

Deformable Structures

Continuous state for part
shape, location, orientation and
scale.

Complicated
Likelihood

Non-Gaussian
Compatibility

PCA Shape

[Zuffi et al., CVPR 2012]

Samples From DS Prior

DS defines a joint
probability from
which we can
sample human

poses.
Figure 2. Contours generated from the SCAPE model. The rendered

3D meshes are SCAPE models in two similar poses; the contour-based

representations are obtained by per-part projections of the meshes on

the image plane, and then extracting the contour from silhouettes.

Each DS model is learned from 3000 mirrored samples. Figure 3 shows example

poses in the training set for the female body; note the variability of pose and ori-

entation of the body relative to the camera. While the camera is frontal-view, the

random noise we add generates also slightly lateral poses (see Fig. 3).

Each part is rendered as a separate 2D closed contour and discretized into a fixed

number of contour points plus two additional “joint” locations at the proximal and

distal ends of the part. The two “joints” define a local coordinate system for the part

(Fig. 2) and a line through them divides the part into two sides. Each side of the

part is sampled to a fix number of points, evenly spaced according to the arclength.

We represent therefore each part with a fixed number of points.

We learn models with various numbers of body parts: 10 parts, consisting of the

head, torso, upper and lower limbs, where the hands and feet are included in the

lower limbs; and 14 parts with hands and feet treated as independent parts. We use

40

Max-Product Belief Propagation
Discrete

Matrix-vector multiplication &
discrete maximization Nonlinear optimization

Continuous

Message Update: Message Update:

? ?

? ?

Regular Discretization

Infeasible for high dimensional models.

Approximate continuous max-product
messages over regular grid of points

Ø ~10 dimensions.
Ø 10 grid points per dimension
Ø 10 Million points!

Location ShapeExample: Torso

Head Upper Arm Lower Arm Torso

Particle Max-Product (PMP)

Particle approximation of continuous
max-product (MP) messages.

Combine particle filter ideas with max-
product more effectively.

Particle Max-Product (PMP)

Augment
Particles

1

Sample new hypotheses at every node to
grow particle set.

Augmented Set

Head Upper Arms Lower Arms Torso

Proposal

Particle Max-Product (PMP)

Update MP messages on
augmented particles.

Augment
Particles

1
Max-Product

Update

2
Colors

Particle Max-Product (PMP)

Select subset of good particles & repeat

Augment
Particles

1
Max-Product

Update

2
Select

Particles

3

Need a particle selection method…

Colors

Synthetic Pose Estimation
Binary image of 4 silhouettes.

Random InitializationLikelihood distance-map
from silhouette contours.

Distance Likelihood

Synthetic Image

Model Truncated Gaussian
pairwise potentials :

PCA Shape

Colors

Example Runs

Maintain diversity in particles.

Top-N Particle Max Product (T-PMP)

Colors

ØKeep N-best particles

ØSensitive to initialization

ØStill too greedy; Selection
reduces effective number
of particles

[Pacheco et al., ICML 2014]

Diverse Particle Selection

Particles selected to minimize max-product
message distortion.

Integer
Program

Initial Particles

Diverse Selection
LP : Linear Program relaxation

IP: Optimal solution by brute force
Greedy: Efficient approximation

Integer Program (IP) solved
with efficient greedy

approximation:

Diverse Particle Selection

NP-hard
Submodular

Minimize total message distortion:

All Particles

Selected

Good approximation qualities.

Avoids particle degeneracies by
maintaining ensemble of diverse

solutions near local modes.

Example Runs Colors

Diverse Particle Max-Product (D-PMP)

[Pacheco et al., ICML 2014]

ØNo explicit diversity constraint

ØObjective encourages diversity

ØEfficient Lazy greedy algorithm

ØBounds on optimality

Top 3 arm hypotheses MAP estimate, 2nd and 3rd modes for upper arm
(magenta, cyan), lower arm (green,).

De
te

ct
io

n

Real Images (Single Person)

Solutions

Ø “Buffy” dataset [Ferrari et al. 2008].

Ø Detections versus number
of ranked hypotheses.

Ø Baseline: Flexible Mixture of
Parts (FMP) [Yang & Ramanan 2013;
Park & Ramanan 2011]

[Pacheco, Zuffi, Black & Sudderth, ICML 2014]

D-PMP Particles

Colors

Real Images (Multiple People)

Mode Estimates

[Pacheco, Zuffi, Black & Sudderth, ICML 2014]

Precision-Recall for multi-person frames:
T-PMP : High precision, low recall, particles on one figure
D-PMP : Outperforms FMP and other particle methods
Note: G-PMP not reported due to poor performance.

Articulated Pose Tracking
Prior work fails to show improvement by

incorporating motion model.

This is a failure of inference…

Articulated Pose Tracking

Frame t

Frame t+1

Data and Optical Flow

…

…

t t+1

PriorPart Likelihood

Gradients: Encode object
and motion boundaries via
HOG / HOF.

Appearance: 2D histogram of
A/B color channels in L*a*b*
space. Luminance ignored.

HOF HOG

Structural prior identical to DS.

Part Motion: Scale mixture
captures heavy tailed statistics of
motion between frames.

Color

Extension of the Flowing Puppets
model [Zuffi et al., 2013]

1 2 3

Loopy Max-Product BP

Stay tuned later in the course for
reweighted message passing…

Many interesting models exhibit
cyclic dependency structure...

Loopy Max-Product BP:
Iteratively update
until converged.

VideoPose2 Experiments

Comparison on VideoPose2
dataset of ~2,000 video frames
from TV shows [Sapp et al., 2011]

D-PMP
T-PMP

Pose Tracking Particles

Greater diversity in particles allows
D-PMP to reason more globally

D-PMP

T-PMP

Colors

Both right arm hypotheses

VideoPose2 Experiments [Sapp et al. 2011]

Ø Superior to single-frame estimates (--,--)
Ø Clear improvement over Sapp et al. baseline
Ø D-PMP superior to Flowing Puppets in close

detection ranges. Looking at failure cases.

D-PMP for 3D Mesh Alignment

Figure 2. Example of particles initialization: note that particles are

initialized from disconnected SP models randomly sampled. The red

arm on the right belongs to the FAUST scan around which the random

puppets are generated.

As an estimate of the global translation of the scan, we take the average value of

the scan points. We make this point coincide with the centre of the torso of the SP

models that we generate for initialization. Note that this simple assumption creates

a bias between model and scan, but the optimization algorithm can deal with large

uncertainty in the particles locations, also due to the fact that the scan data does not

contain outliers.

Figure 2 shows the set of initial particles in an example where the optimization

uses 30 particles. During optimization, we use an adaptive scheme for assigning the

weights ↵ and � in the energy.

109

Figure 3. Stitched Puppet Model. To generate an instance of SP we

start with the template body (top left), which is segmented into parts.

We apply the intrinsic shape deformation to change the body shape

(top right). We generate pose deformations for each body part (see

text) (bottom left). The pose of the body is defined by the rotation

and translation that stitches the parts together (bottom, middle and

right).

upper arms, lower arms, upper legs, lower legs, hands and feet (see color coding in

Fig. 1(c)).

SP is a tree-structured graphical model in which each body part corresponds to

a node, with the torso at the root. Each part is represented by a triangulated 3D

mesh in a canonical, part-centered, coordinate system. Let i be a node index, with

91

Figure 12. Stitching parts illustration. Parts can be thought of as

being connected by springs between the interface points. When the

model fits together seamlessly, this stitching cost is zero. During in-

ference, the parts can move apart to fit data and then the inference

method tries to infer a consistent model.

are replicated for each node, and generate body parts for the template mesh with the

desired intrinsic shape (Figure 3(b)). We then sample a vector of pose deformation

variables for the torso. These define the pose of the torso: given in SP the torso

part also includes the pelvis, poses with the torso bent or twisted with respect to the

pelvis are modeled as pose deformations (Figure ??). We then assign a global rotation

and generate the torso mesh in the global frame. Recursively in the tree, starting

at torso, for each node i: we get the pose-dependent deformation variables of the

parent, d
pa(i); we condition the pairwise Gaussian p

pa(i)i with d
pa(i), and marginalize

the relative rotation vector r
pa(i)i. This gives a Gaussian distribution over d

i

; we

sample this conditioned distribution to get part deformations, and generate the part

mesh in the local frame. The e↵ect of the part deformations applied to each body part

is shown in Fig. 3(c). We finally compute the rotation and translation that stitches

the parts together at their interface (Fig. 3(d,e)) using the orthogonal Procrustes

algorithm. Figure 13 shows samples of bodies generated using this procedure. Note

103

Figure 3. D-PMP optimization. Inference with 30 particles for 60

iterations. From top to bottom, left to right: initial particles; scan

(red) and current solution (light blue) at various steps; the final set

of particles. At the end a greedy algorithm resamples all the particles

around the current solution.
112

Independent work by Zuffi & Black, appeared at CVPR 2015.

Figure 3. D-PMP optimization. Inference with 30 particles for 60

iterations. From top to bottom, left to right: initial particles; scan

(red) and current solution (light blue) at various steps; the final set

of particles. At the end a greedy algorithm resamples all the particles

around the current solution.
112

Motion Estimation: Optical Flow

Middlebury Benchmark: Ground Truth

Occluded
regions
in black

Occlusion boundaries are crucial for accurate motion estimation
Horn & Schunck (1981)

Gaussian
MRF

Need non-Gaussian models to capture natural motion statistics.

Optical Flow Estimation
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Loopy D-PMP

G-PMP T-PMP D-PMP Ground Truth

Figure 5. Preserving multiple hypotheses. Top Row: Final flow estimate of each method for the “Rubber Whale” sequence. The color
key (top-right) encodes flow vector orientation, color saturation denotes magnitude. Bottom Row: Detail of highlighted region showing
final flow particles as vectors (black) and the MAP label (red). The MAP estimates of D-PMP and T-PMP have higher probability than
ground truth, but D-PMP preserves the correct flow in the particle set.

20 40 60 80

−1.25

−1.2

−1.15

−1.1

−1.05

−1

x 10
7

Iterations

L
o
g
−

P
ro

b
a
b
ili

ty

G−PMP
T−PMP
D−PMP

2 4 6 8 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of Particles

A
E

P
E

20 40 60 80
−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3
x 10

7

Iterations

L
o
g
−

P
ro

b
a
b
ili

ty

Log-Probability Oracle Avg. EPE Log-Prob. (Test) Pixel-Level Log-Prob.
Figure 6. Optical flow results. Left: Log-probability quantiles showing median (solid) and best/worst (dashed) MAP estimates versus
PMP iteration for 11 random initializations on the Middlebury training set. Left-Center: Oracle AEPE over the training set. Right-
Center: Log-probability quantiles on the test set (G-PMP omitted due to poor performance on training). Right: Log-probability of the
MAP estimates at the pixel-level model obtained by initializing L-BFGS at the D-PMP solution.

4.1. Optical Flow

Given a pair of (grayscale) images I1 and I2 in RM⇥N ,
we estimate the motion of each pixel from one image to
the next. This flow vector is decomposed into horizontal
u and vertical v scalar components. The model presented
below is based on Classic-C (Sun et al., 2014). To reduce
the number of edges we model flow at the superpixel level,
holding flow constant over the superpixel. Edges are given
by the immediate neighbors in I1.

The pairwise log-potential enforces a smoothness prior on
flow vectors. We use the robust Charbonnier penalty, a dif-
ferentiable approximation to L1, which is approximately
quadratic in the range [��,�] and smoothly transitions to
a linear function outside this range. The potential decom-
poses additively �

st

= �

vert
st

+ �

hor
st

into vertical and hori-
zontal components, defined equivalently as:

�

hor
st

(u

s

, u

t

) = ��

s

p
�

2
+ (u

s

� u

t

)

2
, (20)

with energy scaling parameter �
s

.

The log-likelihood terms �

s

assume that pixel intensities

remain similar between images. We denote the superpixel
as I

s

= {(i1, j1), . . . , (ik, jk)}, and for each pixel (i, j)
compute the warped coordinates (ei,ej) = (i + u

s

, j + v

s

).
The likelihood penalizes the difference in image intensities,
again using the Charbonnier penalty:

�

s

(u

s

, v

s

) = ��

d

X

(i,j)2Is

q
�

2
+ (I1(i, j)� I2(

e
i,

e
j))

2 (21)

In computing the warped coordinates we also constrain any
pixels which flow outside the image boundary to be exactly
on the boundary, ei = min(M,max(0, i + u

s

)), and simi-
larly for ej. To account for non-integer pixel coordinates we
apply bicubic interpolation.

Results We compare each method on the Middlebury op-
tical flow benchmark (Baker et al., 2011) over 11 random
initializations with each method receiving the same initial-
ization of 50 particles. D-PMP and T-PMP utilize the same
set of proposals (75% neighbor, 25% random walk). We
compute SLIC superpixels with region size 5 and regular-
izer 0.1, yielding between 5,000 and 15,000 superpixels per

Ø Robust MRF (Sun, Roth, Black, IJCV 2014), discretization
needs ~100,000 flow vectors per pixel for good accuracy

Ø Low-level MRF often makes errors at occlusion boundaries,
but D-PMP preserves true flow as secondary hypothesis

Ø Theory: Often have global MAP on particle set

Optical Flow Estimation
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Loopy D-PMP

G-PMP T-PMP D-PMP Ground Truth

Figure 5. Preserving multiple hypotheses. Top Row: Final flow estimate of each method for the “Rubber Whale” sequence. The color
key (top-right) encodes flow vector orientation, color saturation denotes magnitude. Bottom Row: Detail of highlighted region showing
final flow particles as vectors (black) and the MAP label (red). The MAP estimates of D-PMP and T-PMP have higher probability than
ground truth, but D-PMP preserves the correct flow in the particle set.

20 40 60 80

−1.25

−1.2

−1.15

−1.1

−1.05

−1

x 10
7

Iterations

L
o
g
−

P
ro

b
a
b
ili

ty

G−PMP
T−PMP
D−PMP

2 4 6 8 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of Particles

A
E

P
E

20 40 60 80
−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3
x 10

7

Iterations

L
o
g
−

P
ro

b
a
b
ili

ty

Log-Probability Oracle Avg. EPE Log-Prob. (Test) Pixel-Level Log-Prob.
Figure 6. Optical flow results. Left: Log-probability quantiles showing median (solid) and best/worst (dashed) MAP estimates versus
PMP iteration for 11 random initializations on the Middlebury training set. Left-Center: Oracle AEPE over the training set. Right-
Center: Log-probability quantiles on the test set (G-PMP omitted due to poor performance on training). Right: Log-probability of the
MAP estimates at the pixel-level model obtained by initializing L-BFGS at the D-PMP solution.

4.1. Optical Flow

Given a pair of (grayscale) images I1 and I2 in RM⇥N ,
we estimate the motion of each pixel from one image to
the next. This flow vector is decomposed into horizontal
u and vertical v scalar components. The model presented
below is based on Classic-C (Sun et al., 2014). To reduce
the number of edges we model flow at the superpixel level,
holding flow constant over the superpixel. Edges are given
by the immediate neighbors in I1.

The pairwise log-potential enforces a smoothness prior on
flow vectors. We use the robust Charbonnier penalty, a dif-
ferentiable approximation to L1, which is approximately
quadratic in the range [��,�] and smoothly transitions to
a linear function outside this range. The potential decom-
poses additively �

st

= �

vert
st

+ �

hor
st

into vertical and hori-
zontal components, defined equivalently as:

�

hor
st

(u

s

, u

t

) = ��

s

p
�

2
+ (u

s

� u

t

)

2
, (20)

with energy scaling parameter �
s

.

The log-likelihood terms �

s

assume that pixel intensities

remain similar between images. We denote the superpixel
as I

s

= {(i1, j1), . . . , (ik, jk)}, and for each pixel (i, j)
compute the warped coordinates (ei,ej) = (i + u

s

, j + v

s

).
The likelihood penalizes the difference in image intensities,
again using the Charbonnier penalty:

�

s

(u

s

, v

s

) = ��

d

X

(i,j)2Is

q
�

2
+ (I1(i, j)� I2(

e
i,

e
j))

2 (21)

In computing the warped coordinates we also constrain any
pixels which flow outside the image boundary to be exactly
on the boundary, ei = min(M,max(0, i + u

s

)), and simi-
larly for ej. To account for non-integer pixel coordinates we
apply bicubic interpolation.

Results We compare each method on the Middlebury op-
tical flow benchmark (Baker et al., 2011) over 11 random
initializations with each method receiving the same initial-
ization of 50 particles. D-PMP and T-PMP utilize the same
set of proposals (75% neighbor, 25% random walk). We
compute SLIC superpixels with region size 5 and regular-
izer 0.1, yielding between 5,000 and 15,000 superpixels per

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Loopy D-PMP

G-PMP T-PMP D-PMP Ground Truth

Figure 5. Preserving multiple hypotheses. Top Row: Final flow estimate of each method for the “Rubber Whale” sequence. The color
key (top-right) encodes flow vector orientation, color saturation denotes magnitude. Bottom Row: Detail of highlighted region showing
final flow particles as vectors (black) and the MAP label (red). The MAP estimates of D-PMP and T-PMP have higher probability than
ground truth, but D-PMP preserves the correct flow in the particle set.

20 40 60 80

−1.25

−1.2

−1.15

−1.1

−1.05

−1

x 10
7

Iterations

L
o

g
−

P
ro

b
a

b
ili

ty

G−PMP
T−PMP
D−PMP

2 4 6 8 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of Particles

A
E

P
E

20 40 60 80
−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3
x 10

7

Iterations
L

o
g

−
P

ro
b

a
b

ili
ty

Log-Probability Oracle Avg. EPE Log-Prob. (Test) Pixel-Level Log-Prob.
Figure 6. Optical flow results. Left: Log-probability quantiles showing median (solid) and best/worst (dashed) MAP estimates versus
PMP iteration for 11 random initializations on the Middlebury training set. Left-Center: Oracle AEPE over the training set. Right-
Center: Log-probability quantiles on the test set (G-PMP omitted due to poor performance on training). Right: Log-probability of the
MAP estimates at the pixel-level model obtained by initializing L-BFGS at the D-PMP solution.

4.1. Optical Flow

Given a pair of (grayscale) images I1 and I2 in RM⇥N ,
we estimate the motion of each pixel from one image to
the next. This flow vector is decomposed into horizontal
u and vertical v scalar components. The model presented
below is based on Classic-C (Sun et al., 2014). To reduce
the number of edges we model flow at the superpixel level,
holding flow constant over the superpixel. Edges are given
by the immediate neighbors in I1.

The pairwise log-potential enforces a smoothness prior on
flow vectors. We use the robust Charbonnier penalty, a dif-
ferentiable approximation to L1, which is approximately
quadratic in the range [��,�] and smoothly transitions to
a linear function outside this range. The potential decom-
poses additively �

st

= �

vert
st

+ �

hor
st

into vertical and hori-
zontal components, defined equivalently as:

�

hor
st

(u

s

, u

t

) = ��

s

p
�

2
+ (u

s

� u

t

)

2
, (20)

with energy scaling parameter �
s

.

The log-likelihood terms �

s

assume that pixel intensities

remain similar between images. We denote the superpixel
as I

s

= {(i1, j1), . . . , (ik, jk)}, and for each pixel (i, j)
compute the warped coordinates (ei,ej) = (i + u

s

, j + v

s

).
The likelihood penalizes the difference in image intensities,
again using the Charbonnier penalty:

�

s

(u

s

, v

s

) = ��

d

X

(i,j)2Is

q
�

2
+ (I1(i, j)� I2(

e
i,

e
j))

2 (21)

In computing the warped coordinates we also constrain any
pixels which flow outside the image boundary to be exactly
on the boundary, ei = min(M,max(0, i + u

s

)), and simi-
larly for ej. To account for non-integer pixel coordinates we
apply bicubic interpolation.

Results We compare each method on the Middlebury op-
tical flow benchmark (Baker et al., 2011) over 11 random
initializations with each method receiving the same initial-
ization of 50 particles. D-PMP and T-PMP utilize the same
set of proposals (75% neighbor, 25% random walk). We
compute SLIC superpixels with region size 5 and regular-
izer 0.1, yielding between 5,000 and 15,000 superpixels per

Reweighted PMP
comparison on a

“superpixel” graph
with ~10,000 nodes

Protein Structure Prediction

All information for predicting 3D structure
encoded in amino acid sequence and physics

Protein Side Chains

Trp (W)Phe (F)Leu (L) Val (V)

…

Backbone

Sidechain
20 Amino Acid Types

Side chain prediction: Estimate side
chains given fixed backbone.

Sidechains
Backbone

Dihedrals and Rotamers

ØCompact angular encoding

Ø 1D-4D continuous state

Dihedral Angles:

300o
180o

60o

Rotamers

[Shapovalov & Dunbrack 2007]

Truth Rotamers

Rotamer discretization based on marginal
statistics fails to capture fine details…

x5
x6

x7
x8

x4

x3

x1
x2

x9

Side Chain Prediction

[Image: Harder et al., BMC Informatics 2010]

Edges between amino acids
within distance threshold.

Side Chain Prediction

[Image: Harder et al., BMC Informatics 2010]

Statistical and physical
potential functions.

Atomic InteractionRotamer Likelihood

D-PMP for Side Chains

Continuous optimization of side chains:

ØCaptures non-rotameric side chains
ØConformational diversity
ØLikelihood-based proposals

Augment
Particles

1
MP

Update

2
Select

Diverse

3

Rosetta

Ø Energy model used in FoldIt game
Ø Simulated annealing (SA) Monte Carlo
Ø Independent chains for multiple optima

Gradient
Optimization

2 Rosetta
Energy

3

Rotamer Proposal1

Accept /
Reject

3

Replace SA with D-PMP.
Use Rosetta as black-box

energy method.

Protein Side Chain Prediction

20 Proteins
(11 Runs) 370 Proteins

G-PMP, T-PMP, D-PMP, Rosetta simulated
annealing [Rohl et al., 2004]

Log-probability of MAP estimate for…

[Pacheco et al., ICML 2015]

Rosetta
G-PMP
T-PMP

D-PMP

Protein Side Chain Prediction
Root mean square deviation (RMSD)

from x-ray structure.

Oracle selects best configuration in
current particle set.

Multiple Side Chain Conformations

Ø Side chains don’t exist in a single conformation
Ø Diversity in D-PMP particles captures multiple

alternate states.
Ø T-PMP particles get stuck in local optima

Protein Side Chain Prediction

Protein Side Chain Prediction

Contributions
Reliable particle-based MAP inference

for graphical models with continuous variables:
object shape, articulation, position, …

Validation: Inference of
multiple poses, motions,
protein conformations, …

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Loopy D-PMP

G-PMP T-PMP D-PMP Ground Truth

Figure 5. Preserving multiple hypotheses. Top Row: Final flow estimate of each method for the “Rubber Whale” sequence. The color
key (top-right) encodes flow vector orientation, color saturation denotes magnitude. Bottom Row: Detail of highlighted region showing
final flow particles as vectors (black) and the MAP label (red). The MAP estimates of D-PMP and T-PMP have higher probability than
ground truth, but D-PMP preserves the correct flow in the particle set.

20 40 60 80

−1.25

−1.2

−1.15

−1.1

−1.05

−1

x 10
7

Iterations

L
o
g
−

P
ro

b
a
b
ili

ty

G−PMP
T−PMP
D−PMP

2 4 6 8 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of Particles

A
E

P
E

20 40 60 80
−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3
x 10

7

Iterations

L
o
g
−

P
ro

b
a
b
ili

ty

Log-Probability Oracle Avg. EPE Log-Prob. (Test) Pixel-Level Log-Prob.
Figure 6. Optical flow results. Left: Log-probability quantiles showing median (solid) and best/worst (dashed) MAP estimates versus
PMP iteration for 11 random initializations on the Middlebury training set. Left-Center: Oracle AEPE over the training set. Right-
Center: Log-probability quantiles on the test set (G-PMP omitted due to poor performance on training). Right: Log-probability of the
MAP estimates at the pixel-level model obtained by initializing L-BFGS at the D-PMP solution.

4.1. Optical Flow

Given a pair of (grayscale) images I1 and I2 in RM⇥N ,
we estimate the motion of each pixel from one image to
the next. This flow vector is decomposed into horizontal
u and vertical v scalar components. The model presented
below is based on Classic-C (Sun et al., 2014). To reduce
the number of edges we model flow at the superpixel level,
holding flow constant over the superpixel. Edges are given
by the immediate neighbors in I1.

The pairwise log-potential enforces a smoothness prior on
flow vectors. We use the robust Charbonnier penalty, a dif-
ferentiable approximation to L1, which is approximately
quadratic in the range [��,�] and smoothly transitions to
a linear function outside this range. The potential decom-
poses additively �

st

= �

vert
st

+ �

hor
st

into vertical and hori-
zontal components, defined equivalently as:

�

hor
st

(u

s

, u

t

) = ��

s

p
�

2
+ (u

s

� u

t

)

2
, (20)

with energy scaling parameter �
s

.

The log-likelihood terms �

s

assume that pixel intensities

remain similar between images. We denote the superpixel
as I

s

= {(i1, j1), . . . , (ik, jk)}, and for each pixel (i, j)
compute the warped coordinates (ei,ej) = (i + u

s

, j + v

s

).
The likelihood penalizes the difference in image intensities,
again using the Charbonnier penalty:

�

s

(u

s

, v

s

) = ��

d

X

(i,j)2Is

q
�

2
+ (I1(i, j)� I2(

e
i,

e
j))

2 (21)

In computing the warped coordinates we also constrain any
pixels which flow outside the image boundary to be exactly
on the boundary, ei = min(M,max(0, i + u

s

)), and simi-
larly for ej. To account for non-integer pixel coordinates we
apply bicubic interpolation.

Results We compare each method on the Middlebury op-
tical flow benchmark (Baker et al., 2011) over 11 random
initializations with each method receiving the same initial-
ization of 50 particles. D-PMP and T-PMP utilize the same
set of proposals (75% neighbor, 25% random walk). We
compute SLIC superpixels with region size 5 and regular-
izer 0.1, yielding between 5,000 and 15,000 superpixels per

