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Figure 1: The classic Swiss Roll dataset. Data lies on a manifold of
low intrinsic dimensionality compared to its ambient space.

ABSTRACT

High-Dimensional clustering is a relatively uncommon clustering
technique because, among other reason, it is difficult to visually an-
alyze the resulting clusters. To aid in this visualization problem,
we present Cluster-Vis, an interactive web application to support
the visual analysis of clustering that has been performed in a high-
dimensional space. To evaluate Cluster-Vis, we present a case study
as well as a small user study. Our preliminary studies suggest that
an interface with multiple plots and conveniently located documen-
tation in Cluster-Vis increases user execution time and confidence
for this analysis task, in comparison to an existing tool.

Keywords: High dimensional, clustering, visual analysis.

1 INTRODUCTION

A common practice when clustering is to first reduce the dimen-
sionality of the dataset before generating clsuters. This technique
is usually effective and increases the speed at which clusters are
calculated. Additionally, by reducing the dataset to two or three di-
mensions, the clusters can be easily visually analyzed by plotting
datapoints in this low-dimensional space and colored by cluster la-
bel. However, this introduces the problem of being difficult to vi-
sually analyze since there may be no meaningful ways to plot the
data in a low-dimensional space.

As a motivating example for why we may want to cluster data in
a high-dimensional space, we can consider the classic Swiss Roll
dataset seen in Figure 1. In this three dimensional ambient space,
the two illustrated points appear relatively close as measured by
their Euclidean distance; however, it is clear that the distance along
the manifold, shown on the right, is a much more representative dis-
tance metric and measures the two points as quite far apart. Note
that if the dimensionality were to be reduced to a 2D space, this spi-
raling relationship containing this distance would be lost. By using
clustering algorithms that are compatible with high-dimensional
data, this is one type of relationship that can be preserved.

To aid in the visual analysis of clustering that has been performed
with such techniques, we designed and implemented Cluster-Vis, a
Plotly Dash web application written in Python. Cluster-Vis serves
as a dashboard where users can upload clustering results and ana-
lyze them via six different interactive plots and figures. To illustrate
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Figure 2: Heatmap from Clustergrammer

a usage scenario, we contribute the case study that guided the de-
sign and development of Cluster-Vis as well as a small user study
comparing Cluster-Vis to an alternative tool.

2 RELATED WORK

Though none have been cemented as an industry-standard, Cluster-
Vis is not the first tool designed to help with this task. Three com-
parable tools are ClustVis [6], Clustergrammer [2], and Clusterplot
[5]. The main feature of both of ClustVis and Clustergrammer is a
heatmap which shows normalized feature values for each entry in
the dataset. An example heatmap from Clustergrammer can be seen
in Figure 2.

Cluster-Vis also features a heatmap that shows a similar repre-
sentation of the data. Cluster-Vis differs in that it offers multiple
other plots and figures. This layout allow users to make observa-
tions using a plot of their choosing and verify their observations
using other features.

Other related tools exist but are less comparable for reasons in-
cluding that they don’t support high-dimensional clustering [1], are
purposed for comparing clustering results [4], or only support time
series data [8, 7].

3 CLUSTER-VIS

Cluster-Vis was implemented in Python using the Plotly Dash
framework. Aiming to present users with multiple options for ana-
lyzing their data, the main layout consists of a list of plots that users
can toggle on and off to render them on the page. The list is broken
up into plots that are more helpful for analyzing and exploring the
dataset, and others that are more useful for clustering analysis. In
addition to the feature expression heatmap present in comparable
tools, Cluster-Vis includes a Parallel Coordinates plot (Figure 3) , a
scatter plot matrix and two Embedding Plots.

To upload different results, users can choose to place a CSV in
the local directory where Cluster-Vis expects data to be stored, or
CSV’s can be directly uploaded via the Cluster-Vis interface.

4 EVALUATION & RESULTS

To evaluate Cluster-Vis, we first contribute a case study to illustrate
ausage scenario and then present quantitative and qualitative results
from a small user study.



Figure 3: Parallel Coordinates plot from Cluster-Vis

4.1 Case Study

A collaboration with Alex Hrsuka and Cole Foster, from Brown
University’s Wong Lab and LEMS Lab respectively, guided the de-
velopment of Cluster-Vis and also illustrates a usage scenario.

Foster was interested in developing a clustering algorithm
that computed clusters given the dataset’s Relative Neighborhood
Graph. Hruska, from the mechanobiology field, had partnered with
Foster and was looking to generate clusters for a dataset describing
physical and motility data for 100,000 breast cancer cells in various
experimental conditions.

When testing novel algorithms and obtaining a potentially
promising result, Foster uploaded them to Cluster-Vis where
Hruska was able to perform a more in-depth analysis. Using
Cluster-Vis’s heatmap, Hruska was able to verify that the clusters
produced reasonable results; however, using the Parallel Coordi-
nates Plot and Scatter Plot Matrix, Hruska realized the dataset was
very imbalanced and would require filtering for desirable results.

Due to time constraints, Foster was unable to finish the devel-
opment of Relative Neighbor Clustering; however, he was able
to produce desirable clustering results for Hruska. To do so, he
first reduced the dimensionality of the dataset to 5 dimensions
and generated clusters using a common algorithm that supports
high-dimensional clustering, DBSCAN. With these results, Hruska
was able to use the Cluster-Vis to verify the clustering results
made sense for grouping cells by their properties and the exper-
imental conditions they were subjected to. Hruska will include
these results in his forthcoming publication: “Programming cel-
lular mechanophenotype and motility in composite 3D nanofiber
hydrogels”.

4.2 User Study

We conducted a user study using the same clustering results that
were produced above. We surveyed 4 individuals, all of which are
members of Brown University’s Wong Lab and have a basic under-
standing of the dataset. After familiarizing themselves with both
interfaces, we had users complete two similar tasks in both Cluster-
Vis and Clustergrammer [2]. After each task, users would rate their
perceived effort and demand. At the end of the survey, users pro-
vided qualitative responses about their experiences.

4.2.1 Quantitative Results

Varied slightly for each application, the tasks users were asked to
complete were as follows:

1. Identify all clusters where you would find an oblong/circular
shape cell.

2. Identify experimental conditions that occur in only one/two
clusters.

Table 1 summarizes the users’ performances on both tasks.
Loosely based on the NASA-TLX Usability Study [3], after
completing each task in each application, users measured the us-
ability of the application by rating their perceived Mental Effort,
Physical Demand, Temporal Demand, Overall Performance, Over-
all Effort, and Frustration Level. Results across each task were sim-
ilar so we present the results averaged by application in Figure 4.

Table 1: User Study Task Performance

Cluster-Vis Clustergrammer

Task Accuracy | Time (minutes) | Accuracy | Time (minutes)
Cell Shape ID 0.75 210 0.75 3.10
Experimental Condition ID 0.5 3.00 0.5 4.37

B cCluster-vis [l Clustergrammer
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Figure 4: Perceived user demand and effort averaged over each task.

4.2.2 Qualitative Results

In the qualitative portions of the survey, users reported that their
experience with Cluster-Vis was more enjoyable and that the mul-
titude of plots made it easy to draw conclusions. Generally, they
concluded that Clustergrammer was harder to learn but after some
interaction, saw value in the advanced group-by features.

5 DiscussIiON

As seen in Table 1, users were able to perform both tasks faster in
Cluster-Vis than in Clustergrammer; however, with equal accuracy.
We believe the low accuracy in the first task is due to a misunder-
standing of the question. The task asked users to write all valid
clusters; however, two of the users only noted 1. For the second
task, in both applications, half of the users reported a reasonable,
though not the best, answer.

From Figure 4, the results show that users perceived their ef-
fort and demand to be slightly less using Cluster-Vis than while
using Clustergrammer. Although it is promising that Cluster-Vis
was rated as equally or more usable for every question, with only
4 participants, these marginal differences could very likely be due
to randomness. The biggest improvement that Cluster-Vis offers is
with Overall Performance. This difference shows that users were
more confident in their answers using Cluster-Vis than with Clus-
tergrammer. This suggests that by being able to verify observations
with other plots, users are more confident in their interpretations.

For future work, it is suggested that the user study is more
widely distributed to achieve statistical significance. To achieve
the suggested benefits of both Clustergrammer and Cluster-Vis, fu-
ture work should also look into incorporating Clustergrammer’s ad-
vanced heatmap features in Cluster-Vis.

6 CONCLUSION

Based on the evaluation results, it appears that with a multitude of
plot options, users are able to more quickly, confidently, and less
effortlessly analyze high-dimensional clustering results than with
the heatmap in Clustergrammer.
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= Figure 1: An example of the Cluster-Vis interface

ABSTRACT

In this paper we present Cluster-Vis, a novel visualization tool for
visualizing data clustered in high-dimensional spaces. Cluster-Vis
is a plotly-based dash web app written in python to provide mul-
tiple visualizations of high-dimensional clusterings for various sci-
entific applications. We can see an example of the Cluster-Vis in-
terface in Figure 1 In this paper we apply this tool to the follow-
ing case study: a dataset of twenty-two thousand cells over various
timesteps and in various experimental conditions, in order to cluster
these cells into relevant groupings based on their expressions within
these conditions. After testing various versions of our relevant clus-
tering algorithm we were able to settle on one which provided the
highest-quality data in terms of relevant clustering, through an itera-
tive process. Ultimately, our tool was able to provide a high level of
value to our collaborators and shows promise as a versatile tool that
could be applied to a number of different types of high-dimensional
datasets. We prove this quantitatively through a user study in which
we test a number of experts with our tool against the most relevant
currently existing tool in two different experiments.

1 RELATED WORK

As high-dimensional visualizations are an open problem relevant
to various disciplines, there are several comparable tools used for
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= Figure 2: Clustergrammer’s feature expression matrix

these types of visualizations. The most similar, and the one that we
used as a point of comparison for our evaluation is Clustergrammer,
as presented in [1], a tool for visualizing high-dimensional data
through clustering and interactive visualizations. Clustergrammer
offers several potential shortcomings as compared to Cluster-Vis:
it only presents one type of visualization, while Cluster-Vis offers
several, the feature expression matrix. We can see this feature ex-
pression matrix represented in Figure 2 Another comparable tool
is ClustVis [2], a tool for visualizing high-dimensional data using
PCA clustering. While this tool seems somewhat similar to ours
we were not able to get it working, and additionally it only supports
PCA clustering rather than custom clustering methods.

2 METHODOLOGY

As mentioned previously, we compared against Clustergram-
mer [1]. Unfortunately, it was unable to handle our entire
dataset—Ileading us to sample only 500 cells out of twenty-two
thousand. However, the tool offers us a chance to investigate
whether the number of visualizations and cells represented truly
aids users in identifying relevant information about the dataset or
not, a useful comparison. In our user study we asked users two dif-
ferent questions—to identify a cluster where they would be most
likely to see an oblong/circular cell shape, and to identify an exper-
imental condition that only occurs in one or two cell clusters. We
chose both of these tasks because they are both fairly opposite sides
of the same coin: attempting to identify the different experimental
conditions that define different clusters, and vice versa.

3 RESULTS

The survey results turned out to be nearly identical across both
questions, so we average the results across both questions in Fig-
ure 3. Here we can see that completely consistently, and promis-
ingly, Cluster-Vis ranks as less effort in all categories. While many
of these results are not statistically significant, due to the small
sample-size, we focus particularly on the results showing the in-
creased overall performance, which shows more promise given the



Cluster-Vis and Clustergrammer

W ClusterVis [ Clustergrammer
Mental Effort
Physical Demand
Temporal Demand
Overall Performance
Effort

Frustration Level

= Figure 3: The average results of our user study with both questions

Cluster-Vis Clustergrammer

Task Accuracy | Time (minutes) | Accuracy | Time (minutes)
Cell Shape ID 0.75 2.10 0.76 3.10
Experimental Condition 1D 0.5 3.00 0.5 4.37

= Figure 4: The time taken by on average for every task in our user
survey

extent to which Cluster-Vis was more highly rated than the compe-
tition, though ultimately a larger survey would be needed to make
conclusive claims about these findings. We also found that users
were able to complete tasks significantly faster using Cluster-Vis,
as illustrated in Figure 4. We can also see in Figure 4 that users had
a somewhat lower accuracy than expected; we can likely attribute
this to a miscommunication regarding survey instructions. How-
ever, as we see this lowered accuracy reflected consistently across
all tests, we do not believe that this impacted our survey results in
any meaningful way. Additionally, we asked respondents to tell us
how useful they believed each individual graph was, with the ques-
tion “’Please rate the usefulness of the individual graphs and plots”.
The results of this survey are shown in Figure 5. Here we can see
that the graph rated as the most useful was the embedding heatmap,
while the graph rated as the least useful was the parallel coordinates
graph. However, there was not a huge discrepancy between all the
different graphs, as all were considered to be useful on average by
all respondents. The feature expression matrix, which was the only
graph shown by the Clustergrammer tool, was rated to be the sec-
ond most useful, which shows the relative usefulness of Cluster-
grammer, as well as its shortcomings. We also had respondents rate

Rated Graph Usefulness
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o

Parallel Scatter Embedded Embedding Feature State
Coordinates  Matrix Clusters Heatmap Expression Transition
Diagram

= Figure 5: The average usefulness of every graph, as rated qualita-
tively by survey respondents.

the performance of the two tools in a qualitative manner, in which
they were able to share their specific feelings on different aspects
of the tools. In this survey, respondents informed us that they con-
sistently found Cluster-Vis to be more intuitive and easier to use
than the relatively confusing Clustergrammer. They also found that
the tips and guidance given for every graph in Cluster-Vis was very
helpful as compared to the steeper learning curve and relatively low
amounts of guidance provided by Clustergrammer. However, users
did find that more advanced features with Clustergrammer’s more
advanced feature expression matrix were more useful when learned,
after their steep learning curve was overcome. In the future it may
be useful to incorporate some advanced features from Clustergram-
mer into Cluster-Vis, to act in concert with the larger suite of vi-
sualizations provided. Users did report that they liked being able
to view data in different formats in Cluster-Vis. They also reported
that the visualizations provided by Cluster-Vis would be more use-
ful in showing to non-expert collaborators, or simply collaborators
who are experts in their respective fields but may not be as familiar
with computational visualizations of this type.

4 CONCLUSION

Ultimately we are able to draw a few conclusions from our exper-
iments with Cluster-Vis: our case study involving our collabora-
tors and their dataset of twenty-two thousands cells proved that our
tool was capable of giving a thorough analysis of complex and high
dimensional data; we were able to find a solution to the complex
problem of clustering high-dimensional data through an iterative
process, and the results provided by Cluster-Vis will be included in
future publications. Additionally, our user study was able to show
that the multiple graphs given by Cluster-Vis gave an increased un-
derstanding of the data and the different ways that experimental
conditions were expressed within and affected clustering, and gave
an increased confidence in clustering analytics tasks. We were also
able to show that the conveniently located tips and simpler plots
were able to shorten the execution time and allowed users to more
efficiently complete the various analytics tasks which we assigned
them. The results of this study leave several open questions: firstly,
an expanded survey that includes other types of applications that
were not represented, and other tools to compare to more relevant
to those types of tasks, such as Clustvis, would help provide in-
sight into other aspects of our tool. Additionally, it would also be
useful to compare setup and time-to-learn between Cluster-Vis and
other existing tools; to make things easier we took on the task per-
sonally of converting the data given to us by our collaborators to a
type which could be accepted by Clustergrammer, which involved
a non-trivial amount of conversion. While we thought that this of-
fered a more fair comparison within the context of our user survey,
it is very much a factor which would be relevant to any research
group attempting to perform an analysis on their own data, and as
such may be a relevant thing to consider in future surveys, both
within the context of Cluster-Vis and Clustergrammer, as well as
other relevant tools.
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ABSTRACT

In this paper, we present a novel method called NeuroViz, a web
application for visualizing diffusion-weighted magnetic resonance
imaging (MRI) data with derived NODDI metrics reflecting gray
matter microstructure. This software was developed to provide re-
searchers and clinicians a user-friendly platform for analyzing and
interpreting data from a variety of neuroimaging modalities, such as
functional magnetic resonance imaging (fMRI) and diffusion ten-
sor imaging (DTI). In addition, we conduct a user study and re-
port its findings validating the efficacy of NeuroViz in comparison
to other open-source software and demonstrating that researchers
find the tool to be a streamlined pipeline for diffusion MRI and re-
lated neurostatistics. The source code for our work can be found at
https://github.com/nleel00/nodejs-heroku-
deploy.git.

Keywords: neuroimaging, neuristatistics, visualization, diffusion-
weighted magnetic resonance imaging, NODDI

1 INTRODUCTION

Neuroimaging data analysis and interpretation are essential to the
study of the brain and the nervous system. These data, obtained
through techniques such as fMRI and DTI, can provide valuable
information about brain function. However, the analysis of neu-
roimaging data can be complex and may require specialized soft-
ware and statistical skills.

Therefore, to address this challenge, we introduce NeuroViz,
a project completed in collaboration with subject matter experts
(SMEs) and researchers from the University of Southern Califor-
nia’s (USC) Laboratory of Neuro Imaging (LONI) and Brown Uni-
versity’s Carney Institute for Brain Science. We design and deploy
a web-based application for the 3D visualization and analysis of
neuroimaging data, enabling researchers to quickly and easily vi-
sualize their patient’s whole brain data and view neuro-statistics
mapped onto the brain’s surface. The application’s intuitive in-
terface and suite of powerful tools, including multiple options to
display NODDI metric information, enables accessibility to re-
searchers without a programming background. We later discuss the
potential impact of NeuroViz on the field of neuroscience, outline
the design, and provide examples of its utility for researchers and
clinicians working with neuroimaging data.

1.1 Background

Diffusion-weighted MRI generates contrast in MR images by sen-
sitizing MRI measurements to the displacement patterns of water
molecules undergoing diffusion. As the cellular structure of tis-
sue directly affects the motion of water particles, diffusion MRI
serves as a great tool to study tissue microstructure and aid appli-
cations such as tumor characterization or cerebra ischemia [1, 2].
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Our interest in the cerebral cortex, the outermost layer of the brain
primarily made of grey matter, stems from its association with hu-
mans’ highest mental capabilities (e.g., movement, language and
sensory information processing, attention) [3].

We seek to further the visualization of neurite orientation dis-
persion and density imaging (NODDI) [4], a diffusion MRI tech-
nique that splits the signal arising from three different tissue
compartments—intra-neurite water, extra-neurite water, and free
water compartments—to estimate neurite microstructure and asso-
ciations with clinical outcomes. NODDI produces multiple met-
rics, such as neurite density index (NDI), isotropic volume fraction
(IsoVF), and orientation dispersion index (ODI). Using the NODDI
estimations of the density and fanning of neurites and the partial
volume contamination from cerebrospinal fluid (CSF), we can bet-
ter capture microstructural tissue abnormalities and clinically rele-
vant phenomena related effects of age and disease.

2 RELATED WORK

With recent computational advancements and their ready applica-
tions in the biomedical imaging space, several research efforts have
focused on developing tooling to advance the visualization of neu-
roimaging data. Featuring excellent ease of use and visualization
graphics, these tools provide researchers with insights into brain
function and disease by facilitating the interpretation of complex
volumetric and surface datasets.

Principal among these tools is the Quantitative Imaging Toolkit
(QIT) [5] designed by our collaborator, Dr. Ryan Cabeen, to pro-
vide researchers the ability to perform 3D visualization and data
exploration of neuroimaging datasets. Our project strives to build
upon Dr. Cabeen’s innovative tool by interpolating QIT’s 3D vi-
sualization strategy with NODDI metric mapping and an intuitive
UI that does not require programming skills, tackling QIT’s limi-
tations (i.e., the requirement of technological capabilities of their
researchers, the lack of statistical overlays to display NODDI mea-
surements). A secondary leading software to note is BrainBrowser
[6], an open-source JavaScript library furnishing web-based 3D vi-
sualization tooling based on WebGL. We aim to create an applica-
tion similarly web-based and using WebGL or similar APIs (e.g.,
XTK [7], pycortex [8], threeBrain [9]) and address BrainBrowser’s
lack of generalizability and flexibility for users to adjust the soft-
ware to their own research needs. Both QIT and BrainBrowser
most greatly inspired our tool’s design and function and ultimately
became NeuroViz’s competition in a portion of our user survey.

2.1 Goals

Therefore, the objectives of our web-based tool, NeuroViz, are to
construct a streamlined tool to aid neuroscience visualization re-
search at USC and beyond and to enhance understanding of grey
matter discrepancies related to different risk factors (e.g., age, dis-
ease), accelerating the potential discovery of functional correlations
between cortical microstructure variations or identifying biomark-
ers in regions of interest (ROIs). The major limitations of previous
related works include a lack of accessibility to researchers without
a programming background and a focus on either improving statis-
tics or visualization, yet not both. Furthermore, no comprehensive
data pipeline has previously been engineered to specifically study
ODI with a combination of neurostatistics and analytics, and most



Figure 1: Demo of the NeuroViz.

tools are only commercially available. Those nonproprietary are
not compatible with nor adjustable to the file formats used by our
collaborators at LONI. Not only does NeuroViz deliver an intutive
UI for viewing whole brains and a clear process to inspect and ma-
nipulate diffusion MRIs, but it offers an open-source integration
of both visualization and statistics, specifically NODDI, into a sin-
gular pipeline and compatibility with the several types of the file
formats provided by LONI.

3 METHODOLOGY
3.1 Data

The data used in this study is from the Human Connectome Project
(HCP) and preprocessed by Dr. Ryan Cabeen into surface and
NODDI metric data. It contains volumetric, surface, ROI, and
NODDI metric information (i.e., intra-cellular volume fraction,
intra-restricted volume fraction, isotropic diffusion component,
NDI, ODI) of a single patient. While our demoed web application
exhibits the ISO NODDI metric of our patient, this measurement
can be easily substituted to display and utilize other metrics as well.

3.2 Implementation

Our tool was built using XTK, an open-source library and the first
JavaScript framework to visualize and interact with medical imag-
ing data using WebGL. Its impressive features were harnessed to
create NeuroViz’s dynamic 3D visualizations and statistical over-
lays upon the vertices of diffusion MRI surface data. Pycortex, a
Python open-source library by the University of California, Berke-
ley’s Gallant Lab was also considered but remained unimplemented
due to its software inflexibility and documentation deficiency.

As seen in Figure 1, Neuroviz’s features enable the upload-
ing and operation of whole brain surface data with superimposed
NODDI metrics, which are leveraged using a panel on the left-hand
side. For example, one feature performs a k-means clustering of
the data based on its NODDI metric values and colors the cluster’s
member vertices based on a pre-defined colormap. Users are sub-
sequently able to hover over any vertex on the surface to view the
vertex’s cluster label and/or respective NODDI metrics (e.g., min,
max, mean, and standard deviation of the chosen metric). Another
feature enables users to accentuate vertices based on a specified
threshold value. Further controls in the upper right-hand corner
permit adjustment of the visibility and opacity of surface figure.

4 USER STUDY

With a total of eight participants, consisting of six SMEs and two
non-experts (e.g., peer computer scientists), we coordinated a user
study to determine the effectiveness of NeuroViz. Employing a
composition of a quantitative (e.g., provide a discrete rating for the

Suggestions for improvement

Tutorial

File Conversion \  Colormap

Statistics

Figure 2: Charted user suggestions from an open-ended survey
question.

ease of selecting a NODDI metric on a Likert scale) and qualita-
tive (e.g., answer an open-ended question concerning the most use-
ful research features of the tool) survey, we asked our participants
to complete a variety of tasks in NeuroViz and provide feedback
through the aforementioned survey. The results of this user-survey
feedback were utilized to condition and fine-tune the tool.

4.1 Results

All participants in our user study communicated and evidenced
great appreciation for our development of NeuroViz. When com-
pared with the competition, QIT and BrainBrowser, our tool was
preferred by our participants due to a variety of factors, such as
cost-effectiveness, ease of use, web UI, and the interposed visu-
alization of neuroimaging and neurostatistics. Similar feedback
was extremely helpful, and at our participants’ suggestion that was
expressed ~ 42% in the evaluation survey’s responses, we imple-
mented a hovering feature for statistics (Figure 2). Other sugges-
tions, such as adding a tutorial for new users, have become our sub-
sequent courses of action to increase utility for our research tool.

Based on user answers from our evaluation survey, our leading
priorities are to make this tool more convenient for researchers in-
clude adding support for converting file formats (e.g., .vtk to .stl,
binary to ASCII) and the ability to create colormaps for surface
data or interposed statistics. Given our struggle to access and uti-
lize reliable open-source software, we are open to collaboration or
new directions for this tool in the application of neuroimaging, neu-
rostatistics, and beyond.

5 CONCLUSION

The NeuroViz web application is found to be a useful resource
for presenting and analyzing neuroimaging data. It empowers re-
searchers to more effortlessly and speedily examine and interpret
complex brain data in heterogeneous formats (e.g., volume, sur-
face, ROI), assisting a deeper understanding of brain function and
disease. Its user-friendly interface and diverse visualization options
make it suitable for researchers regardless of experience and pro-
gramming ability, and our user study has shown NeuroViz to greatly
supplement the faculty to study the brain and advance of neuro-
science research.
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Automated Visual Weighting for Multidimensional Time Series Data:
Applications to E-Nose Sensors
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Figure 1: Stacked timeseries representation commonly found in
chemical sensor literature.

ABSTRACT

Multi-Dimensional timeseries data is abundant in scientific appli-
cations. However, current visualization techniques struggle to cap-
ture global comparisons, while also maintaining local resolution at
scale. This work develops a prototype visualization platform that
aims to resolve this trade-off. Using a new algorithm auto-c, the
system represses redundant information by assigning fixed budgets
for visual weighting. The method is applied to the Electronic Nose
(E-Nose) domain and shows improvement over previous domain
visualizations in an encouraging pilot study.

Keywords: Multi-Dimensional timeseries, visualization, resolu-
tion, auto-c.

1 INTRODUCTION AND RELATED WORK

An Electronic Nose (E-Nose) consists of an array of chemical sen-
sors that respond with changes in resistance when in the presence
of different chemical compounds. Each sensor in the array is de-
signed to respond with different levels of sensitivities, dependent on
the species of gas encountered. This produces a multi- dimensional
time series that can be used to detect the type of gas species. These
sensors provide a wealth of information, however current analysis
is not leveraging the use of advanced visualization techniques, re-
sulting in inefficiencies of analysis.

Most E-Nose visualizations currently use a simple stacked view
of the time series with an offset (Figure 1), resulting in inefficien-
cies at scale [4]. This allows the user to compare changes between
sensors with respect to the time axis. However, this format sig-
nificantly limits the capacity of the user to perceive valuable local
information. Stacking sensor data requires the scale relative to the
screen size to be greatly reduced. Humans have perceptual limi-

*e-mail: patrick_maynard @brown.edu

tations in perceiving multi-dimensional time series data in this for-
mat, these issues cannot be resolved by increasing screen resolution
in the high-dimensional case [5]. Additionally, some compounds
produce similar response to the same gas species, figure 1 shows
sensors R1-R3 and R12-R14 all produce similar response.

Current multi-dimensional time series visualizations are cen-
tered around creating alternate representations of the original data.
Li et al. applied Hidden Markov Models (HMMs) to transform
multi-dimensional time series into uni-variate time series [2]. This
reduces the complexity of the visualization, but removes the abil-
ity to compare inter-sensor differences, critical in E-Nose applica-
tions. Tsmap3d uses Mulit-Dimension Scaling (MDS) and Prin-
ciple Component Analysis (PCA) to create an efficient projected
space [1]. This provides strong visualization ability of the general
feature space, but would have limited capacity to resolve trends for
individual sensors. Other works like Mtsad have explored the inte-
gration of radar and box plots as alternative means for representing
high-dimensional time series data [3]. These methods provide in-
teresting insight into anomalies, but inhibits the ability to compare
nuances of individual time series. This work demonstrates an alter-
native method that can eliminate redundant information and main-
tain the ability to make local comparisons, not solved by previous
methods.

2 METHODOLOGY

To improve on current methods, this work provides two views of of
the original data: (1) a local view of the timeseries, and (2) a global
view of projected similarity. To resolve clutter in (1) this method
assigns a fixed budget of visual weighting to a selected groups of
sensors. The sensors are grouped together by extracting features,
and applying K-Means clustering to group sensors exhibiting sim-
ilar behavior. This work finds that coeficients from the Discrete
Wavelet Transformation (DWT) and AUC provide a descriptive ba-
sis for feature spaces (see apendix for details), though we encourage
users to implement their own features to match the intended appli-
cation.

After feature extraction and clustering, this method employs
auto-a, a novel algorithm for visual weighting:

1. Extract features from each time series
2. Apply K-means clustering
3. Loop through K clusters

(a) Find time series mean of cluster
(b) Loop through n time series
i. Calculate MSE w.r.t mean
(c¢) Normalize all MSE values on (0,1) to determine
alpha parameter
4. Project features using PCA to create global view

By restricting a fixed transparency budget for each cluster, this
method ensures that redundant information will not be given too
much weight in the resulting visualization.
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Figure 2: Previous dataset visualized with this work. Transparency of
local view sensors is weighted using auto-a.

3 RESULTS

Figure 2 shows the results of the system using the same data as
figure 1. In this case, the previously responding sensors are clearly
visible, as well as sensors R5-R7 (green), which were previously
difficult to resolve.

3.1 User Study

To analyze the performance of this system on E-Nose data, a pi-
lot user study was created. The study asks users to determine
which sensors show response to a given gas exposure. The users
were given 6 examples visualized with this work and the stacked
timeseries representation shown in figure 1. Latin Squares Sam-
pling was used to determine the order in which the examples were
viewed. A time limit of one minute was set to fix the analysis to
accuracy. In order to see if this system would enable non-expert
users to perform analysis on this data, the user study was broken
down into expert (N, = 3) vs. non-expert (N, = 7) users.

3.1.1  Overall Results

Overall, the results of this pilot study are encouraging. We find
moderate statistical significance (p ~ 0.01) for both the expert and
non-expert users when comparing the stacked timeseries view to
this work (see appendix for details). While this work does signifi-
cantly improve the ability of non-expert users to perform the task,
the users were still not able to match expert performance on the
stacked timeseries views. It is likely that with a larger sample size
and more difficult examples for the experts, the results will con-
verge with lower p-values. Note that the smaller standard error of
the mean present in this work (figure 3) could be due to users be-
ing more likely to select the entirety of a cluster when selecting
answers.

3.1.2 Results on Individual Questions

Looking at individual user accuracy for each question, we find that
in some cases the task might be too easy for expert users (see fig-
ure 5 appendix: Q1, Q2, Q6). For some examples there seems to
be a gradient showing better performance with this method. One
instructive example where expert users showed better performance
from the use of this work was question 3 (figure 4). In this case
there are several sensors with a notably small response in the green
cluster. Checking the individual responses, it is clear that experts
in this category missed the responding sensors when analyzing the
stacked view. This highlights the importance of scale when com-
paring multiple sensors for response and provides evidence for the
strength of this method.

3.1.3 Global Feature View

When asked, ”Did you find the global feature view helpful?” all
experts agreed that this was useful when trying to perform the task
(see appendix figure 6). Only one non-expert users claimed this had

Average Accuracy Across All Examples (This Work vs. Stacked Timeseries)
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Figure 3: Comparison of performance for this work vs. stacked time-
series representation. Mean accuracy is reported as bar height with
standard error of the mean in black.
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Figure 4: Question 3 contains sensors with very faint response such
as those appearing in the green cluster.

been helpful. The lack of positive response from non-expert users
can likely be attributed to inadequate explanation being provided
in the task description or lack of prior experience with analysing
projected spaces.

4 DiSCUSSION AND CONCLUSIONS

While the pilot study shows promise, there is still a lot left to ex-
plore to show the potential value of this system. Upon reflection,
we found that a timed accuracy-based task may not serve as the best
metric. A more extensive study may benefit from asking users more
subjective questions about the system. At application time, this data
is likely to be explored with no fixed length of time, asking user
what insights they were able to draw may demonstrate more favor-
able results.

In addition to testing this system on publicly available datasets,
this work was tested on private NASA datasets used for the ongoing
development of a new E-Nose device. Dr. Sultana found the clus-
tering particularly motivating for this use case. When developing
the array of sensors, it is important to understand if certain manu-
facturing differences result in specific behavioral similarities. By
clustering these sensors together, this can be observed w.r.t specific
target gases.

‘We have demonstrated a preliminary improvement on current E-
Nose visualization techniques and promising potential for the auto-
o method. As a baseline, these results show that this system may
improve analysis on E-Nose data that could impact a wide variety
of scientific domains. Going forward, we plan to further develop
the functionality of this visualization platform and package this for
use by the team. We believe that continued feedback from high
impact usage would provide critical information needed to release
this to a wider audience and justify the strength of auto-a further.
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5 APENDIX
5.1 Individual User Accuracy

Accuracy by Question
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Figure 5: Accuracy by question with each point corresponding to spe-

cific user performance.

5.2 Global View Preference

Did You Find the Global View Helpful?

% Found Helpful

BN Expert

BN Non-Expert

Figure 6: Survey results from asking users if they found the global

view helpful.

5.3 Discussion on Statistical Significance

In order to resolve statistical significance, this work treats each user
example as an independent example and measures the accuracy ob-
tained by that user. We use a t-test of significance to obtain p-values
and compare each of the categories, with any p < 0.001 highlighted

in red.

This Work (expert) | Stacked Timeseries (expert) | This Work (non-expert) | Stacked Timeseries (non-expert)
This Work (expert) 1 0.009589 4.27226e-11 2.37127e-13
Stacked Timeseries (expert) 0.009589 1 0.012772 2.103512e-06
This Work (non-expert) 4.27226e-11 0.012772 1 1.951218e-06
Stacked Timeseries (non-expert) 2.37127e-13 2.103512e-06 1.951218e-06 1
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ABSTRACT

In order to relieve the pressure of frequent visiting for Dry Eye Dis-
ease (DED) patients and the burden for doctors, we developed a
web-based auto-diagnosis platform that enables remote consulting
for patients and hospitals. The platform consists of two sections.
One is a diagnosis model that takes in patients’ self-taken eyelid
images, segment out (deep learning model), analyzes the morphol-
ogy information (vision computing) for each meibomian gland, and
classifies the atrophy severity for each gland. The other is a web-
based platform connected with hospitals’ health record systems, al-
lowing doctors to track patients’ records and give proper treatment
advice. Our model achieved significantly higher DED diagnosis
accuracy, and our platform received very favorable feedback from
patients and doctors.

Keywords: Dry Eye Disease, Auto Diagnosis, Remote Consulting

1 INTRODUCTION

Dry Eye Disease (DED) is one of the most widespread diseases in
Ophthalmology, influencing 20% to 30% of the global population
(around 66 million people in the U.S). However, DED is usually
not a life-threatening disease since over 90% of DED patients only
have minor symptoms, such as disability of tear secretion or pain
in the eyeball. According to [CITE], 85% of the DED patients only
need eye drops instead of surgeries or further inspections.

Although DED is not dangerous, it brings too many people to the
hospital and significantly increases doctors’ pressure and workload.
According to CYL Hospital’s records, DED-related patients take
10% to 15% of doctors’ outpatient time. Thus, DED not only takes
hospital too much time and labor but also only bring little profit —-
most DED patients only need fundamental inspections, which on
average cost $20 per person.

2 RELATED WORK

The relative size of areas of meibomian gland atrophy, or gland loss
area, is an essential clinical measure for assessing meibomian gland
dysfunction severity. Meiboscore, a metric first proposed by Arita
et al. 2008 [1], which measures the ratio of meibomian glands’ area
and the total analysis area, is one of the most widely acknowledged
evaluation standards. Currently, clinicians estimate the degree of
meibomian gland atrophy subjectively by comparing the area of
glandular loss with the total eyelid area [9] [8]. Although com-
monly used, the method only evaluates the overall severity of gland
atrophy, not detailed individual meibomian gland morphological
features. Recent studies have shown that morphological features
of meibomian glands (such as length, curvature, or tortuosity, and
local contrast ') may also be indicative of meibomian gland dys-

*e-mail: shixuan_li@brown.edu
fe-mail: yuxuan_zhao@brown.edu
*e-mail: wangxla@sina.com

"Local Contrast: Average gland region intensity normalized by its sur-
rounding intensity.

Figure 1: Instance Segmentation & Morphology Analysis

if

Table 1: Morphology Analysis Feature Extraction Example

Index  Contrast Length  Width  Tortuosity #Nodes  Direction ©
1 12.1 4.27 0.608 15.9 2 81
2 11.8 9.74 0.3 49 5 42
3 20.5 6.24 0.427 25.4 2 77
4 17.6 6.97 0.378 20.9 3 89
5 18.4 6.71 0.397 22.1 2 82
13 17.2 9.96 0.322 325 2 59

function severity and related to ocular surface disease [3] [6] [13].

Because of meibomian glands’ dense distribution and non-
uniform shapes, traditional instance segmentation models perform
poorly. Thus, on the one hand, previous studies use either image
processing software, such as ImageJ [11] [2], or semantic segmen-
tation models [15] [14] [16] to extract the semantic gland areas.
On the other hand, some studies implement hypothesis-test-based
atrophy severity prediction models by manually extracting individ-
ual gland’s morphological information and designing new diagno-
sis metrics [12] [4]. However, the above studies are either unable to
catch individual gland information or unable to automate the diag-
nosis process.

In this project, we not only designed an instance segmentation
model (with a series of novel data processing procedures, network
design, loss functions, and training details) that provide a satisfying
accuracy but also proposes several morphological analysis metrics.
As a result, we are able to automate the diagnosis process while
capturing all morphological features.

3 METHODOLOGY

Our project comprises a vision computing solution for image-based
auto diagnosis and a web application that serves doctors and pa-
tients.



Figure 2: Our Diagnosis Accuracy vs. Previous Studies
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3.1 Auto-Diagnosis Model

We propose a three-step solution for the DED diagnosis. Firstly,
based on the real-life meibomian gland image data from Dr.Wang
from CYL Hospital, we trained an instance segmentation model [5]
with many original adjustments. The model follows a two-step pro-
cess. It firstly takes the input images (patient’s self-taken eyelid im-
ages) and predicts the pixels of gland area. Then, we implemented
a GAN [10] model to refine the raw output of segmented glands.

Secondly, we proposed a series of morphology analysis methods
that takes the segmented glands as inputs and outputs several shape
features for each gland, such as length, width, tortuosity, and curva-
ture degree. This procedure also conforms to doctors’ real-life di-
agnosis regulations and thus offers significantly helpful references
that shorten doctors’ diagnosis time.

Lastly, based on all the extracted morphology analyses, we built
a statistical model to predict the atrophy of each gland. The advan-
tage of a statistical model is that it can provide good reasoning for
the diagnosis. For example, if the model thinks a gland has atro-
phied, we can tell from sensitivity tests and fitting parameters that
it is judged by the gland’s abnormal contrast and tortuosity.

3.2 Auto-Diagnosis Platform

We also build a web application to build the connection between
the hospitals and patients. When patients feel uncomfortable, they
can use a special lens (which costs about $8) to take some pho-
tos of their eyelids. The images will be uploaded and stored in the
hospital’s database. Notice that patients must register on the hospi-
tal’s website and verify their personal information before using our
web application since everything will be kept as a personal health
record. Then, our auto-diagnosis model will predict and display all
intermediate analysis processes to the doctors who double-check
the diagnosis results. Doctors will validate all records and give
treatment suggestions to patients, which will be displayed on the
patient’s panel and in their emails.

The platform was built upon the Django framework, with pure
H5+CSS3 as the front end and MySQL as the database.

4 CONTRIBUTION & EVALUATION

Our project not only outperforms previous studies in diagnosis ac-
curacy but also brings convenience and improved efficiency to pa-
tients and hospitals.

4.1 Technical Breakthrough

In this project, we built better models for segmentation and clas-
sification and proposed a series of new metrics that significantly

Figure 3: Time & Cost Saving For Patients, Effort Saving For Doctors
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helped the diagnosis performance. Firstly, our deep-learning-based
instance segmentation[5] model achieved higher semantic mIOU.
Secondly, because of the coverage of either their eyelashes or fin-
gers, most patients’ uploaded images do not expose the entire gland,
which infers the direction glands are secreting the oil. Thus, we
proposed a novel method using online PCA and modified Principle
Curve [7] to reveal the entire gland. Lastly, as shown in Figure 2,
our statistical model achieved higher accuracy in severity evalua-
tion and gland identification.

4.2 User Study

We interviewed 26 professional ophthalmology doctors in CYL
hospital and Hebei 2" Hospital (1 department head, 3 attending
physicians , 2 fellows, 4 chief residents, 9 residents and 7 interns)
and 20 patients for their feedback.

All doctors expressed their concern about the large patient pop-
ulation for DED and looked forward to taking care of the minor-
symptom patients online. After trying out our platform with some
real-life cases, 100% of the professionals agree on the convenience
of the workflow and think that the displayed morphology analy-
sis information is beneficial. They also expect a much lower av-
erage diagnosis time for each patient and thus save time for surg-
eries and other training. Although remote diagnosis makes hospi-
tals lose some inspection fees, the chief residents expect a higher
general profit for hospitals since doctors have more time on urgent
and complex cases, improving the monthly bed turnover rate?.

Among the interviewed patients, three elder patients expressed
concern with Al diagnosis. The rest 17 interviewees all think that
the platform can be beneficial for the diagnosis of Dry Eye Disease,
especially in saving travel and wait time. The function they love
the most is the precise morphology analysis and diagnosis reason,
as well as the record system that allows them to keep track of their
health condition.

5 CONCLUSION

As society gets more fast-paced, there are growing calls for remote
medical consulting. Our auto-diagnosis platform broke the bar-
rier of automating meibomian gland segmentation and morphologi-
cal feature extraction, achieving better atrophy evaluation accuracy
and valuable open-box reasoning for DED diagnosis. The platform
not only brings convenience to patients but also better running effi-
ciency and profit for hospitals.

ZMonthly Bed Turnover Rate: Average time a patient stay in ophthal-
mology beds is 12.84 days. The unit here is the # of patients get out of
hospital beds / # of beds in ophthalmology within 1 month.
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Application for Interactive Brain Visualization in Stroke Diagnosis
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ABSTRACT

We propose a novel method for interactive visualization of brain
MRI that correlates 3D models to 2D cross-sectional images. We
report findings by conducting user studies and a paired-sample t-
test that assesses if our software is more efficient and user-friendly
for lesion identification.

Keywords: interactive visualization, human-computer interaction,
neuroimaging.

1 INTRODUCTION

MRI visualization is now a widely adopted tool and crucial for le-
sion identification in stroke diagnosis. However, neurologists and
radiologists are used to viewing brain scans in 2D image stacks.
Hence many of the benefits of 3D volumes have yet to be fully ex-
ploited.

This extended abstract presents a novel approach to interactive
brain visualization—a prototype web application developed to take
advantage of 3D models and to address the problems of information
loss and navigation difficulty that come with conventional image
stacks.

In addition, this extended abstract also presents and discusses the
results of a user study on the features of the web application and its
performance compared to conventional methods.

2 BACKGROUND AND RELATED WORK

The benefit of visualizing MRI data for stroke registries over con-
ventional alphanumeric data was discussed extensively in previous
research. Image_QNA developed a software package that processes
quantitative MRI data in 2D and performs experiments to assess its
feasibility and utility [4]. In our research, we intend to carry out
a similar development and experiment protocol to testify our hy-
pothesis and address Image_QNA’s limitation of lack of support for
multi-dimension visualization.

More recently, the Stroke Preclinical Assessment Net-
work(SPAN) tested an image-based stroke assessment tool
incorporating machine learning techniques into an automated
pipeline for stroke diagnosis [2]. Cabeen, one of the principal
researchers at SPAN, also published a software package named
Quantitative Imaging Toolkit (QIT) [1], that provides 3D visu-
alization and computational analysis. Inspired by their work,
this project attempts to build upon them by incorporating the 3D
visualization component from QIT into the stroke assessment
process following the protocol of SPAN’s image-based stroke
assessment tool, addressing QIT’s limitation on lack of functional
usage in the diagnosis process.

Furthermore, combining 2D and 3D imaging to facilitate data
exploration has already been proven effective in other medical ap-
plications. Namely, an article from Neuroradiology conducted an

*e-mail: james_li@brown.edu
fe-mail: cabeen@ gmail.com
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Figure 1: Screenshot of The Web Application

in-depth user study that demonstrated the potential of correlating
2D and 3D images of the middle ear and adjacent structures for
surgical planning [5].

3 METHODOLOGY

Based on interviews with Ryan Cabeen, we carry out the following
web application and user study.

3.1 Web Application

As indicated in Figure 1, the web application consists of several
components.

First, in the center exists the 3D model of the cross-sections of a
brain for navigation and location purposes.

Second, in the top left corner is a configuration panel to toggle
3D and 2D views and to adjust opacity and threshold settings.

Third, on the right of the interface are three plane viewers and
sliders for axial, sagittal, and coronal views, respectively. When
the user moves any slider, all three planes will render the image of
the new location, and so will the cross-sections in the 3D model.
Lastly, users can drop and render any MRI data in nifti file format.

3.2 User Study

The user study consists of 3 sections—instructions, tasks, and eval-
uation.

Firstly, participants follow question-guided instructions to learn
the tasks and how to use the web application.

Secondly, participants are assigned two tasks to perform, one us-
ing conventional image stacks as the benchmark and the other us-
ing the web application. In each task, participants view data from 2
subjects and determine which subject is in its late stage of ischemic
stroke. We then assess their performance by the accuracy of the
results and the time taken to complete them.

Thirdly, participants report their preferences and rate the poten-
tial drawbacks and how valuable each web application feature is.
Questions regarding participants’ subjective opinions are answered
in multiple choice or Likert Scale from 1 to 5.Thirdly, participants
report their preferences and rate the value of each web application
feature. Questions regarding participants’ subjective opinions are
answered in multiple choice or Likert Scale from 1 to 5.



One thing to bear in mind is that all example data are rodent brain
scans from SPAN’s database, and all four subjects each user views
are unique, hence no redundant subjects.

4 RESULTS

In the end, we collected results from 4 participants, two being pro-
fessionals in neuroimaging or related research fields and the other
two being medical students who reported having some prior experi-
ence with stroke and MRI scans. For better consistency, we inverted
the time taken to complete the task, renamed it to “Efficiency”, and
normalized all metrics in Figure 2 to percentages.

To testify if the web application is more efficient than 2D image
stacks for lesion identification, we compare the accuracy and effi-
ciency as the objective metric. In addition, we used the Likert scale
and multiple-choice answers to provide more subjective context for
the performance of the two approaches.

Efficiency

0%
Accuracy

0%
0% 20% 40% 60% 80% 100%

M avg-webapp  mavg-benchmark

Figure 2: Performance Comparison between Benchmark and We-
bApp

As indicated in Figure 2, while accuracy remains intact, we ob-
served a 16.3% improvement in efficiency when using the web ap-
plication. However, due to the small sample size, the change was
not statistically significant enough, as the p-value is about 0.159
from the paired sample t-test.

B Prefer WebApp to Benchmark ® Appealed by Concept

4 I
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Figure 3: Preference for WebApp and Concept

For preferences over approaches and interests in concepts, we
asked Likert scale questions. For preferences, we asked if partic-
ipants preferred the web application over the benchmark, with 1
being benchmark infinitely better and 5 being web application in-
finitely better. The results were neutral to negative, hinting at a lack
of functionality, usability, or both. Regarding interests, we asked
participants to what extent the concept of combining 2D and 3D
visualization in a single web app appealed to them, with one be-
ing not at all and five being highly interested. Most participants
reported that they were appealed by combining 2D and 3D in an
all-in-one application, as indicated in Figure 3.
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Figure 4: Feature Evaluation

To pinpoint the drawbacks and limitations of the web applica-
tion, we asked which features were valuable in assisting them in
completing their tasks in a multiple-choice format. While three fea-
tures received ambiguous ratings, 2D rendering and plane sliders
were favored by most participants, as shown in Figure 4.

5 DISCUSSION

Due to the limited number of participants involved in this user
study, there was no significant difference in efficiency between the
web application and the benchmark. However, it does provide some
insight that could shed light on future research.

Firstly, one participant with professional background reported
that image resolution is much more critical than dimensionalities.
Hence, rendering tools that can achieve higher resolution in less
time could be valuable in developing brain visualization for stroke
diagnosis.

Secondly, participants with less experience feel more positively
towards the web application, hence experienced professionals may
be biased against learning the new web application when they pro-
vide subjective feedback. This phenomenon should be verified and
controlled when conducting future user studies.

Lastly, another participant with professional background also re-
ported that using 3D navigation features, such as rotation, zooming,
and sliding, is more challenging to complete on standard trackpads
than using mice. This observation aligns with existing research on
the effect of different input methods on performance, posture, and
comfort [3].

6 CONCLUSION

In short, there was no significant difference in efficiency between
using the web application and the benchmark.

However, 3D resembling characteristics, such as dimensionality
association and plane sliders, are favored by participants, indicating
the possibility for more in-depth research that provides statistical
significance to our findings.
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ABSTRACT

We present NeuroViz, a web-based application for the visualization
and analysis of neuroimaging statistical data. This tool was devel-
oped to address the need for a user-friendly platform for researchers
and clinicians to analyze and interpret data from functional mag-
netic resonance imaging (fMRI), diffusion tensor imaging (DTI),
and other neuroimaging modalities. In this research paper, we dis-
cuss the design and implementation of NeuroViz and its potential
impact on the field of neuroimaging. We also outline the evaluation
of the tool and provide examples of its utility for researchers and
clinicians working with neuroimaging data. The source code for
our work can be found at https://github.com/nleel00/
nodejs—herokudeploy.git

Keywords: Neuro-statistics, Neuroimaging visualization, NODDI
metrics, Functional magnetic resonance imaging (fMRI),

1 INTRODUCTION

The analysis and interpretation of neuroimaging data are critical as-
pects of research in the field of neuroscience. Techniques such as
functional magnetic resonance imaging (fMRI) and diffusion ten-
sor imaging (DTI) provide valuable insights into brain function[1].
Diffusion-weighted MRI is a technique that captures the movement
of water molecules to create contrast in MR images. It can be used
for applications such as tumor characterization or analyzing the ef-
fects of cerebra ischemia[3, 2]. One specific technique called neu-
rite orientation dispersion and density imaging (NODDI), a diffu-
sion MRI technique that splits the water orientation signal arising
from three different tissue compartments, namely intra-neurite wa-
ter, extra-neurite water, and free water compartments, can be used
to study the microstructure of neurites and their relationship to clin-
ical outcomes. The analysis of this data can be complex and require
specialized software and statistical expertise.

To address this challenge, we have developed NeuroViz(Fig 1) in
collaboration with researchers from LONI — Laboratory of Neuro
Imaging, University of Southern California, and Carney Institute
for Brain Science, Brown University. We designed a web-based ap-
plication for the visualization and analysis of neuroimaging data.
Using NeuroViz, researchers can quickly and easily visualize their
data and view neuro-statistics plotted onto the brain’s surface in 3D.
The application features an intuitive interface and a suite of pow-
erful tools, including multiple options to visualize the Neurite Ori-
entation Dispersion and Density Imaging(NODDI)[4] information,
making it accessible to users without a programming background.

Finally, we discuss future directions for the development of Neu-
roViz and its potential to advance the field of neuroscience. In our
evaluation, most researchers and neuroscientists reported that the
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Figure 1: Overview of NeuroViz

streamlined pipeline of NeuroViz significantly reduced the effort re-
quired to analyze and visualize the neuroimaging data compared to
traditional methods or other software like QIT and Brain Browser.
Furthermore, the users identified the user-friendly interface, acces-
sibility, and statistical visualization capabilities of the application
as the key reasons for preferring it over other available options.

2 RELATED WORK

In recent years, several research efforts have focused on develop-
ing tools for visualizing and analyzing neuroimaging data. These
tools have aimed to facilitate the interpretation of complex volumet-
ric and surface data sets and provide researchers with insights into
brain function and disease. One notable example is the Quantita-
tive Imaging Toolkit (QIT)[1] developed by our collaborator, Rayan
Cabeen, at the University of Southern California. It was specifically
developed for tractography and microstructure analysis of diffusion
magnetic resonance imaging datasets[5], but it has capabilities that
are generally useful for other imaging modalities as well. Some
of the other example software suites that provide similar utility are
AFQ-Browser[6], and SlicerDMRI[8]. Another notable tool is the
Brain Browser[7] which is an open-source JavaScript library expos-
ing a set of web-based 3D visualization tools primarily targeting
neuroimaging.

Our web app, NeuroViz, overcomes the major limitations in the
above tools and techniques of not incorporating neuro-statistics in
their tools and the accessibility to individuals without a program-
ming background. The standard for visualizing volumes of any
type of MRI data requires building upon WebGL, threeBrain, and
other graphical libraries but does not include a comprehensive data
pipeline for research ease or specifically studying ODI using our
presented combination of imaging.

One challenge we encountered was that many of the available
software tools were not compatible with the file formats used by
our collaborator, LONI. Furthermore, most of these tools were pro-
prietary and not easily customizable or open source. In contrast,
the NeuroViz web application we developed is designed to support
LONTI’s file formats while also being adaptable to other file formats
and open source to allow for easy modification and updates.
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3 METHODOLOGY
3.1 Data

Our team encountered a significant obstacle in the form of a lack
of data and the steep curve to learn the domain expertise to un-
derstand the fMRI scan data from the Human Connectome Project.
The data included both volumetric and surface information from a
single subject, as well as various NODDI metric files, which cap-
ture various aspects of brain tissue structure and function. We de-
veloped a web application to visualize the ISO NODDI metric of
the subject, but it is easily adapted to display any of the other met-
ric values as well.

3.2 Web Application

The NeuroViz web application was built from the ground up us-
ing the XTK JavaScript library[4], which is an open-source library
for rendering and manipulating volumetric data. The XTK library
was used to create interactive 3D visualizations of neuroimaging
functional MRI data and overlay the NODDI metrics on the sur-
face/volumetric data.

The web application allows users to load and manipulate brain
surface data overlayed with the NODDI ISO metric. It offers var-
ious options for analyzing and visualizing the data, including the
ability to cluster the metric and view the resulting clusters on the
brain surface, represented with different colors. Users can hover
over any vertex on the brain surface to see its cluster identification
or NODDI metric as seen in Fig 2. There is also a feature that al-
lows users to highlight vertices based on a specified threshold as
seen in Fig 3. The application also provides controls on the right
side for adjusting the visibility and opacity of interpolated surface
data.

Reason for choosing NeuroViz over competition

Cost

Ease of use

Web UI

Visualisation

Figure 4: Charted user survey for selecting NeuroViz.

3.3 User Evaluation

To evaluate the effectiveness of the NeuroViz, we conducted a
combination of observational studies and a qualitative survey. We
recruited eight participants, including six experts and two non-
experts, to complete a range of tasks using the NeuroViz web appli-
cation. After completing the collaborative tasks, the participants
completed a questionnaire in which they provided feedback on
some open-ended questions and rated various statements about the
software on a Likert scale. The results of this user-survey feedback
were used to refine and improve the application.

4 RESULTS AND DISCUSSION

All the users we surveyed expressed immense appreciation for the
web application. We had very positive results from the user survey,
with all the users choosing our NeuroViz tool over QIT and Brain
Browser. The reasons stated by the users for choosing our tool were
mainly the power of visualizing with neuro-stats, ease of use of
the tool, cost-effectiveness, and the web UI, as seen in Fig 4. We
also received excellent feedback for the provision of selecting the
NODDI metric within the web application. From the survey, we
received one user who suggested the color map for visualizing the
metric provided fair usefulness. In contrast, the others rated the
ability to visualize the metric as a good score. One possible future
functionality that be added is the provision to select a color-scale
for the a particular metric.

5 CONCLUSION

In conclusion, the NeuroViz web application has proven to be a
valuable tool for analyzing and visualizing neuroimaging data. It
allows researchers in the field of neuroscience to explore and in-
terpret complex volumetric and surface brain data, enabling them
to gain a deeper understanding of brain function and disease easily
and quickly. The intuitive interface and wide range of visualization
options make it a useful resource for both novice and experienced
researchers. Overall, the NeuroViz web application has been shown
to greatly enhance the ability to study the brain and has the poten-
tial to contribute significantly to the advancement of neuroscience
research.
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ABSTRACT

We developed a novel and accurate model and an online platform
to diagnose dry eye disease, saving time for patients and doctors.
Our diagnosis model took in patients’ eyelid images, segmented
Meibomian Glands by deep learning model, generated morphology
information, and classified atrophy for every gland. Then we built
an online platform on top of this diagnosis model, and patients can
send their eyelid images to this platform and receive treatment ad-
vice from doctors. Doctors can review and update patients’ health
records, auto-annotated Meibomian Glands, and dry eye disease di-
agnosis. In our study, we delivered significantly higher accuracies
on dry eye disease (up to 80.1%), more specific morphological de-
tails for every gland, and a very favorable online platform based on
feedback from doctors and patients.

Keywords: Deep Learning, Dry Eye Disease, Auto Diagnosis

1 INTRODUCTION
1.1 Background

Dry eye disease affects one in five adults, and most patients have
mild symptoms and only need eye drops treatment[6]. Conse-
quently, doctors spent much time diagnosing mild dry eye patients
by annotating and analyzing Meibomian Glands atrophy from their
eyelid images. To help doctors diagnose accurately and quickly,
we developed a model to analyze the Meibomian Glands of these
eyelid images and provide severity and treatment suggestions.

We created an online platform based on this model and deployed
it for the Beijing CYL hospital. The ratio of doctors to patients in
China is inadequate in big cities, so doctors are usually occupied.
According to Beijing CYL hospital’s record, dry eye disease pa-
tients take up to 15% of doctors’ outpatient time. At the same time,
most of them are mild, so they only need a fundamental inspection.
Our automated diagnosis platform can save doctors three-quarters
of diagnosis time based on their observations and estimation. Thus
doctors can have more time to treat and manage those severe pa-
tients and increase the bed turnover rate.

Meibomian Gland Auto-Diagnosis
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Figure 1: Patient platform
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1.2 Domain Goals

We have three scientific aims: the first is a deep learning solution
for Meibomian Glands segmentation, identifying every individual
gland without any overlap. The second is a new set of criteria for
analyzing Meibomian Glands, which is preferable for doctors and
medical regulations. The third one is a new workflow to use fewer
doctors’ and patients’ time.

2 RELATED WORKS

Arita et al. proposed the meiboscore stages as a standard evaluation
metric to represent the severity of Meibomian Gland dysfunction.
Arita et al. divided the lost Meibomian Gland area by the total eye-
lid area and made a threshold of its fractional result as meiboscore.
Many later studies [2, 4, 10] found a correlation between morpho-
logical features such as length, curvature, tortuosity, and local con-
trast with Meibomian Gland dysfunction severity.

Lin et al. [8] segmented Meibomian Gland via a polygon selec-
tions function from the ImageJ software. Besides ImageJ, Saha et
al. [11] segmented the glands with deep learning and got a consis-
tent mean ratio of 25.12% (manual annotation is 26.23%). Liu et al.
[9] had the first instance segmentation with point-level annotation
for each Meibomian Glands. Nevertheless, it only had the location
information and spline of each gland without the actual shape of
the annotation. Dai et al. [3] added more morphological features
such as ocular surface disease index questionnaire (OSDI), tear-
meniscus height (TMH), tear break-up time (TBUT), and corneal
fluorescein staining (CFS). They had a solution with 91% IoU and
100%. Zhang et al. [12] built models based on transfer learning
(Mask-RCNN and U-Net) for meibomian gland segmentation and
evaluated the efficacy of MG density in the diagnosis of MG dys-
function. The study resulted in 93% IoU and 100% repeatability
for tarsus segmentation.

These studies about Meibomian Glands segmentation either
could not provide the individual gland segmentation and morpho-
logical metric or could not provide the diagnosis of dry eye disease
severity. However, our approach can provide both of them. More-
over, Mask-RCNN has the highest gland segmentation accuracy,
and our solution outperforms it.

3 APPROACH
3.1 Auto-Diagnosis Model

We divided the diagnosis of dry eye disease into three steps. In the
first step, we adopted Brabandere et al.’s framework [5] and added
some changes to train a gland instance segmentation model with
real-life eyelid images from the OCULUS system in CYL Hos-
pital. The model took a grayscale image of the eyelid taken by
the patient as input and outputted pixel-level gland regions. Tra-
ditional instance segmentation cannot handle the intersection and
overlap between glands well, so they can only output semantic re-
sults. However, we had better instance segmentation by using an
end-to-end model, projecting the information of each pixel onto a
1024-dimensional space, separating each gland by a clustering al-
gorithm, and refining by a GAN model [7].

In the second step, we used the morphological analysis method
to take these segmented glands as input and output shape character-
istics of each gland, such as length, width, tortuosity, and curvature



degree. As we mentioned in the introduction, doctors need to ob-
serve each gland’s shape and atrophy degree to propose the severity
of dry eye disease. Therefore, these parameters of the gland re-
turned at this stage can help doctors measure the condition more
quantitatively and accurately, so they can improve the efficiency of
diagnosis.

Lastly, based on the morphology feature of the Meibomian
Gland that we exported earlier, we built a statistical model to pre-
dict the degree of atrophy of each gland. Doctors can see the overall
diagnosis result and review each specific gland’s prediction results
to reason their own opinion.

Figure 2: Gland Segmentation and Morphology Analysis

3.2 Online Platform

We developed a web application with the Django framework based
on the dry eye disease automatic diagnosis model we created ear-
lier. The front end of the website was implemented with HTMLS,
and the back end managed queries with MySQL. Patients can roll
up their eyelids and take a grayscale photo. Then they need to regis-
ter personal accounts and set passwords. After creating an account,
patients logged in to the website and uploaded their eyelid photos to
the hospital’s database. The automatic diagnosis model would seg-
ment the image and predict the severity of each Meibomian Gland’s
atrophy. Doctors must also log in to this website and review the di-
agnosis results. After validation and confirmation by the doctor, the
results would be sent to the patient’s mailbox and displayed on the
website’s homepage.

3.3 User Study

We gave out questionnaires to 46 participants. To specify, there
are 7 interns, 9 residents, 4 chief residents, 2 fellows, 3 attending
physicians, 1 department head, and 20 patients.

4 RESULTS AND DISCUSSION

There is no standard public database of eyelid images, and other sci-
entific research is based on its private database, which prevents us
from directly comparing our results with the results in other papers.
Therefore, we have reproduced the most mainstream and accurate
Mask-RCNN model and conducted fine-tuning based on our eyelid
image data. We used its results as a benchmark, and our model out-
performed it in binary classification, number of glands, and severity
(shown in Figure 3).

I Benchmark Mask-RCNN

Our Solution
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Upper Lid Number of Glands

Upper Lid Severity

Lower Lid Binary

Lower Lid Number of Glands

Lower Lid Severity

0% 22.5% 45% 67.5% 90%

Figure 3: Accuracy Comparison

Also, the doctors from Beijing CYL hospital estimated that the
hospital would save three-quarters of diagnosis time and improve
the monthly bed turnover rate. Bed Turnover Rate (BTR) is defined
as the number of patients treated per bed in a month [1]. In terms
of the patients, they can save a reasonable inspection fee ($20).

M Clinic Diagnosis Online Diagnosis
Inspection Fee ($)

Diagnosis Time (minute)

Monthly Bed Turnover Rate

30

Figure 4: Positive Impact on Patients and Doctors

Regarding user studies, doctors were tired of treating many mild
dry eye patients. All of them preferred the online diagnosis work-
flow and considered the morphology information of Meibomian
Glands very useful for diagnosis.

For the patients, 17 of 20 participants (except three elderly pa-
tients) thought this platform saved much time in traveling and wait-
ing. The timely diagnosis results with their glands annotation were
favorable to the participants.

5 CONCLUSION

Our dry eye disease diagnosis model is the most accurate (up to
80.1%) and state-of-the-art, and we built a fully-featured favorable
online diagnosis platform with it. Our platform leveraged outpa-
tient pressure for dry eye disease for hospitals, saving three-quarters
of diagnosis time and labor. In terms of the patients, our platform
helped them to save travel and waiting time and the inspection fee
(average $20).
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