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ABSTRACT

We extend the state-of-the-art of neural network loss landscape vi-
sualization in three ways. First we integrate adaptive sampling
which chooses points from the most interesting parts of the land-
scape. Next, introduce gradient free optimization to allow the user
to specify a custom heuristic to chose slices. Finally, we allow vi-
sualization beyond 2D slices by using simplicial complexes. We
quantitatively demonstrate our method on a wide range of tasks in-
cluding computer vision and physics informed networks. We also
conduct a user study to show that our additions are qualitatively
helpful to deep learning practitioners.

Keywords: Neural networks, deep learning, loss landscape, topo-
logical analysis

1 INTRODUCTION

Despite the high-dimensionality and non-convexity of neural net-
work loss landscapes, neural networks are still somehow able to
find global minima in practice. However, the trainability of a neu-
ral network depends on several design decisions including architec-
ture, optimizer, and loss functions. Usually, practitioners only have
a handful of quantitative metrics to help. Being able to visualize the
training procedure offers a much richer way to characterize learning
processes and build intuition into these design decisions.

First introduced by Li et al. [2], loss landscape (LL) visualization
is done on the network parameters θ (which can consist of millions
or billions of parameters) and loss function L by selecting two arbi-
trary vectors δ and η . The landscape is then generated by plotting
the following function:

f (α,β ) = L(θ +αδ +βη) (1)

This “slice” is a 2D scalar field, which we can plot as a 2D contour
plot or a surface in 3D, which can be inspected for properties like
smoothness and local minima.

1.1 Contributions
We extend the work by [2] in three major ways.

1. In previous work, α,β are sampled at regular intervals. We
integrate adaptive sampling which samples the most interest-
ing parts of the parameter space. Our Vanilla implementation
takes advantage of vectorization which leads to meaningful
performance speedups.

2. In previous work, δ and η are chosen randomly. We instead
allow the user to pick what kind of “slice” to visualize: They
specify a function of the loss landscape (e.g. how curvy it is),
and we try to find the slice that maximizes the function.
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3. We use simplical complexes to visualize beyond 3D.

(a) A small network that
generalizes poorly. Many
local minima

(b) A larger regularized net-
work that generalizes well.
Smooth with a single mini-
mum

Figure 1: Two neural network loss landscapes on the same task.

2 IMPLEMENTATION AND EXPERIMENTS

2.1 Adaptive Sampling
We use the adaptive algorithm from [3] to iteratively sample points
of greatest interest. We evaluate our implementation on MNIST
dataset on a 3 layer neural network. We compare three different im-
plementations: the baseline adapted from [1], the adaptive imple-
mentation, and an efficient vectorized implementation of uniform
sampling which we call vanilla.

Figure 2: We show that Adaptive outperforms our baseline [1], but
there is a small amount of overhead in determining the next best
points to sample, which leads to a speed disadvantage compared to
vanilla.

2.2 Custom Slices
We use the existing black-box optimization library Nevergrad [4] to
maximize the given function f . We also compared the naive method
of sampling N random slices, and returning the one with the highest
value of f .

To evaluate curviness, in our experiments we defined f as an ap-
proximation of the sum of the second-order gradients of the LL.
That is, for every point, we add the absolute values of the approx-
imate second-derivative in both the x and y direction, and sum the
values for all points.

In Figure 3, we compared the effectiveness of our methods and
the baseline. As expected, both the Nevergrad method and the naive
method (each with a budget of 100) outperformed the baseline (a



Figure 3: Custom Slices evaluation. Error bars show standard devi-
ation.

single random slice). Unexpectedly, we were not able to get the
Nevergrad method to perform much better than the naive method.

2.3 Mapper

(a) Many separated chains
indicates many local min-
ima

(b) A single long chain in-
dicates smoothness and a
global minimum.

Figure 4: Topological representations of 3D slices of the same net-
works as in Figure 1.

The Mapper algorithm [5] is a topological data analysis tech-
nique that simplifies high-dimensional data sets by creating a com-
binatorial representation that reflects the data’s topological and ge-
ometric structure.

2.4 User Study: Evaluation of Custom 2D Slices

In the Task-Based Evaluation, users were presented with pairs of
loss landscapes (LLs). Each LL was produced using a convolu-
tional neural network (CNN). Each LL came from a CNN from one
of three classes: Class A has no skip connections, B has some skip
connections, and C has full skip connections. Figure 5 shows ex-
amples of the three classes. Some pairs were produced using the
baseline method (random 2D slices) and some pairs were produced
using our method (custom 2D slices). Our method used Nevergrad
with a budget of 100 to maximize f .

(a) No skip connections (b) Some skip connections (c) Full skip connections

Figure 5: Representative examples of LLs from the three types of
neural networks used in our task-based evaluation. LLs tend to be
smoother in networks with more skip connections. More examples
can be seen in Figure 7 in the appendix.

Users picked whether the LL on the left or the right came from
the class with more skip connections (i.e. looked smoother). For
each pair, users selected 1 of 5 options: Definitely left (1), probably
left (2), unsure (3), probably right (4), definitely right (5).

Figure 6: Comparison of methods with our scalar value of perfor-
mance. Lower is better. Error bars show 95% confidence interval
on the mean.

We hypothesized that on pairs generated using our method, users
would choose the correct option more often and users would be
more confident in their correct answers.

As a scalar measure of performance, we assigned probabilities
to each option1, and computed the average negative log-likelihood
of choosing the correct answer. As seen in Figure 6, the results are
too inconclusive to validate our hypothesis.

Our method was significantly better for correctly differentiating
between class A and B LLs, but was worse for differentiating be-
tween B and C LLs. Detailed results can be seen in Table 2 in the
Appendix.

2.5 User Study: PINNs, Mapper, and Adaptive Sampling

In the second user study, we surveyed 10 deep learning practi-
tioners. Users were presented with LLs generated from a pair of
physics-informed neural networks which were tasked with learning
the temperature of a cup of coffee. Both networks had three layers,
but one had 20 nodes per layer while the other had 2. The first was
able to generalize while the second was not. The first question de-
termined if the users could pick the neural network architecture that
performed best on the test set given the LL on the training set. The
second question was the same, but using the Mapper visualization.
The final question determined if users preferred the adaptive sample
over the uniform grid. In all cases users were given a brief preamble
on how the LL was generated and interesting features (smoothness
and minima).

Question Percent correct Confidence (1-5)
1 100 3.9
2 100 3.65

Table 1: User Study 2

For the final question, 5/10 users preferred uniform sampling.
While, this means our results on the usefulness of adaptive sam-
pling are unclear; it may be the case that adaptive sampling with
a lower time budget may be as effective (if not more) as uniform
sampling.

3 CONCLUSION

We extend loss landscape visualization by integrating adaptive sam-
pling, gradient free slice selection and mapper complexes. We con-
duct quantitative evaluations to show that our implementation in-
creases efficiency. Our user studies show that deep learning practi-
tioners are able to draw insights about the performance of networks
on the test set by visually inspecting the loss landscape on the train-
ing set.

110%, 30%, 50%, 70%, and 90%. Users were not given these numbers
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A DETAILED RESULTS

(a) Baseline (Random Slice) (b) Ours (Custom Slices)

Figure 7: Examples of loss landscapes presented to users during
the Evaluation of Custom 2D Slices user study (Section 2.4). Land-
scapes in the left 2 columns were generated by the baseline method
(random slice). Landscapes in the right 2 columns were generated
by our method (maximum curviness via Nevergrad). The top two
rows are from class A, the middle two are class B, and the bottom
are class C. Notably, for class A: all landscapes using our method
are easily identifiable, while some baseline (random slice) land-
scapes are less obvious.

Pair Method 1 2 3 4 5
AB Baseline 0 0 7% 37% 55%
AB Ours 0 0 0 16% 83%
BC Baseline 0 7% 11% 40% 40%
BC Ours 0 11% 22% 27% 38%
AC Baseline 0 0 0 14% 85%
AC Ours 0 0 0 11% 88%

Table 2: Full results of task-based evaluation. Pair AB indicates
results when one LL is from class A and one is from B. Column 1
indicates the percentage of users who were confident in the wrong
answer: they chose “Definitely right” when the correct answer was
left, or vice versa. Column 2 is “probably” the wrong answer, etc.



B ARJUN’S CONTRIBUTION

Arjun’s core contributions were focused on adaptive sampling and
going beyond 2d slices.

B.1 Intellectual Contribution
Arjun was responsible for the original project idea and for organiz-
ing the collaboration with Randall Balestriero. Other intellectual
contributions were finding the run-time baselines. Arjun also re-
searched topological analysis to figure out how to vizualize beyond
3D. Finally, he decided to use PINNs and designed the second user
study.

B.2 Practical Contributions
Arjun implemented adaptive sampling and the vectorized vanilla
baseline. Arjun also intergrated the Mapper algorithm and the func-
tionality to generate gifs. Finally, Arjun ran the experiments on
PINNs and sourced users for the study.

C KEVIN’S CONTRIBUTION

Kevin was responsible for the bulk of the custom slices research
contribution.

C.1 Intellectual Contribution
This entailed scoping out exactly what the custom slices research
contribution would be, and how to design evaluations for it. This
involved talking with the collaborator during our meetings to un-
derstand how custom slices could help researchers, how it would
help in his own experience, and how he envisioned it to be used. It
also involved figuring out a good function to maximize, by talking
with our collaborator and looking around at related works.

C.2 Practical Contribution
Practically, this involved designing, writing, and testing the code to
perform the custom slice optimization (both the Nevergrad version
and the naive, best-of-K version), and designing and testing various
functions to maximize. This also involved designing, creating, and
running the evaluations for custom slices.
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ABSTRACT

By identifying monosemantic features from model weights, Sparse
Autoencoders (SAEs) allow for a more complete understanding of
how neural language models function. This work introduces two
novel methods for unifying SAE feature contexts, one based on
syntax trees and one based on linear aggregation. Users found syn-
tactic visualizations promising but confusing; initial survey results
demonstrate that our linear aggregation method performed worse
than the baseline. The results demonstrate the challenges of (1)
employing syntactic methods for feature analysis and (2) facilitat-
ing textual comprehension through visualization.

Keywords: Human Computer Interaction, Interpretability, De-
pendency Parsing, Natural Language Processing, Large Language
Models

1 INTRODUCTION

Large language models are becoming increasingly integrated in
daily life, but their underlying mechanisms are not fully understood.
Recently, sparse autoencoders (SAEs) have emerged as a promising
way to extract features from models. [2] These features activate on
input contexts in predictable ways, with some exhibiting consis-
tent syntactic patterns. Improved understanding of features through
their contexts can facilitate comparisons between features, identify
training issues such as over-splitting, and simplify identification of
highly syntactic features.

Consequently, this work investigates unified context visualiza-
tions for individual SAE features. One critical issue with current
feature dashboards is their use of a list of text contexts to charac-
terize a features. Although this may aid in identifying repetition
over contexts, characterizing features with textual contexts fail to
highlight the linguistic abstractions which features represent.

2 RELATED WORK

Current research in the field of mechanistic interpretability shows
that SAEs can successfully train on larger and more capable mod-
els, such as Gemma Scope [6] and Claude 3.5 Sonnet [11], provid-
ing promising opportunities to advance interpretability. However,
achieving feature monosemanticity only serves as a first step in in-
terpretability [2]. Crucial to utilizing features in interpretability is a
way to understand the role they serve within language models. For
an SAE, features are defined as weighted combinations of neurons
from specific layers of the model. Still, many methods have been
proposed for extracting features, such as transcoders, [3], cross-
coders [10], and Meta SAEs [1]. Feature characterization is critical
for any interpretability method which relies on regularly activating

patterns in text. Research in the field, as conducted in this work,
has long-term implications for interpretability.

There are many specific applications which would benefit from
improved feature identification. One common goal within inter-
pretability is to identify universal features across models. These
notions of universality require features identified for one model to
be compared to others. Through neuron-level comparisons of out-
put contexts, universal activations have been identified across GPT-
2 models on punctuation, dates, and medical terms [4]. We build on
prior, text-based methods through the creation of merged visualiza-
tions, allowing researchers to compare emergent semantic features
across models.

Other papers in interpretability that utilize SAE features do so
by identifying groups of features that work together. For exam-
ple, feature comparisons have led to the identification of features
where occlusion and over-splitting occur [7]. By unifying text con-
texts, our visualization aims to provide an increased understanding
of structure among features, aiding in identification of occlusion
and over-splitting.

Ultimately, understanding both the scope and context of feature
activations will be necessary to characterize the performance of in-
terpretability techniques. Current text views fail to identify or ag-
gregate shared contexts and scope. Our work explores methods for
characterizing features through visual aggregation.

3 METHODOLOGY

Our context visualizations are implemented with SpaCy, Hugging-
face, and Plotly. We additionally use Uniform Manifold Approxi-
mation and Projection (UMAP) and the Transformer Lens libraries
to visualize decoder features through dimensionality reduction. We
primarily used data provided by our collaborator, consisting of
intermediate-layer feature activations of a JumpReLU SAE, a cur-
rent state-of-the-art architecture [9]. These activations were on to-
kens from Google’s Gemma-9b model on a eWeb-100m dataset [8].

Two focus areas were identified. The first focus was to aggregate
part of speech tags for each feature to improve characterization of
the feature space. The second focus was to unify contexts through
syntactic methods.

3.1 Feature Navigation
Our tool presents users with a generated UMAP upon initiating the
tool. Viewing the feature space in this way allows users to navi-
gate the set of features based on the UMAP clusters, which may be
syntactically significant. This provides another layer of informa-
tion to users that could be used to discriminate between features of
potential interest. Users can also highlight a region of the UMAP
with their cursor to zoom into the area, allowing for more precise
choices between features on the plot. After selecting a feature from
the UMAP, users are able to view the contexts upon which the fea-
ture activates in multiple views. Having access to this more fine-
grained information about the features allows users to determine its
relevance and thus further navigate the dataset.



3.2 Feature Views
There are two primary views developed for the study. For each fea-
ture, the top 50 activations in their surrounding context sentences
are displayed. Our syntactic trees are created using SpaCy’s depen-
dency parser 1 2.
Joint. We present a joint view displaying the dependency trees
for each sentence in parallel (see Figure 1). The visualization de-
faults to omitting inactive tokens, although they may be re-enabled
through a checkbox at the top.

Figure 1: The joint view for this Gemma-9b Layer 11 feature visually demonstrates
feature activations over depending and on, followed by a noun phrase. The following
phrase (e.g. ”how you”) typically receives higher activations than the shared tokens,
which is not obvious from text contexts.

Merged. We also introduce a second view to display merged sen-
tences (see Figure 2). If a token sequence matched an existing
branch, it is subsumed into the branch and visually emphasized.
This view does not incorporate syntactic information. We pivoted
to this view after receiving feedback that other syntactic structures
were hard to understand.

Figure 2: The initial token activations I and usually are shared across many contexts.
The merged view for Gemma-9b Layer 11 feature displays a single tree representation
of the shared tokens, and notes recurring sequences in the text (”I usually use”).

4 RESEARCH FINDINGS

We were able to identify several features through our visualization
that could be easily identified based on shared activations. These
features are not easily visualized using previously existing tools and
primarily consisted of phrases with shared following contexts. De-
pending on [P] and I usually [VP] are two examples shown above;

1See [5] for details on the dependency parser used.
2The Gemma-9b features are available at the following dataset

Figure 3: For the users in our online study (n=5), the merged view achieved compara-
ble understanding of the feature and scope, but expended significantly more time and
effort.

emphatic do phrases, be clear, and too [adjP] are other examples
identified.

5 USER STUDIES

We conducted two user studies involving an expert researcher and
researchers from online interpretability communities.

We interviewed a researcher who specialized in SAE inter-
pretability. They mentioned that existing metrics for dealing with
high-dimensional space often did not characterize features well.
They identified the merged view as the most promising and indi-
cated that features in which contexts had longer syntactic regular-
ities would be crucial in a proof-of-concept for a syntactic visual-
ization.

The second study performed a head-to-head comparison of the
text baseline and merged visualization. Users were shown a fea-
ture through both methods, and asked to describe what the pattern
was across contexts. Users found the merged view less informa-
tive and intuitive than text contexts. Though these negative results
could be partially attributed to overlapping text in the merged view,
they additionally point towards the challenge of improving textual
comprehension through visualization techniques.

6 DISCUSSION

In this work, we have developed several methods for utilizing syn-
tactic information inherent to a feature’s activating contexts. We
have found that UMAP plots of the feature space cluster based on
part of speech distribution, and identified certain features which
are well-characterized by the visualizations developed. The re-
sults of the user study then raise the question: how might feature
with highly regular syntactic activations be systematically de-
termined? Syntax-based feature identification would enable re-
searchers to view a relevant subset of features, allowing them to
compare and group them more easily.

Our user study tested one prototype and did not evaluate any syn-
tactic views between feature contexts. Unfortunately, the primary
negative feedback we received was about text overlapping and dis-
play, which precluded observations on the significance of the visu-
alization overall. As seen in Figure 1, syntactic information is able
to disambiguate regular from irregular feature activations. Further
research might focus on how best to present syntactic regularities
for visualization and comparison.
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Eric Xia - Individual Contributions
Intellectual Contributions

As the primary investigator for the project, I drove ideation and
prototyping of the visualization. I initiated contact with the collabo-
rator, and wrote the initial proposal. I identified research questions
and the initial motivations for the project. I summarized survey
feedback and revised the user study according to the comments of
classmates. I provided feedback and guidance to Byron on working
with part of speech statistics. I was the primary contributor to many
sections of the final report. Finally, I identified future research di-
rections and open questions.

I also contributed to each of the weekly presentations and sur-
vey development. These included the initial in-class user study, the
revised interpretability researcher study, the week 2 presentation
examples, the week 3 presentation examples, the week 4 slides, the
week 5 joint examples and study reflection, the week 6 results, and
the final presentation.

Lastly, I was responsible for identifying and setting up meetings
with interested parties, including extended conversations with
Neuronpedia developers, and the user interview with Curt Tigges,
Head of Science at Decode Research.

Technical Contributions.
I wrote the majority of the syntactic processing and token align-

ment code, which is present in the ’graphs’ module referenced in
the final code repository. These included the following techni-
cal contributions: Converting the raw token and location data into
feature-specific dictionaries. Using the SpaCy dependency parser
to convert tokens into tagged words, and adding token activation
as an attribute. Using the SpaCy sentence tagger to extract rele-
vant context. Writing tree merge functions, including identifying
common nodes by lemma, counting total activations for each tree,
and a subtree matching algorithm. Caching feature parses, contexts
and activations to database to enable fast and frictionless retrieval.
Finally, I implemented various text processing utilities, which con-
verted between batch, sentence, and character indices.

I also created three main individual feature views with Plotly,
Javascript, and the HTML/Jinja2 templating language, which are
present in the ’templates’ and ’static’ folders in the final code repos-
itory. These front-end graph views started from LLM-generated
base visualizations and were heavily modified. The views were
served with Flask on a DigitalOcean Droplet virtual machine, and
served as the focus for the user study. My technical contributions
to the visualization included the following: introducing color gra-
dients for activation values. Modifying a recursive node and edge
display algorithm to prevent overlapping nodes. Adding the option
to hide inactive nodes. Creating a custom text tag which updated
dynamically with the node Part-of-Speech or text. Adding zoom
functionality to the joint and merged views. Finally, I implemented
the UMAP scatter navigation used in the class study.

Byron Butaney - Individual Contributions
Intellectual Contributions
My intellectual and practical contributions consisted of various
milestones that changed throughout the course of the project. My
intellectual contributions included meeting and ideating with Eric
and our collaborator on a weekly basis, coming up with ways to
create a UMAP that would provide more/different information
compared to the Neuronpedia UMAP, and working with Eric to
devise open research questions generated from our projects. I
also helped devise, structure, and deploy the student and expert
user studies. Finally, Eric and I met with Curt, the Neuronpedia
developer, to demonstrate our tool, gain more insight into the
problem space, and revise our user survey to be more suited to
online expert users.

Technical Contributions
One of my overarching contributions was to identify any highly
syntactic activating contexts for features. This included finding
features that had significant connections between contexts and
computing the part-of-speech distribution for every activating
context of every feature. Another overarching goal was to apply
dimensionality reduction techniques to the features in order to
highlight any clustering by both their part of speech distribution as
well as their most dominant part of speech. To visualize features by
most dominant part of speech, I first computed the most-dominant
part of speech for each feature based on the most frequently occur-
ring POS context in that feature’s list of contexts. I then labeled
each feature and applied a UMAP with these labels included. To
generate a visualization by part of speech distribution, I generated
a list where each feature was given a row of 11 values (one for each
possible POS). I then filled in these rows with the percentages that
each POS appeared in the feature’s activating contexts. UMAP-ing
this data allowed us to see more clear clusters. This UMAP served
as the basis for the UMAP used in our online tool. Since the data
processing took such a long time, I ran the preprocessing locally
on my computer over a couple of nights and saved the results as
.npy files to speed up our visualization tool. I worked with Eric
to design and conduct the three user studies, to create the final
presentation, and to write the final report.
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ABSTRACT

In this study, we explore the effects of genotype variability and
single-nucleotide polymorphisms (SNP) subsampling on the per-
formance and stability of uniform manifold approximation and pro-
jection (UMAP). UMAP is a dimensionality reduction technique
increasingly used in population genetics due to its computational
efficiency and ability to preserve local and, to an extent, global
structure. SNP selection and UMAP visualization artifacts may ob-
scure hidden genetic relationships and overemphasize differences
between clusters, which motivates the need to promote a clearer
understanding of these visualizations in the context of population
genomics. Using data from the 1000 Genomes Project consisting
of 3,450 individuals and more than 45,000 SNPs, our research re-
vealed the following key insights: 1. Cluster morphology stability:
cluster shapes are relatively stable across different subsamples; 2.
Point Variability: the position of points within clusters, on the other
hand, is highly variable; 3. Admixture challenges: cluster assign-
ments for admixed populations may not necessarily be consistent.
Such insights provide researchers with a deeper understanding of
UMAP’s behavior, ultimately supporting better-informed decisions
in genomics research visualization. Furthermore, we identify sev-
eral open research questions regarding the challenges of handling
admixed populations and the need for deeper analysis of UMAP’s
sensitivity to SNP subsampling.

Keywords: UMAP, SNP subsampling, Genotype variability, Pop-
ulation Genomics.

1 INTRODUCTION

Genotype matrices capture SNPs across individuals, encoding vari-
ations of a single nucleotide at specific positions in the DNA se-
quence. Dimensionality reduction techniques like principal com-
ponent analysis (PCA), t-distributed stochastic neighbor embedding
(t-SNE), and UMAP are widely used to visualize genotype data [1]
[2]. UMAP is increasingly used in genetic data analysis as it can
process large datasets with complex relationships efficiently.

Diaz-Papkovich et al. demonstrated the ability of UMAP to
uncover cryptic population structures and fine-scale relationships
between genetic variation, geography, and phenotypes in data sets
such as the 1000 Genomes Project and the UK Biobank [2]. How-
ever, while effective, UMAP’s findings can sometimes result in the
overinterpretation of inter-cluster and intra-cluster boundaries, re-
inforcing biologically deterministic conclusions and, in turn, harm-
ful narratives [4]. In reality, the boundaries between geographical
groups are often fluid and influenced by many factors [3].
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Large-scale genomic studies often rely on subsampled SNPs for
computational efficiency, but this sampling can introduce noise and
impact clustering results, sometimes leading to misleading inter-
pretations [6] [7]. By analyzing the effect of SNP subsampling,
cluster variability, and admixture populations, this research gives
researchers more insight into UMAP’s behavior and equips them
with the tools to produce more scientifically robust visualizations.

2 RELATED WORK

While UMAP has been implemented successfully on genotype data
to reveal subtle population structures, there is limited guidance on
how UMAP handles variability introduced by factors such as SNP
subsampling and admixture populations [2]. This gap in UMAP
understanding can make a reliable interpretation of visualizations
challenging, particularly when analyzing complex genetic relation-
ships or mixed populations.

Previous research has highlighted the impact of SNP subsam-
pling in genetic data and population structure analysis. Pook et
al. investigated imputation strategies, computational techniques to
infer missing genetic information in a dataset, to mitigate SNP as-
certainment bias [7]. Malomane et al. explored how SNP panel
selection biases genetic diversity studies [6]. Both studies highlight
the need for a more robust analysis when subsampling SNPs. This
study builds on their results by exploring SNP subsampling in the
context of UMAP visualizations and genotype variability. Unlike
previous studies, we specifically addressed cluster morphology sta-
bility, intracluster point stability, and admixture challenges.

3 METHODOLOGY

This study utilized data from the 1000 Genomes Project, which in-
cludes more than 45,000 SNPs across 3,450 individuals [1]. Our
implementation workflow included data preprocessing, dimension-
ality reduction using UMAP, and visualization. The preprocessing
entailed using several filters to reduce bias and ensure quality. Fil-
tering steps included removing variants with high correlation using
PLINK, excluding the highly variable HLA region, only retaining
variants with at least 5% frequency, and removing variants with ex-
cessive missing data.

To explore UMAP behavior and robustness, subsampling was
employed by randomly selecting percentages of SNPs (e.g., 10%,
50%, 75%) to test the stability and variability of the cluster. For
each of our visualizations, Procrustes alignment and the UMAP
axis scaling were implemented to align the UMAP embeddings.
Procrustes alignment is a mathematical technique that is widely ap-
plied in genomics to align two sets of points for meaningful com-
parison. In this context, Procrustes alignment helped align embed-
dings for an accurate comparison by ensuring consistent positioning
across samples using scaling, translation, rotation, and normaliza-
tion. For further analysis of cluster behavior, we visualized the pro-
jected and Procrustes aligned data using side-by-side comparisons,
animated plots, stacked plots, and density contour overlays.

4 RESULTS

Based on our exploration of UMAP’s performance and behavior,
we observed three crucial results that reveal some of its strengths



and weaknesses in the context of genetic data visualization.

Cluster Morphology is Stable

As seen from Figure 1, the cluster shapes remained relatively sta-
ble across the subsampling levels of 10%, 20%, 30%, 40%, and
50% relative to the original embedding. The density contour over-
lays highlight the concentration of points within clusters, indicating
consistent morphological behavior as the general structure of the
cluster is preserved for each subsample.

(a) Side-by-side UMAP plots using the original data (all SNPs)
and using incremental subsamples of SNPs. Cluster morphology
appears to be stable across 10%-50% subsamples.

(b) Side-by-side plots of the European population across the origi-
nal data and different 75% subsamples of SNPs with density contour
overlays. The density contour shapes appear to be fairly consistent
across subsamples.

Figure 1: Cluster morphology visualizations.

Intracluster Point Variability is Unstable

Figure 2 reveals significant variability in point positions within the
clusters. While the general regions of high density persisted, indi-
vidual point placement within clusters was highly variable due to
UMAP’s inherent stochasticity. This suggests that UMAP reliably
groups individuals into the same cluster shapes and regions, with
their exact positions within the cluster shifting between iterations.
The distribution of points corresponding to individuals can be quan-
tified with the density contour overlays seen in Figure 2.

Cluster Assignment may be Inconsistent

AMR cluster assignments were inconsistent between two different
75% SNP subsamples. In one subsample, the individual clustered
with the AMR group (American population). In the other, they
shifted to the AFR group (African population). We suspect this in-
dividual may be admixed, having genetic ancestry from both AMR
and AFR groups. Furthermore, randomizing UMAP’s initialization
based on changing the random state also influenced the cluster as-
signment for this admixed individual. These findings demonstrate

Figure 2: Point variability of three individuals across 50 subsamples
using 90% of SNPs. The points for each individual appear to be quite
scattered across the overall cluster.

how the specific SNPs included in each sample, UMAP’s sensitiv-
ity to input data, and its inherent stochasticity collectively influ-
ence cluster assignments. However, this cluster assignment varia-
tion only occurs for a very small percentage of individuals. In our
case, this was only true for one individual out of the 528 people in
the American population.

5 DISCUSSION AND CONCLUSIONS

This study helps genomic scientists better understand the robust-
ness and limitations of UMAP in visualizing genomic data. While
cluster morphology remained stable across subsamples, the vari-
ability of point positions and cluster assignment for admixed groups
highlights UMAP’s sensitivity to input data and inherent variabil-
ity. In fact, UMAP’s impact on clustering for certain populations is
consistent with previous research highlighting the role of initializa-
tion for preserving structure in UMAP [5].

The findings of this study provide practical guidance and key
insights for scientists implementing UMAP for genetic data analy-
sis. Our findings highlight the need for caution when interpreting
certain individual level placements. Moreover, such results under-
score the importance of careful SNP selection and imply that fil-
tering for key SNPs could help researchers focus their analysis on
more meaningful genetic variations. Our study raises several im-
portant open research questions. The distance between clusters in
UMAP embeddings is not necessarily meaningful and can be prone
to overinterpretation. More work needs to be done to convey this
information more effectively, such as displaying clusters in separate
panels or illustrating breaks in the underlying space. Furthermore,
admixed populations present a unique challenge for UMAP. Fur-
ther research could investigate the specific SNPs that drive cluster
divergence for mixed populations. More generally, one could an-
alyze how removing specific SNPs, such as those correlated with
hereditary, hormonal, or epigenetic data, affects UMAP visualiza-
tions. This analysis would help us better understand the genetic
underpinnings of clusters and what drives divergence. Lastly, fu-
ture research should focus on how UMAP’s performance compares
with other dimensionality reduction techniques like t-SNE and PCA
in the context of genetic data and subsampling. Ultimately, our
findings and conclusions contribute to the broader goal of enabling
more accurate and responsible use of UMAP in genomic studies.
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6 APPENDIX

(a) Individual 527 is placed in the AMR cluster for one 75% SNP subsam-
ple.

(b) Individual 527 is placed in the AFR cluster for a different 75% SNP
subsample.

Figure 3: Cluster assignment by SNP subsampling.

(a) Individual 527 is placed in the AMR cluster for one UMAP ran-
dom state value.

(b) Individual 527 is placed in the AFR cluster for a different UMAP ran-
dom state value.

Figure 4: Cluster assignment by UMAP random state.

Figures 3 and 4 both support our finding that cluster assignment may be inconsistent in some cases wfor certain individuals. Figure 3
highlights the effect of SNP subsampling while figure 4 demonstrates the impact of UMAP randomization.



7 JASMINE LIU INDIVIDUAL CONTRIBUTIONS

7.1 Intellectual Contributions
As the Primary Investigator, at the start of the project, I co-
developed the research framework by reviewing findings from prior
studies on population genetics and dimensionality reduction. Al-
though our research later pivoted, this helped establish a solid
foundation for our analysis of UMAP and genomic data. During
our pivot, I encouraged the transition from bootstrapping to sub-
sampling in order to better simulate realistic depictions of genetic
data. In terms of our results, I led the investigation into cluster
assignment inconsistencies for mixed populations, identifying that
both UMAP’s stochasticity and SNP subsampling significantly con-
tributed to variability in assignments. Throughout the project and
in collaboration with Musa, I provided critical feedback on analysis
results, helping to refine research questions and enhance the overall
scope of the project.

7.2 Practical Contributions
Many of my practical contributions involved writing Python scripts
for various tasks related to preprocessing and UMAP dimension-
ality reduction using subsampling techniques. For subsample im-
plementation, I developed scripts to randomly subsample SNPs and
compare UMAP embeddings across different sample sizes. I also
implemented UMAP algorithms on our filtered dataset to evaluate
point stability and cluster assignment consistency. Furthermore,
I wrote scripts to create stacked UMAP plots, which visualized
the embeddings of three individuals across 50 iterations and high-
lighted positional variability. Additionally, I generated UMAP plots
for the AMR population across two different 75% SNP subsamples
to illustrate the impact of subsampling on cluster assignments. I
also implemented Procrustes alignment to align and compare em-
beddings across iterations, ensuring consistent comparisons. To-
ward the end, I led the integration of our analysis and outputs into
the final paper and presentation materials, ensuring all figures were
legible, appropriately titled, and easily interpretable.

8 MUSA TAHIR INDIVIDUAL CONTRIBUTIONS

8.1 Intellectual Contributions
Generally, throughout the project, along with Jasmine, I regularly
reviewed our results and offered feedback to refine our interpreta-
tion and clarify the scope of our project. One specific example is
my contribution to analyzing and interpreting cluster morpholog-
ical stability across different SNP subsampling levels. For many
of our other UMAP visualizations, I proposed and developed the
idea of using density contour overlays to represent variation and
visualize point concentrations more mathematically, enhancing the
clarity of results. Additionally, I contributed to discussions on us-
ing cluster centroids to track the average position of points across
iterations or subsamples. This method could help quantify the sta-
bility of clusters, even when individual point positions vary due to
UMAP’s stochasticity. I also helped frame the project to emphasize
the practical implications of UMAP visualizations in genetic stud-
ies, guiding researchers toward more responsible interpretations.

8.2 Practical Contributions
In terms of practical contributions, I helped adjust and normalize
the UMAP axes in Python to ensure consistent visualizations across
embeddings for clear comparative analysis. I also implemented the
density contour plots to help illustrate cluster point visualizations
and quantify variability effectively. In addition, I implemented the
cluster morphology visualizations, which entailed generating and
refining the plots to assess the stability of UMAP embeddings under
different subsampling conditions. For these visualizations, I wrote
Python scripts to randomly subsample SNPs and generate UMAP
embeddings for different percentages of SNPs. Lastly, I was re-
sponsible for creating many of the slides for our progress reports
and outlining the key points to ensure clear communication of our
weekly progress.
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ABSTRACT

We present a novel synchronized and interactive 2D and 3D vi-
sualization framework for disease transmission, Disease Dynamics
Explorer (DDX). Traditional infectious disease data visualizations
often rely on a simple 2D data visualization, but this often requires
expert interpretation, making it less accessible to the general pub-
lic, policymakers, and healthcare professionals. Our proposed vi-
sualization addresses these limitations by offering an intuitive and
accessible way to explore disease dynamics. Using simulated data
of Lassa fever spread in Nigeria as a case study, we demonstrated
the effects of control measures on the disease spread with a syn-
chronized 2D bar plot and 3D animations, showing the population
in different states on a selected day. Evaluation results from both
experts and non-experts suggested that our approach improves in-
terpretability for disease-spread data visualizations.

Keywords: scientific visualization, disease transmission, interac-
tive 2D and 3D visualization, interactivity.

1 INTRODUCTION

Lassa fever is an infectious disease that is endemic in parts of West
Africa, and it continues to spread throughout other parts of the
world [4, 8]. The work of [3] introduced the first mathematical
model for Lassa fever with parameterized data from Nigeria, which
simulates daily population counts for various human and rodent
agent categories (e.g. infectious, susceptible, deceased), including
categories related to control measures (quarantine and isolation).

In this study, we developed a visualization of datasets generated
by this model, which helps researchers visually evaluate the effec-
tiveness of certain control measures without diving deep into the
details of the model or raw data. In collaboration with domain ex-
perts (including the first author from [3]), we designed and imple-
mented Disease Dynamics Explorer (DDX), a novel synchronized
and interactive 2D & 3D visualization framework of Lassa fever
data from their model.

Specifically, DDX is a 3D animated visualization of disease data
over a geographical region that is synchronized with a 2D time-
series view of corresponding variables, demonstrating the effects of
non-pharmacological control measures on disease spread. Through
user studies with domain experts and non-experts, we demonstrate
that DDX (1) provides a general technique for visualizing disease
data beyond existing simple tools (e.g., line charts), (2) facilitates
deeper exploration of disease data by scientists even beyond Lassa
fever, and (3) enables informed decision-making in disease man-
agement due to its improved interpretability. Because of this, our
work is not only significant in scientific visualization but also for
broader scientific research in disease spread.

1.1 Related Work
Modeling and visualizing Lassa fever spread is still a very new area
of research, but there is a wide literature on visualizing disease data.
Generally, simple 2D visualizations (e.g., Figure 1) have been com-
monly used for such purposes [2, 3]. These are often limited in the
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Figure 1: Traditional 2D line visualization of Lassa fever data as a
line graph.

amount of information they can convey, as disease data is often rep-
resented in very high dimensions, whereas 3D visualizations have
been shown to be more engaging and interpretable [10]. Addition-
ally, 3D visualizations are more useful in illustrating disease spread
over geographical regions [7, 12]. However, the simplicity of 2D
visualizations also has benefits in facilitating fast parsing and un-
derstanding of data.

We elect to combine both 2D and 3D in our approach with
DDX to bring the best of both worlds. There has been previous
work using a similar approach to address the complexity of high-
dimensional visualizations by developing hybrid 2D and 3D visual-
izations (e.g., visualization of network traffic data [9, 6, 11]), but to
our knowledge, this approach has not been applied to disease spread
data. DDX integrates this approach with interactive animations to
help users track disease transmission over time.

2 LASSA DISEASE SPREAD VISUALIZATION

2.1 Data
We visualized three datasets provided by our collaborator, Sambo
Dachollom. Each dataset, in CSV format, contained simulated data
describing the progression of Lassa fever over time. The datasets
consisted of daily population counts for various state variables for
humans and rodents; each row corresponds to a day and each col-
umn corresponds to the number of individuals/rodents in each state
on that day. In this project, we did not visualize the rodent variables
to emphasize the disease spread in the human population. We pre-
processed this data to generate random points in 2D space for each
3D agent in each state.

2.2 Implementation
We developed an interactive visualization of synchronized 2D and
3D data representations (see Figure 2) using ParaView [1] and
Trame [5]. The visualization consists of two visualization panels
with an interactive slider, offering a comprehensive view of the sim-
ulated Lassa fever dynamics.



Figure 2: Disease Dynamics Explorer (DDX) visualizing a Lassa fever dataset for a user-selected time step. On the left is the 3D component,
the top right is the 2D component, and the bottom right is the day-selection slider. In the 3D visualization, each avatar represents 10 humans.

3D Visualization: The left panel in Figure 2 shows 3D human-
shaped figures (each avatar representing 10 people) with distinct
colors corresponding to the state variables. The figures are arranged
over a geographical map of Nigeria, providing some spatial context
that the data represents. ParaView [1] was used to create vtk files for
the 3D visualization, which were then integrated into our applica-
tion using Trame [5]. Users can zoom in and out to explore regions
of interest. Note that for our data, the position of each avatar in
the map does not represent spatial information about the particular
avatar, but other datasets with spatial information should incorpo-
rate this in future studies.

2D Visualization and Slider: The upper section of the right
panel in Figure 2 contains a 2D bar plot, with each bar representing
the state variables. The lower section has a slider allowing users
to select a specific day to view. The 2D bar plot and the 3D visu-
alization are dynamically updated based on the selected day. This
enables users to interactively explore temporal changes in the data.

3 EVALUATION

The evaluation of DDX consisted of two phases:
Expert Feedback: We consulted with our collaborators (domain

experts), who expressed high satisfaction with the visualization.
The use of ParaView [1] and Trame [5] provided accessibility, as
the tool can be modified and repurposed easily by researchers. Ex-
perts appreciated the dynamic interactivity of the tool, particularly
the ability to explore data over time and interact with the spatial
aspects in the 3D visualization. While the current data used in this
study lacks spatial information for each agent, the experts empha-
sized the potential of the visualization tool to be extended for future
datasets. Their aims include (1) visualizing real data over larger ge-
ographical regions, where each individual agent is associated with
a specific location, and (2) expanding the model to simulate the dis-
ease dynamics across multiple regions. They described the tool as
a significant improvement from previous line chart visualizations,
with the potential to increase the efficiency of data analysis for dis-
ease spread researchers beyond the current Lassa fever data.

Non-Expert User Study: We conducted a study with 10 par-
ticipants unfamiliar with the dataset or domain. We compared
their experience with DDX (Figure 2) to a traditional 2D visual-
ization (Figure 1). From the quantitative analysis of the study re-
sult, we found three main results: (1) No significant difference in
the number of listed insights was found between the traditional 2D
(M = 3.80, SD = 1.03) and DDX (M = 3.60, SD = 0.97) (t = 0.45,

p = 0.66). (2) Participants spent much more time (in seconds) ex-
ploring DDX (M = 37.50, SD = 11.37) than the traditional 2D vi-
sualization (M = 14.70, SD = 6.98) (t = −5.41, p < 0.001). (3)
On a scale from 1 to 7, participants rated DDX much higher for
DDX (t =−9.19, p < 0.001), with a mean rating of M = 5.80 (SD
= 0.63) compared to M = 3.20 (SD = 0.63) for the traditional 2D
visualization.

With traditional 2D visualizations (Figure 1), participants pro-
vided detailed, descriptive insights about individual trajectories
(e.g., ”Very high number of exposed humans, decreased after 100
days”, ”Exposed but not quarantined humans increased after dead
humans increased”). However, they often struggled to contextual-
ize the data (e.g., ”I can tell you what each line means, but I’m not
sure what the figure represents”). In contrast, insights from DDX
focused more on overarching trends (e.g., ”Initially everyone was
exposed/infectious/dead, but the numbers decreased as susceptible
people increased” or ”Colors changed from red/black to yellow”).

4 CONCLUSION

We implemented DDX, a novel synchronized and interactive 2D
& 3D visualization of Lassa fever data with temporal tracking on
Paraview/Trame [1, 5], using simulated data generated by the pre-
viously developed model [3].

Our user study highlighted the key strengths and limitations of
DDX. While non-experts found it more intuitive and engaging, their
insights were less detailed compared to traditional 2D visualiza-
tions, suggesting that DDX provides a broader understanding of
disease progression but may require more features to aid in gran-
ular analysis. Furthermore, our qualitative feedback underscores
the importance of tailoring visualizations to the intended audience.
The current DDX may offer a compelling solution for users seeking
high-level trends. However, for detailed trajectory analysis, tradi-
tional methods or a hybrid approach may be preferable. Future iter-
ations could incorporate features like annotation tools or summary
overlays to enhance both the breadth and depth of analysis.

There is also a clear direction for future work involving the
dataset. Data features that would also improve the visualization in-
clude incorporating spatial data for agents in the model to make use
of the geographical map, and tracking transitions of each agent be-
tween states (e.g., from healthy to sick). Specifically, these would
make for a more intuitive use of the 3D space for visualization.
Future work should experiment with the generalizability and the
potential of DDX further by using other disease-spread data, espe-
cially those with spatial data.
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A INDIVIDUAL CONTRIBUTIONS

A.1 Kei
A.1.1 Intellectual Contributions
As the Primary Investigator, I developed the initial visualization
framework in collaboration with Simon. Although we eventually
had to make significant changes to the initial idea due to a misun-
derstanding of the existing dataset, it still served as a critical foun-
dation for this project. Throughout the project, and in collaboration
with Simon and Sambo, I provided initiative and guidance in shap-
ing the visualization tool to align with the project’s goals. Working
closely with Richard, I led the design and implementation of the
synchronized 2D and 3D visualization framework, ensuring its rel-
evance and usability by incorporating feedback from collaborators.
I facilitated regular discussions to refine key features, such as dy-
namic interactivity and time-dependent spatial representations.

A.1.2 Technical Contributions
Richard and I equally contributed to designing the entire visualiza-
tion framework while maintaining clear communication with our
collaborators. I initially implemented a traditional 2D line graph
using our dataset as a proof of concept. Subsequently, I developed
the visualization platform to display synchronized 2D and 3D vi-
sualizations, enabling seamless integration of the csv data and the
vtk files prepared by Richard. This implementation in Python using
Trame allowed users to view 2D and 3D visualizations interactively
based on input. Additionally, I oversaw the integration of ParaView
and Trame into the workflow, ensuring that the tool was accessi-
ble, customizable, and adaptable for future datasets. Richard and
I jointly contributed to conducting the user study, writing this ab-
stract, and preparing the final presentation. My technical contribu-
tions also involved addressing challenges in accurately representing
disease spread dynamics and fostering innovative and intuitive ap-
proaches to the visualization of complex datasets.

A.2 Richard
A.2.1 Intellectual Contributions
Kei and I both contributed to designing many research questions
for our collaborators and planning meetings in order to (more effi-
ciently) extract the information we needed to complete the project.
Near the beginning we both also helped narrow the scope of the
project goals based on the new information we had received. Since
my practical role was more involved with the static 3D visualization
on Paraview, I was also able to help come up with how to design
certain details for this component, such as how to place the hu-
man figures and overlay them with the geographical map. I helped
come up with metrics that would be helpful in recording for our
user study, and also noted that we may expect users to spend more
time on our visualization as it is more complex than the baseline.

A.2.2 Technical Contributions
Kei and I contributed to brainstorming on the design of the 3D vi-
sualization component. I then implemented the static 3D visual-
ization on Paraview. To do so, I also wrote some scripts for data
preprocessing. These scripts generalize to other generated datasets
from the Lassa disease model, allowing Sambo to continue visu-
alizing different datasets after the conclusion of the project. Once
the static 3D visualization was finalized, I designed an automated
pipeline to create the same vtk files I was initially creating directly
on Paraview. Using this, I wrote a Paraview Python script to au-
tomatically generate visualizations for every day in the simulation,
which is then passed into Kei’s Trame workflow. I contributed to
the user study by helping record input on the visualization from
some non-expert users.
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Figure 1: GEDI footprint of Amazon rainforest visualized in 3D platform.

ABSTRACT

NASA’s Global Ecosystem Dynamics Investigation (GEDI) mis-
sion captures detailed vertical profiles of Earth’s surface using Li-
dar [1]. These footprints capture complex vegetation structures and
terrain information [1]. Current state-of-the-art visualizations of
GEDI data include maps of scalar values and isolated waveform
plots [2], which lack spatial context and dimensionality to fully con-
vey ecological complexity to researchers [3]. In this research, I de-
veloped a three-dimensional visualization platform in Unity to rep-
resent raw GEDI Lidar waveforms as generalized cylinder meshes.
This tool integrates multiple ecological attributes and scalar values
into a cohesive and immersive 3D environment, allowing users to
“feel” the data. Initial user studies indicate that both researchers
and students can more rapidly interpret canopy structure and dis-
tinguish between biomes using the 3D visualization compared to
current two-dimensional methods. This work lays a foundation for
future comprehensive ecological analyses, with potential applica-
tions in wildlife conservation, fire spread modeling, and also inte-
gration of temporal data for trend recognition.

Keywords: Forest canopy, vegetation structure, generalized cylin-
der mesh.

1 INTRODUCTION

Ecology researchers utilize these intricate vertical canopy profiles
to understand forest structure, biodiversity, and ecosystem health
[7]. Traditionally, researchers visualized these data through two-
dimensional visualizations such as Cartesian maps of canopy height
and numeric metrics (e.g., RH-98) alongside isolated waveforms
[2, 7]. Although these methods have been useful, they possess crit-
ical limitations. 2D maps are limiting because they separate scalar
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values from their three-dimensional context, while examining in-
dividual waveforms lose spatial context, obscuring patterns within
the broader landscape [3, 4]. These constraints could hinder nu-
anced understanding of ecological characteristics like understand-
ing canopy habitats, vegetation layering, and habitat suitability for
wildlife.

To address these limitations, I created an immersive 3D platform
that spatially represents GEDI Lidar waveforms along with associ-
ated ecological metrics. By transitioning from 2D maps and dis-
jointed waveform plots to an integrated 3D environment, this ap-
proach may enable users to more intuitively identify ecological pat-
terns and interpret complex canopy structures [4]. In this paper, I
describe the methods used to create this 3D visualization, report on
user studies that indicated improved efficiency in ecological assess-
ments, and discuss the implications for future ecological research.

2 RELATED WORK

Previous efforts in Lidar visualization have largely focused on rep-
resenting canopy height metrics or derived point clouds in 2D maps
or static profiles [6]. While these methods enable advanced eco-
logical analysis, they often lack the intuitive spatial sense that a
true 3D environment can provide, similar to the navigable expe-
rience of Google Earth. Existing work on full-waveform Lidar
3D data usually emphasizes algorithmic or processing frameworks
rather than developing tools that enable true immersion [5]. This
presented platform builds on these foundations by converting raw
GEDI waveforms into generalized cylinder meshes, allowing re-
searchers and non-experts to navigate and dynamically filter com-
plex ecosystems interactively.

3 METHODOLOGY

Each waveform was converted into a generalized 3D mesh by re-
volving the vertical amplitude around a central axis, creating a
cylindrical form that reflects the waveform’s profile. Each gen-
eralized cylinder maintained a consistent integral for uniformity.
This approach preserves subtle structural information, which is of-
ten lost when waveforms are reduced to discrete point clouds or



scalar maps. Figure 2 depicts a raw waveform next to its 3D repre-
sentation.

In addition to raw waveform geometry, I integrated scalar at-
tributes derived from the data. For example, relative height metrics
(e.g., RH50, RH98) were encoded as surface textures on the cylin-
ders as color gradients, allowing users to understand mid-canopy
structures and potential wildlife habitats. The platform supports
other scalar values such as entropy or soil moisture to be mapped as
additional noise textures on the surface. This Unity platform also
allows for dynamic filtering, texture adjustments, and user naviga-
tion. Users can zoom, rotate, traverse, and scale the visualization.

Figure 2: 2D and 3D representation of the same waveform.

4 USER STUDY DESIGN AND RESULTS

I evaluated the effectiveness of the 3D visualization platform by
comparing it directly to traditional 2D methods in some tasks. Par-
ticipants performed four main tasks involving datasets from four
distinct biomes: desert, swamp, forest, and rainforest.

4.1 Attribute Ranking Task
Participants first used standard 2D waveform comparisons to rank
multiple ecological attributes (vegetation height, vegetation density,
vertical complexity, ground openness, and terrain variation) of each
biome. Although there is not necessarily an accuracy, the 3D envi-
ronment allowed users to quickly form more nuanced characteriza-
tions of the landscape, revealing subtle ecological differences more
intuitively. These results are shown in Figure 3. The 2D characteri-
zations featured either mostly uniform rankings (swamp and forest)
or mostly extreme rankings (rainforest and desert). However, users
described each biome with greater nuance when using 3D visualiza-
tions. The average completion time was 5:17.4 in 2D, and 3:16.1 in
3D, demonstrating more rapid characterization.

4.2 Biome Identification Task
Given subsets of nine 2D waveforms corresponding to a specific
biome, participants matched each subset to one biome. For environ-
ments with similar characteristics such as forest versus swamp, 2D
methods proved challenging. When using 3D visualizations, partic-
ipants maintained similar accuracy to the 2D baseline, albeit with
a minor decrease in one task. However, the 3D approach achieved
these results in less than half the time (1:27.3 in 2D versus 0:40.1
in 3D), demonstrating a significant improvement in efficiency. This
gain is likely due to the enhanced spatial context and more nuanced
structural differences that were not as readily apparent in 2D.

4.3 Study Limitations
It is important to note that the 3D visualizations were presented as
static images, which limited the inherent spatial depth and interac-
tivity of the 3D tool. This constraint prevented participants from
leveraging the platform’s interactive capabilities, likely affecting
both accuracy and efficiency of the user study.

Figure 3: Results of attribute ranking task.

Figure 4: Results of biome identification task.

4.4 Implications and Future Work
These results suggest that incorporating spatial context alongside
multidimensional attributes into one 3D platform can accelerate
ecological analysis and decision making, which is especially crit-
ical in areas such as wildfire modeling and wildlife conservation.
Moving forward, improving the user study to include interactive
exploration would likely enhance data interpretation, potentially
yielding improvements to both accuracy and efficiency.

5 APPLICATIONS AND FUTURE RESEARCH DIRECTIONS

The introduced 3D platform could be applied to a broad range of
ecological research challenges. For wildlife conservation, iden-
tifying mid-canopy habitats through RH metrics becomes more
straightforward in a 3D environment. Time-sensitive applications,
such as modeling fire spread, benefit from quicker analysis through
spatial representations of vegetation layering and density. Future
research could also consider web-based platforms for non-experts
in hopes of democratizing ecological data interpretation.

6 CONCLUSION

This research presents a 3D visualization platform that transforms
raw GEDI Lidar waveforms into interactive cylindrical representa-
tions, providing a new way to view and interpret ecosystem struc-
ture. While preliminary user studies suggest that 3D visualizations
may facilitate more nuanced and efficient interpretation compared
to standard 2D methods, these findings are not yet definitive. How-
ever, they point toward the potential value of immersive, context-
rich visualization techniques in improving ecological understand-
ing. As the platform is applied to a wider range of datasets and
tasks, it may become an important tool in supporting more informed
decision-making in ecology, climate modeling, and resource man-
agement.
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APPENDIX

These are the images of the 3D platform shown in the user study.

Figure 5: Sahara desert.

Figure 6: Amazon rainforest.

Figure 7: Temperate forest.

Figure 8: Swamp.



Subcircuit visualizations enhance neural network interpretability
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ABSTRACT

We develop a visualization tool for neural subnetworks, future de-
velopments of which could aid experts in scientific discovery. Our
tool visualizes the internal subcircuits responsible for specific tasks
at the parameter level, showing multiple subnetworks simultane-
ously along with their overlaps and evolution during training. We
evaluate our tool through comparison with existing visualization
methods and through a user study with domain experts. Addition-
ally, we contribute a modification of the continuous sparsification
algorithm for more stable subnetwork identification and introduce
two novel metrics for assessing identified subnetworks. Our work
may enhance the understanding of neural networks and future de-
velopments could support advances in neuroscience and cognitive
science.

Keywords: neural network interpretabiliy, subcircuit identifica-
tion, subcircuit visualization

1 INTRODUCTION

Advances in neural network interpretability present opportunities
for visualizing newly available information. Techniques for identi-
fying subnetworks responsible for specific subtasks have emerged,
such as training masks over parameters to isolate functionalities.
While promising, there is a need for better tools to visualize these
subcircuits. We develop parameter-level visualization methods that
display multiple subnetworks simultaneously, showing their over-
laps and evolution during training. Our approach represents the
network as a graph with nodes and edges for neurons and connec-
tions, using color mixing to depict overlapping subnetworks.

Developing advanced visualization methods for subnetwork
identification is significant for artificial intelligence and its interdis-
ciplinary applications. As neural networks become more complex
and are deployed in critical sectors, understanding their internal
workings becomes increasingly important [5]. Firstly, enhancing
interpretability addresses the “black box” challenge in deep learn-
ing. Visualizing subcircuits responsible for specific tasks allows re-
searchers to understand information processing and representation.
This transparency is crucial for diagnosing and mitigating biases,
understanding decision-making processes, and ensuring models be-
have as intended.

Secondly, future developments of this work could accelerate
scientific discovery by facilitating cross-disciplinary collaboration.
Mapping and visualizing subnetworks aligns with neuroscientific
methods of studying brain functionality [2]. By drawing parallels
between artificial neural networks and biological systems, this re-
search has the potential to contribute to neuroscience and cognitive
science [1]. For example, cognitive scientists could use these visu-
alization methods to identify that two diverse tasks are solved by
a network using a common or overlapping subnetwork, supporting
hypotheses about task relatedness.

*e-mail: samuel musker@brown.edu
†e-mail: aalok@brown.edu

Figure 1: The basic visualization due to Lepori [4]. Note that this
static visualization does not show parameter level information or
changes during training.

2 RELATED WORK

Prior work with ANNs has focused on feature-level and
representation-level explanations of function [3, 6, 7, 11]. How-
ever, recent advances in subnetwork identification have provided
new avenues for neural network interpretability. Lepori [4] intro-
duced NeuroSurgeon, a toolkit for identifying the subnetworks in-
volved in a neural network solving a particular part of a composite
task. This technique enables the extraction of subnetworks respon-
sible for specific functionalities, but does not provide a visualization
of subnetworks at the parameter level or a dynamic view of subnet-
work changes through training, limiting possible insights [10].

3 METHOD

We implement a visualization tool that improves upon existing ap-
proaches in four key ways: (1) visualizing subnetwork structure at
the parameter level, (2) showing multiple subnetworks simultane-
ously, (3) displaying overlaps between subnetworks through color
mixing, and (4) showing subnetwork evolution during training. Fi-
nally, we evaluate our tool through an insights-based approach us-
ing expert users.

To demonstrate the tool’s capabilities, we train a neural network
to classify synthetically generated shapes that are either circle, oval,
square, or rectangle, as shown in 2. The network architecture is a
fully-connected deep neural network with two hidden layers, each
of width 16, with a ReLu activation function in the hidden layers
and a softmax activation function on the output layer. The network
achieves a validation accuracy of 53% after 20 epochs of train-
ing compared to a baseline guessing rate of 25%. We implement
the continuous sparsification algorithm [9] to identify four subnet-
works, one for each shape.

4 RESULTS

Using our visualization tool, we derive several key insights about
neural network mechanisms. We observe that while most two-way
subnetwork overlaps maintain around 40% overlap, the circle-oval
and square-rectangle subnetwork pairs show 70-80% overlap by the



Figure 2: Example generated shapes classified by the network.

Figure 3: A final-epoch snapshot of our new subnetwork visualiza-
tion. Users can identify that the network does not learn an elegant
elongation-roundness solution by the absence of relevant overlaps,
and can diagnose subnetwork selection deficiencies of high subnet-
work turnover and “hanging” neurons. To view the demo in action,
the reader may access a video recording here.

end of training. This suggests the network treats circles/ovals and
squares/rectangles as paired categories rather than learning an ele-
gant solution based on roundness and elongation features.

Our visualization also revealed deficiencies in the subnetwork
identification algorithm, showing high turnover (10-20%) in identi-
fied weights between epochs and the presence of “hanging” neurons
with incomplete connections. To address these issues, we devel-
oped a modified algorithm that optimizes over three trailing snap-
shots, reducing weight turnover to 0-10%.

There is a deficit of good methods for evaluating subcircuits de-
livered by selection algorithms. [4] relies primarily on a method in
which the subcircuit is removed and the effect on in class versus out
of class performance is evaluated. However, this method could be
improved or augmented with other techniques.

We additionally contribute two novel metrics for evaluating sub-
circuits: a perturbation metric comparing the effects of perturbing
subnetwork versus random weights, and an activation prediction
metric using subnetwork masks to predict full network activations.
While these metrics show promise, they remain under development,
with the perturbation metric showing high variability and the acti-
vation prediction metric showing unexpectedly similar results be-

tween different subnetwwork selection algorithms.

Figure 4: Overlaps between the subnetworks using either single or
the trailing 3 snapshots. Overlaps of 70% suggest that the modified
algorithm may select meaningfully different subnetworks.

We conducted a user-study using an insight-based methodology
[8] to understand whether our method provided additional insights
not available before. Testing confirmed that users were able to more
confidently draw insights into the neural network than when using
a baseline replication of an existing visualization, for example:

“I am more confident [after viewing the new dynamic
parameter-level visualization, in contrast to my original
visualization] that a template is being applied at layer
0. This layer contains the highest overall density of con-
nections after pruning, and appears to have particular
neurons dedicated to individual shapes (i.e. neuron 4
and the final neuron dedicated to squares).”

– Michael Lepori (author of NeuroSurgeon [4])

5 OPEN RESEARCH DIRECTIONS

Two main research directions remain: improving subnetwork iden-
tification algorithms and developing better metrics for evaluating
selected subcircuits. First, addressing “hanging” neurons would
enhance subnetwork identification. This could be done post-hoc by
pruning disconnected neurons or finding connections that maintain
good performance. Alternatively, devising algorithms that search
only over connected circuits could solve this issue. Second, im-
proving evaluation metrics offers several paths. The perturbation
metric’s noise from excessive perturbation magnitude can be reme-
died. Re-perturbing differently during evaluation may average out
alterations that cause performance drops. The activation prediction
metric might not differentiate between subnetworks due to trivial
predictions, such as all weights activating or none. Constraining
the prediction output space may resolve this.

6 CONCLUSION

Our work introduces a novel visualization tool for neural subnet-
works, future developments of which could enable deeper under-
standing of network mechanisms and support scientific discovery.
Applied to a shape recognition task, it reveals insights about net-
work learning and diagnoses algorithmic deficiencies. We also
present a modified subnetwork identification algorithm and new
evaluation metrics. Open questions include enhancing subnetwork
identification algorithms to address “hanging” neurons and refining
the evaluation metrics.

ACKNOWLEDGEMENTS

The authors wish to thank Ellie Pavlick, Roman Feiman, and
Michael Lepori for their expert direction and collaborative involve-
ment in this work. The authors wish to thank David Laidlaw for his
support in the development of the project.



REFERENCES

[1] R. Cao and D. Yamins. Explanatory models in neuroscience:
Part 1 – taking mechanistic abstraction seriously. arXiv, Apr.
2021.

[2] S. Chung and L. F. Abbott. Neural population geometry:
An approach for understanding biological and artificial neu-
ral networks. Current opinion in neurobiology, 70:137–144,
2021.

[3] L. Gao, X. Liu, C. Liu, Y. Zhang, G. Fiumara, and P. D. Meo.
Key nodes identification in complex networks based on sub-
network feature extraction. Journal of King Saud University -
Computer and Information Sciences, 35(7):101631, 2023.

[4] M. A. Lepori, E. Pavlick, and T. Serre. Neurosurgeon: A
toolkit for subnetwork analysis, 2023.

[5] S. A. Matveev, I. V. Oseledets, E. S. Ponomarev, and A. V.
Chertkov. Overview of visualization methods for artificial
neural networks. Computational Mathematics and Mathemat-
ical Physics, 61(5):887–899, May 2021.

[6] A. Nasser, D. Hamad, and C. Nasr. Kernel pca as a visualiza-
tion tools for clusters identifications. In S. Kollias, A. Stafy-
lopatis, W. Duch, and E. Oja, editors, Artificial Neural Net-
works – ICANN 2006, pages 321–329, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[7] C. Olah, L. Schubert, and A. Mordvintsev. Feature visualiza-
tion. Distill, 2017.

[8] P. Saraiya, C. North, and K. Duca. An insight-based method-
ology for evaluating bioinformatics visualizations. IEEE
transactions on visualization and computer graphics, 11:443–
56, 07 2005.

[9] P. Savarese, H. Silva, and M. Maire. Winning the lottery with
continuous sparsification, 2021.

[10] W. Schneider, W. Eckstein, and C. T. Steger. Real-time visual-
ization of interactive parameter changes in image processing
systems. In G. G. Grinstein and R. F. Erbacher, editors, Visual
Data Exploration and Analysis IV, volume 3017, pages 286
– 295. International Society for Optics and Photonics, SPIE,
1997.

[11] J. Vig. A multiscale visualization of attention in the trans-
former model. CoRR, abs/1906.05714, 2019.



CONTRIBUTIONS

Sam Musker
Initial project conceptualization. Proposal writing. Consultation
with expert users. Software engineering. Qualitative analysis of
results. Report writing.

Aalok Sathe
Consultation with expert users. Software engineering assistance.
Qualitative analysis of results. Report writing and progress docu-
mentation.



Applying High-Resolution Q-Space MRI to Map the Mouse Atria
Thais Del Rosario Hernandez* Richard Gilbert, MD†
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Figure 1: 3D tractography reconstruction of mouse hearts, visualized using ParaView, with a focus on atrial architecture. The nodes outlined in
black represent the workflow and software used to process DICOM files. Alternative software and/or steps are shown without an outline. Ao:
Aorta; LA: left atrium; RA: right atrium

ABSTRACT

Cardiac structure is widely studied due to the multitude of patholo-
gies that can impact heart function and the severity of their symp-
toms. However, the atria remain an understudied region of the heart
due to their thin walls and architectural complexity. To address this
gap, we processed and visualized mouse heart imaging data ob-
tained with high geometric resolution Q-space MRI (QSI) to assess
the myoarchitectural organization of the atria. We documented the
macro- and micro-structure of the atria in 10 mouse hearts, high-
lighting inter-sample patterns and morphological landmarks. Our
work provides a necessary step for the construction of an architec-
tural atlas of the atria in mammals.

Keywords: Cardiovascular disease, tractography, cardiac struc-
ture.

1 INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death
globally[1]. Arrhythmia is a common complication of CVD and
refers to irregular heart rhythms that are the result of malfunction-
ing electrical pathways in the heart. The heart is anatomically di-
vided into four chambers: the two upper chambers, known as the
atria, and the two lower chambers, known as the ventricles. Elec-
trical signals must travel through these chambers in a highly coor-
dinated manner for the heart to function properly. Atrial fibrillation
(AF) is the most prevalent type of arrhythmia, affecting more than
33 million people worldwide with a range of complications such
as palpitations, fatigue, stroke, and even heart failure. There is a
growing need to develop new diagnostic and therapeutic strategies
for this widespread and often debilitating condition.

*e-mail: thais del rosario hernandez@brown.edu
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Fiber orientation — how the heart’s muscle fibers are aligned
— plays a critical role in how electrical signals propagate through
the heart. In the ventricles, the orientation of these fibers has been
well studied [2]. However, the atria, which are critical regions in
the aberrant signaling characteristic of AF, have not been studied as
extensively. The atrial walls are much thinner than the ventricular
walls, and the complexity of fiber organization in the atria further
complicates the use of imaging techniques that do not have enough
resolution to capture their microstructure.

To address this gap, we investigated atrial architecture using a ro-
dent model system. Mice and rats are widely used in cardiovascular
research due to their physiological similarities to humans [3, 4, 5];
Additionally, their ease of handling and relatively short lifespans al-
low for rapid study of disease progression under both baseline and
genetically altered conditions. The primary data for this project
was obtained from excised mouse hearts, which were imaged using
high-resolution Q-space MRI (QSI). This technique allows for de-
tailed mapping of the fiber orientations in small structures such as
the atria. This project aims to advance our understanding of atrial
architecture and its role in atrial fibrillation, with the potential to
apply our findings to other mammalian samples and eventually the
human heart.

2 RELATED WORK

Tractography is a powerful imaging technique that allows us to vi-
sualize 3D reconstructions of tissue fibers. It is primarily used to in-
vestigate brain structure - specifically, the connectivity and integrity
of neural pathways across different regions of the brain in different
disease states. While tractography has been used to study cardiac
structure, several studies focusing on atrial architecture highlight
the limitations of low-resolution imaging modalities [6, 7, 8]. Fur-
thermore, reconstruction software and tractography visualization
tools are tailored for brain data; they often include references and
default parameters optimized for white matter data analysis, which
is markedly different from the ever-moving cardiac muscle. QSI is
highly sensitive to microstructural changes, allowing visualization



of fiber tracts at a resolution fine enough to capture changes oc-
curring at the scale of individual myocytes in rodent models. This
level of detail is essential for studying the intricate architecture of
the atria and provides a means to investigate how electrical signals
propagate through the heart at a cellular level.

3 APPROACH

3.1 Data processing
Our selected processing steps are as follows: DICOM files were
converted to Nifti format using the Python package dicom2nifti [9].
The bvals, bvec and b-table files were extracted from the 2dseq
files using DSI Studio [10]. Mask files were generated using the
DICOM files as input in Diffusion Toolkit [11]. Nifti files and
masks were used for track reconstruction in DSI Studio. Finally,
the tracks were exported into .trk format and converted into .vtk
format using TrackVis for visualization in ParaView [11, 12]. In
addition to these software, we tested other tools - namely Python
package nilearn for mask generation, dcm2niix for DICOM to Nifti
file conversion, and Quantitative Imaging Toolkit (QIT) for track
reconstruction [13, 14, 15]. The alternative software and their cor-
responding steps are shown in Figure 1. The parameters for each
tool used in the data processing workflow were adjusted accord-
ing to documentation recommendations and qualitative evaluation
of the reconstructed tractography.

3.2 Macrostructural validation
In order to validate the workflow, software, and parameters chosen
for data processing, we evaluated the ventricular structure of the
mouse heart (Figure 4). The ventricles exhibit a distinct helical
arrangement of fibers previously documented in both rodent and
human studies [2].

4 RESULTS

The four heart chambers are connected by four valves that regulate
the flow of blood from upper chambers down to the lower cham-
bers, and then back up to the aorta and the pulmonary artery. These
bridging structures are key to identifying the beginning of the atrial
chambers. We generated coronal and sagittal slices of the heart to
delineate the gross morphology of the atrial chambers and segment
the fibers comprising the outer walls, respectively. The tracks for
the outer walls of the atria could then be independently segmented,
revealing a thin yet coherent layer of fibers that do not follow the
directionality of the ventricular fibers (Figure 2). Key differences
between the right and left atrium are noted in the following subsec-
tions.

Right Atrium The right atrium (RA) is located closer to the top
of the heart and its outer wall protrudes mainly vertically away from
the thicker ventricular wall. The shape of its outer wall is rounded
and the fibers are not externally connected to the ventricular walls.
Although the atrioventricular transition can be clearly visualized
with a sagittal view, the whole chamber is best visualized using a
3D view due to its ”folded” structure.

Left Atrium The left atrium (LA) is larger than the RA, with
a more elongated shape directed toward the apex of the heart. In
our experience, the LA is more difficult to differentiate from the
left ventricle due to its proximity to the aorta and its corresponding
aortic valve, which can be mistaken for the marker between the left
ventricle and LA: the mitral valve.

Previous work using tractography to visualize cardiac structure
in pigs, mice, rats, and rabbits have only focused on ventricular
structure [16, 17, 18, 19]. A recent paper investigated and visual-
ized the LA in goat hearts using DTI and found no common fiber
pattern across samples, reporting instead a broad range of structures
[7] (Figure 3). The authors emphasized the limitations of the resolu-
tion used for their imaging. Consequently, although goat hearts are

Figure 2: Coronal (left) and sagittal (right) views of the segmented
outer walls of the RA (top) and the LA (bottom).

Figure 3: Comparison of the structural coherence obtained using DTI
and QSI. (Top) Tractography reconstruction of the LA from 3 goats
using DTI, adapted from Kamali et al. (2023). (Bottom) Tractography
reconstruction of the LA from 3 mice using QSI.

markedly larger than mouse hearts, the resolution was not sufficient
to capture enough consistency in the goat model to characterize the
LA. In our study we observed consistent patterning of the fibers
in both the left and right atrium, and we were able to validate our
findings with histology references.

5 CONCLUSION

We present a series of annotated tractography visualizations gener-
ated with parameters tailored for cardiac reconstruction obtained
using high-resolution QSI data. We highlight the similarities in
atrial structure and organization in the context of other heart re-
gions, as well as some key differences between the RA and the LA.
Our current work provides an essential step to generate a reference
for comparison across rodent cardiac models and, eventually, hu-
man data.
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6 APPENDIX

6.1 Macrostructural validation using ventricular pat-
terns

Figure 4: ParaView visualization of the mouse heart showing the
characteristic helical structure of the ventricles. LV: left ventricle; RV:
right ventricle.
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ABSTRACT

Cancer regimens guide patients through chemotherapy, but existing
visualizations lack automation, personalization, and clarity. Re-
giViz, a web-based tool, automates cancer regimen visualization
using a fine-tuned large language model (LLM) trained on the
HemOnc database. It features intuitive visual encodings for drug
schedules, types, and treatment timelines, with holiday-aware ad-
justments and patient-doctor feedback integration. User studies
show RegiViz improves efficiency and clarity over existing regi-
men visualizations such as ChemoExperts [1]. RegiViz is available
at https://yang2888.github.io/Regimen-demo/.

Keywords: Cancer regimens, oncology, large language models,
human-computer interaction, evaluation.

1 INTRODUCTION

Cancer regimens consist of various treatment medications, respec-
tive doses, routes of administration, and treatment dates. Regimens
typically consist of cycles of fixed-length drug sequences. Visual-
izing regimens is one of several ways that oncologists can guide
patients through a stressful treatment process. A recent study indi-
cated a gap in patient needs and patient information on chemother-
apy side effects, duration of treatment, and general ability to com-
municate with doctors on miscellaneous aspects of treatment, such
as supportive care or other contacts [2]. Our visualization seeks to
better address these aspects of patient care through visual encoding
such as color, shape, and text, which we evaluate in a user study.

In addition, our collaborators identified that oncologists operate
within tight timelines in the clinic, making conventional manual
methods of visualizing regimens difficult to use. These collabora-
tors have maintained an extensive database of chemotherapy regi-
mens through HemOnc.org [5]. Leveraging an LLM finetuned on
Hemonc’s database, our tool enables rapid, automated synthesis of
cancer regimens from raw text towards in-clinic deployment.

2 RELATED WORK

The HemOnc knowledgebase is an invaluable oncology reference
for clinicians, offering detailed insights into therapy type, timing,
dosage, and cycle length/timing (Figure 1a) [5]. Its backend data
tables serve as a great example of structured regimen data.

Dr. Warner of HemOnc has previously automatically synthe-
sized regimen networks representing guidelines founded in ran-
domized clinical trial (RCT) data [4]. They used color, size, and
opacity of nodes to represent RCT comparisons of drug regimens,
inspiring our automatic synthesis and visual encoding methods.

Conventional regimen visualizations, such as figure 1b provided
by our collaborators, are handcrafted or hand-drawn and often pre-
printed, which requires time or preparation. Further, these visual-
izations may lack encodings such as color or shape variations, and
less flexibly specify fixed cycle dates rather than calendar dates.

*e-mail: yang xiang@brown.edu
†e-mail: bleahey@cs.brown.edu

(a) HemOnc representation in structured
text form, lacking visual encodings [5]

(b) Hand-crafted visualization lacking
color encodings and calendar dates

Figure 1: Comparison of baseline regimen representations

Figure 2: RegiViz contains color, shape, and opacity encoding on a real time axis

ChemoExperts, a freely available online platform, is the state-
of-the-art regimen visualizer. It enables manual entry of drug, reg-
imen, radiation, doctor visits, and other life events into an im-
portable calendar-based representation [1]. It also encodes drug
routes and treatment locations, providing inspiration for our design.

3 METHODOLOGY

3.1 Visualization Methods
We employ D3.js and React to generate regimen visualizations on a
webpage. The visualization form, shown in figure 2, represents key
clinical elements identified in our introduction.

The horizontal axis represents the treatment timeline, including
cycle and calendar dates, cycle start dates, and cycle length. To-
day’s date is colored red. Since patients cannot go to the clinic on
holidays and weekends, which are colored pink, we account for this
uncertainty through drug “afterimages”. Afterimages are transpar-
ent copies of the drug on the nearest date the clinic is open.

Other color encodings are used to distinguish drug type.
Chemotherapy, generally having more side effects and stigma,
is visualized in the red/orange spectrum. Meanwhile, non-
chemotherapy drugs are in the blue-green range. In addition, drug
shapes specify the route of administration of the drug, such as intra-
venous (IV) or oral (PO). Additional drug and regimen information
such as drug dose and treatment phase may be found in the details
tab on the right side.

Other novel visual elements include patient/doctor feedback,
which may be inputted using the “Edit” button. This patient-doctor
communication functionality is not present in any other existing
tools to our knowledge.

3.2 Language Model and Finetuning
Since there is no widely accepted cancer regimen syntax, physi-
cians’ descriptions of regimens can widely vary. We use a LLM to



take this variable input and create visualizations based on inputted
properties: dose, dose unit, route, time sequence, cycle of regimen,
cycle length, cycle unit.

While convenient, LLMs may hallucinate as shown in 4. Thus,
we fine-tuned to improve generation accuracy. We created a dataset
with 330 regimens: 40 regimen-input pairs, and 290 paper-regimen
pairs. User inputs represent potential doctor inputs, collected from
our collaborators and existing HemOnc data. Papers are linked
from regimen sources in our data, and their content is extracted as
text. We used the GPT-4o-2024-08-06 model for finetuning.

3.3 Evaluation Methods
3.3.1 User Study
We performed a study of one clinical expert and two post-doc re-
searchers. Participants generated a regimen in 10 minutes or less
with ChemoExperts and RegiViz, recording time from regimen
name entry to completion. Then, they evaluated the information
accuracy and visualization effectiveness through a survey.

Literature on Empirical Studies on Information Visualization
specifies a framework for evaluating communication through visu-
alization [3]. We applied this framework when constructing ques-
tions to assess the efficiency and visualization effectiveness of our
tool.

Clinical effectiveness and accuracy was also evaluated based on
criteria from existing user studies and collaborator input [2]. For
example, when assessing efficiency, we chose 5 and 10 minutes as
our threshold—collaborators specified this as the typical time with
a patient in clinic.

3.3.2 Metrics
We evaluate the performance of our LLM with accuracy, precision
and recall. Low precision indicates incorrectly identified drugs, and
low recall indicates missing drugs. Categorical properties like dose
and route are represented by accuracy.

4 RESULTS

4.1 User Study Results
All participants were able to create regimens with both tools. Our
tool proved more efficient, with 2/3 users generating regimens in
< 5 mins and 1/3 in 5-10 mins on our tool, while the baseline tool
took > 10 mins for 2/3 users and 5-10 mins for 1/3 users.

Among the three users, visual appeal compared to the baseline
was rated 3.67/5 on average. Color usage was rated 2 by the first
user, but an average 4.5/5 by the remaining users with access to the
color legend. Specific comparisons of visual elements and effec-
tiveness can be found in figure 3.

4.2 Experimental Results
Since this is the first tool for LLM generation of regimen represen-
tations, we compare our fine-tuned model to the base GPT-4o.

Our results show that both models perform well, producing cor-
rect generations on user input, which is relatively short and con-
tains little redundant info. Meanwhile, drug identification perfor-
mance declines on paper input. For example, the LLM may identify
‘placebo’ as a drug used in the regimen.

Our fine-tuned model performs better across nearly all metrics.
It enhances the accuracy of sequence timing and cycle length de-
termination. However, it has a worse recall for the paper dataset,
possibly over-fitting to the training set and ignoring certain info.

5 DISCUSSION + CONCLUSIONS

5.1 Conclusions
We presented the first automated cancer regimen visualization tool.
We demonstrated more clinically accurate, efficient, and patient-
friendly interface for regimen visualization. Based on our user

Figure 3: Comparison of Baseline and RegiViz shows that our tool was generally more
accurate and informative than the baseline. RegiViz notably outperformed the baseline
in accuracy of treatment cycles and timing, as well as informativeness of chemotherapy
duration and asking practitioners questions.

Metric Dataset Baseline (GPT-4o) Fine-tuned GPT-4o
Precision Input-dataset 100% 100%

Paper-dataset 45.57% 58.13%
Recall Input-dataset 94.87% 97.44%

Paper-dataset 78.15% 76.47%

Table 1: Accuracy of identifying correct drugs. The finetuned model improves perfor-
mance in precision for both datasets but lowers recall for the paper-dataset.

Accuracy Dose Route Timing seq Cycle UB Cycle Length
Baseline 97.29% 86.49% 64.86% 83.33% 58.33%
Finetuned 97.37% 94.74% 83.78% 100% 91.67%

Table 2: Accuracy for dose, route, timing seq, cycle ub, cycle length of 2 models.
Both models perform well in identifying dose, route. Finetuned model improves tim-
ing seq and cycle length greatly.

study results, this tool will help fill an important gap in cancer pa-
tient care delivery by helping patients understand complex drug reg-
imens. Finally, we proposed fine-tuning as a method of improving
accuracy of automatic generation, backed by promising experimen-
tal results.

5.2 Open Problems

Through survey feedback and discussion with our collaborators, we
have identified several open problems.

Evaluating our LLM with safety-specific metrics can demon-
strate greater in-clinic utility.

Incorporating solid cancer training data and visual encodings
would increase the applicability of browser tools. Elements like
radiation cleanly fit into drug route representations, while more
volatile treatments (e.g. surgery) mandate design changes.

Encoding treatment duration is novel and clinically applicable.
For example, some IV treatments can stretch across multiple days,
surprising patients.

User study results demonstrate room for UI/UX improvements,
visual appeal, and display of clinical information like side effects
and efficacy of chemotherapy. Encoding and automatic synthesis
of clinical factors may improve the personalization of our tool.

In-clinic cancer patient experience studies are a promising direc-
tion for visualization and informativeness evaluation.
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