
The Top Five Problems that Motivated My Work ______

Visualization Viewpoints

Editor: Theresa-Marie Rhyne

Published by the IEEE Computer Society 0272-1716/04/$20.00 © 2004 IEEE IEEE Computer Graphics and Applications 9

Theresa-Marie Rhyne has lately been organizing
efforts for a number of researchers to produce lists

of top visualization problems, and I am flattered to be
included. A recent Visualization Viewpoints column
(see the July/August 2004 IEEE CG&A) featured Chris
Johnson’s excellent list, and now it’s my turn. Since the
May 1999 VisFiles column1 already describes my list of
the top ten problems that will drive future visualization
work, this Visualization Viewpoints column is a look
back at the top five problems that drove my own work
developing Vis5D, Cave5D, and VisAD (see the “Vis5D,
Cave5D, and VisAD” sidebar). Some of these problems
are high-minded and some are grubby and gritty.

This is the mix of problems that I learned from Verner
Suomi, the founder of the Space Science and
Engineering Center where I do my visualization work.
Suomi was literally the inventor of weather satellites.
Among many other technical accomplishments, he held
the patent on the spin-scan radiometer, which was the
basis for the geostationary satellites that until recently
produced the cloud animations we see on TV weather
shows. He also lobbied the US congress for the funds to
develop these satellites and was heavily involved in build-
ing the prototypes. He was a visionary, a politician, and
what my father would have called a “dirty-fingered engi-
neer.” I hope these problems reflect this combination of
concerns that lead to useful change. I start at number
five, and count down to the most important problem.

Problem 5: Big data
Scientists have too much data to understand it as

printed numbers, or even as simple 2D graphs. Every
major weather modeling center has a large room whose
walls are covered with hundreds of printed maps and
charts showing the observations used to initialize their
model and the data grids that come out of their model.
When I started working on visualization in the late
1970s, some meteorologists were building 3D Plexiglas
models depicting weather scenarios. Clearly they were
anxious for a way to combine all their different vertical
levels and different atmospheric fields into unified 3D
pictures.

During the 1980s, visualization researchers strove to
meet this need by developing techniques and software
for making 3D depictions of data. But single 3D images
lacked a vital feature of the 3D Plexiglas models: the

ability to interactively rotate the viewpoint. In 1988,
commercially available workstations appeared that
could interactively rotate shaded 3D graphics. This pro-
duced a flurry of interactive 3D visualization systems
including my project’s Vis5D, NASA’s FAST, Stellar’s
(originally called StellarVision) AVS, and others. These
systems let scientists view their large data sets (or at
least what were considered large data sets in 1989) and
interactively change the data subsets they were seeing,
and to rotate the 3D scene via a mouse.

Of course, the definition of big data is relative. I’ve
worked closely with the European Centre for Medium-
Range Weather Forecasts (ECMWF) since 1988, and I’ve
always cautioned them that data sets produced on their
modeling system, usually among the ten fastest com-
puters in the world, could not be interactively explored
in a single Vis5D session running on a normal desktop
workstation. We put a lot of effort into optimizing mem-
ory use in Vis5D, including strategies for moving data
between memory and disk in response to user interac-
tions. And a few years ago, 3D graphics performance
took a great leap forward with the popularity of 3D com-
puter games, which helped visualization systems catch
up a little with the large data sets produced by super-
computers. But none of this can really close the data

Bill Hibbard

University of
Wisconsin—
Madison

Vis5D, Cave5D, and VisAD
Vis5D is widely used for visualizing the output

of weather models and other time varying,
multivariate, 3D gridded data. It was probably
the first open source visualization system.

Cave5D is an adaptation of Vis5D to the CAVE
and ImmersaDesk VR systems. It’s probably the
most popular VR visualization software. Both
Vis5D and Cave5D have served as the starting
points for numerous other software
developments.

VisAD is a Java component library for
interactive and collaborative visualization and
analysis of numerical data. It’s the basis for
numerous domain-specific visualization systems.
For more information about these systems, visit
http://www.ssec.wisc.edu/~billh/vis.html.

capacity gap between supercomputers and worksta-
tions. Figure 1 is a scene from a Vis5D visualization of a
1998 ECMWF simulation of Hurricane Bonnie, show-
ing winds on horizontal and vertical planes and a vol-
ume rendering of cloud liquid water, over a limited
geographical region clipped out of the global simula-
tion, and animating over a subset of the thousands of
time steps produced by the simulation. For a large 1998
Silicon Graphics workstation this was a pretty big data
set, and yet it’s only a fraction of the complete model
run.

One approach to big data is to combine numerous
commodity display screens into wall displays with tens
of millions of pixels. I tend to be skeptical of such expen-
sive solutions, as they show more detail than the mind
can grasp in one scene. Visual attention is focused in a
fairly small region of the retina, so user needs can be
more economically met by systems that enable users to
interactively zoom out for an overview and zoom in
quickly to see detail in specific regions. For applications
that can justify spending large resources on visualiza-
tion, I prefer putting the parallelism on the back end
with the data, enabling users to interactively explore
larger data spaces.

Problem 4: It’s the response time, stupid
Inspired by Bill Clinton’s 1992 motto “It’s the econo-

my, stupid,” I put a little sign over my desk that said “It’s
the response time, stupid.” For one thing, a high frame
rate is necessary for creating the visual illusion of
smooth motion for interactive rotation and animation.
Perhaps just as important, smooth motion and fast
responses to all kinds of interactions are emotionally
satisfying to users and greatly enhance their enthusi-
asm for software. Every idle moment while users are
waiting for a response is a moment when they are think-
ing that their software could be better.

Users are engaged in a thought
process and visualization is merely
a tool to help them think. Every wait
for a response interrupts their flow
of thoughts. For example, you can
still get pads of maps with locations
of weather stations printed on them.
Meteorologists write observations,
such as temperatures, next to each
station and then manually draw iso-
lines. This interactive drawing
process helps them think about the
distribution of temperatures and
understand the overall pattern.
Ideally, our visualization tools can
help with similar thought process-
es, and with as little delay as a pen-
cil.

We took this problem seriously in
the development of Vis5D, which
probably has the fastest response
times of any major 3D visualization
system. This has partly been a mat-
ter of efficient algorithms and cod-
ing. But there are also natural

tradeoffs in system designs. In the design of Vis5D we
gave the big data and response time problems priority
over the next two problems on my list: pretty pictures
and abstraction.

Software evolution is guided by problems like the five
discussed in this article, but you could also say that the
evolution is driven by technological change. Such
change is generally not gradual, but rather comes in the
form of precipitating events. For 3D visualization, the
major precipitating event was the ability of hardware to
render 3D shaded scenes at reasonable animation frame
rates. Our focus on response time in Vis5D reflected an
understanding that the evolution of visualization soft-
ware was being driven by this leap forward in hardware
rendering performance.

Problem 3: Pretty pictures
A wonderful old friend in the US National Weather

Service, Hank Schmidt, once told me I produced “Monty
Python weather graphics.” As a big Python fan I took it
as a compliment, but the reality is I have always been a
true believer in interactivity and fast responses and so
regarded some users’ desires for pretty pictures as a nec-
essary evil. You could say that I was much more inter-
ested in OpenGL than Adobe PostScript. Nevertheless,
image quality can be a show stopper for some organi-
zations, especially when they need to produce images
for publication.

Image quality has several dimensions. One important
factor is including informative labels and rendering
them using good fonts. Scientists also like cleanly ren-
dered axis scales, and labeled color wedges embedded
in images for variables depicted by pseudocolor.
Information density should be neither cluttered nor
sparse. In systems that support interactive zoom, this
means progressively adjusting detail as users zoom.
Also, fonts should remain at constant screen size with

Visualization Viewpoints

10 November/December 2004

1 Image of an ECMWF Hurricane Bonnie simulation generated using Vis5D.

zoom. In many cases this requires moving text and other
graphical elements so as to leave reasonable gaps
between text and surrounding graphics, as font sizes
change. We have devoted considerable effort in VisAD
to the issues of axis scales, labels, fonts, and dynamic
changes with zoom. Of course, antialiasing is another
important quality factor that is fortunately built into
OpenGL.

In addition to all these rendering details, scientists
want to maintain high quality throughout the printing
process. This largely translates into the ability of sys-
tems to output images as PostScript or PDF files, rather
than in raster file formats like TIFF and JPEG. This is a
real challenge for visualization systems based on
OpenGL or similar 3D libraries. Figure 2 shows an image
produced as an encapsulated PostScript file using
MathWorks Matlab. Our Vis5D and VisAD systems can
only produce raster images embedded in PostScript,
which has always been a problem for some users. The
GL2PS library, started in 2000, provides a better option
for producing PostScript files from OpenGL programs.

I have to confess that among the top five problems
that drove my work, pretty pictures has had the least
personal appeal for me although I couldn’t ignore it
completely. The only interesting part of the problem was
making image contents change in response to user inter-
actions with viewpoints.

Problem 2: Abstraction
Before I got interested in visualization I was interest-

ed in mathematics, so I’ve put a lot of effort into the
problem of abstraction. In fact, this is the only problem
that I’ve included both in this list and in my earlier list of
top ten problems that will drive future visualization

work. An abstraction provides a framework for thinking
about visualization and classifying the options available.

One early abstraction for visualization and comput-
er graphics in general was the data flow model of pro-
gramming. This modeled the flow of information from
raw data to final rendered images, through a series of
information transformation processes such as resam-
pling, isosurface generation, projection from 3D to 2D,
clipping, and so on. One nice feature of this abstraction
was its natural interface to visual programming, where
users could design visualization processes by drawing
networks of primitive processes. Data flow visual pro-
gramming was the basis for a number of successful sys-
tems, including AVS and IBM Data Explorer. I resisted
the pressure to adopt this abstraction as the basis for my
own systems, for reasons explained in the August 2000
VisFiles column.2

I was much more enthusiastic about data modeling
abstractions. These abstractions have long been the
focus of database research, progressing through the
hierarchical, network, and relational data models. While
scientific visualization data models primarily resemble
the hierarchical data model, they are distinguished by
their focus on continuous data spaces and sampling
topologies. Some early visualization efforts suffered
from the lack of information for locating data in time
and space, and systematic data models provided an
abstraction for designing file formats and visualization
systems that overcame these problems.

Our VisAD system was designed around a compre-
hensive data model, and introduced another abstrac-
tion for the visualization process factored into a set of
mappings from primitive data variables to primitive dis-
play variables. Figure 3 (next page) shows a user-inter-

IEEE Computer Graphics and Applications 11

Crystal-Face AERI water vapor profiles: 20020729
15

12.5

10

7.5

5

2.5

2.0

1.5

1.0

0.5

0
17 17.5 18 18.5 19 19.5 20 20.5 21

Time (Universal Time or UTC)

H
ei

gh
t

(k
m

)

2 Publication-
quality image
generated by
Kris Bedka and
Wayne Feltz
using Matlab.

C
ou

rt
es

y
of

 W
ay

ne
 F

el
tz

 a
nd

 K
ris

 B
ed

ka
.

face component from the VisAD SpreadSheet based on
this abstraction. A data schema for a time sequence of
earth-navigated satellite images is shown in the top two
text areas, the list of primitive data variables is shown
in the “Map from” area, the list of primitive display vari-
ables is shown in the “Map to” area, and a possible set of
mappings is listed in the “Current maps” area.

The VisAD design was also driven by a major precip-
itating technology event: the physical connection of
almost all computers in the world via the Internet. This
event drove the software evolutions of distributed object
technology and Sun Microsystems Java, which as far as
possible unifies the syntax and semantics of local and
remote objects (if the network is the computer, then Java
is the language designed for programming that com-
puter). Distributed objects constitute another important
abstraction for visualization and other computer appli-
cations, and are fundamental to the VisAD design.

The final problem listed in Chris Johnson’s recent
Visualization Viewpoints column is a call for a theory of
visualization. One approach to such a theory is an
abstraction, defining various kinds of mathematical
structures on sets of data and sets of depictions, and
treating visualization as a mapping between these sets
that preserves mathematical structure.3,4 That is, to view
visualization as a sort of isomorphism between a data
space and a depiction space. Some examples of mathe-
matical structures include:

■ equality (requiring that visualization be a one-to-one
mapping from data to depictions),

■ topology (requiring that visualization be a continu-
ous mapping),

■ metric (requiring that visualization mappings pre-
serve distance),

■ lattice (these are lattices of whole data spaces, rather
than, say, a lattice of samples in one data grid), and

■ vector (requiring that visualization be a linear
mapping).

While abstractions are interesting in their own right,
they can also be used as the basis for flexible and general
systems. A good abstraction defines a framework that
can accommodate new and unpredicted needs, giving
systems longer, useful lifetimes.

Problem 1: Find funding
This may sound cynical, but the visualization

researchers I know spend as much time and effort on
this problem as any. My strategy for solving it was to
build large communities of individual and institutional
users of my systems, who could lobby funding agencies
on my behalf or provide funds directly. So I’ll rephrase
this problem as Problem 1: Find users.

Problem 1 redux: Find users
Solving this problem is the real test of the utility of

visualization techniques and systems, and ignoring this
problem runs the risk of wasting your time and
resources. The first problem in Chris Johnson’s list was
a call for visualization researchers to become more
engaged with their users. I heartily agree.

The first step in solving this problem is being open to
users wherever they come from. It’s tough when you have
to entice specific people to use your work, since they may
be among the vast majority who don’t want to go to the
effort to learn new tools. But there’s usually someone out
there who is looking for something new, and they can
lead the way for the rest. The second step is to have open
communications with your users, which means taking
their suggestions seriously and constructively, and letting
them know what you can and cannot do for them. The
first version of VisAD, written in C, had only a couple users
and they didn’t like it much. So I thought long and hard
about their complaints and was open to suggestions when
we redesigned the system in Java. Similarly, Vis5D ben-
efited greatly by users’ suggestions. Many were against
my instincts but turned out to be right in practice.

One great thing about open source is that your user
communities also become your developer communities.
Enthusiastic users are always looking for ways to make
the system better, and with open source they often do it
themselves. Furthermore, many institutions won’t give
you funding but they are happy to provide their own pro-
grammers to help with development. In fact, nothing
seems to motivate institutions better than letting them
take over development of successful systems. All three of
my systems, Vis5D, Cave5D, and VisAD, are now in the
care of others. Vis5D is being developed as the Vis5d+ sys-
tem on SourceForge, and as D3D by the National Ocean-
ic and Atmospheric Administration’s Forecast Systems
Lab. Cave5D was first taken over by Old Dominion Uni-
versity, and now by Argonne National Lab. VisAD devel-
opment is now focused in the Integrated Data Viewer
system at the Unidata Program Center, the AIFS system

Visualization Viewpoints

12 November/December 2004

3 VisAD SpreadSheet user interface component for specifying mappings
from primitive data variables to primitive display variables.

at the Australian Bureau of Meteorology, the new
Man–Computer Interactive Data Access System (McI-
DAS) V version at the University of Wisconsin, and other
systems. The use of McIDAS is especially gratifying, since
my systems grew out of McIDAS in the early 1980s.

There was an interesting difference between the
development of the Vis5D and VisAD user communities.
Large institutions resisted using Vis5D in the early days,
in many cases feeling they could develop their own
equivalent. So the user community started with indi-
viduals. Institutions signed on after they learned it was-
n’t so easy to rewrite the system (many of these efforts
were based on data flow systems, which have a hard
time replicating certain features of Vis5D). However,
the VisAD community included some important insti-
tutions early on. I suspect this was based on the credi-
bility gained from Vis5D. It takes awhile for these
systems to mature to the point where they are really use-
ful, and our institutional partners in VisAD development
have experienced some pain waiting for that maturity.

Conclusion
It’s the combination of different problems that makes

research, or life, interesting. The really hard problem is
to create a system based on general abstractions that
provides fast response times and pretty pictures with big
data sets, and appeals to users and funding agencies.

Many readers will want to think about what’s left to
accomplish on these problems, or what other problems

will motivate the future of visualization. My own
thoughts were laid out in the May 1999 VisFiles column.
And you can read the thoughts of Chris Johnson and
others who have written Visualization Viewpoints arti-
cles and review an IEEE Visualization 2004 panel dis-
cussion organized by Theresa-Marie Rhyne.5 ■

References
1. W. Hibbard, “Top Ten Visualization Problems,” Computer

Graphics, May 1999, pp. 21-22.
2. W. Hibbard, “Confessions of a Visualization Skeptic,” Com-

puter Graphics, Aug. 2000, pp. 11-13.
3. W. Hibbard, C.R. Dyer, and B. Paul, “Toward a Systematic

Analysis for Designing Visualizations,” Scientific Visual-
ization: Overviews, Methodologies, and Techniques, G.M.
Nielson, H. Hagen, and H. Mueller, eds., IEEE CS Press,
1997, pp. 229-251.

4. M. Hutchins, Modelling Visualisation Using Formal Algebra,
doctoral dissertation, Dept. of Computer Science, Aus-
tralian Nat’l Univ., 1999.

5. T.-M. Rhyne et al., “Can We Determine the Top Unresolved
Problems of Visualization?” to be published in Proc. IEEE
Visualization 2004 Conf., IEEE CS Press.

Contact Bill Hibbard at billh@ssec.wisc.edu.

Contact Theresa-Marie Rhyne at tmrhyne@ncsu.edu.

IEEE Computer Graphics and Applications 13

great reasons to

renew your IEEE

Computer Society

membership

1. New for 2004, an online reference book membership benefit – free!

2. Access to any or all of 100 distance-learning courses – free!

3. Personal subscription to Computer magazine – free!

4. Opportunity to subscribe to the complete IEEE Computer Society Digital Library or
individual periodicals in your specialty area at the lowest available rates.

5. Advance notice of more than 150 IEEE Computer Society conferences, symposia,
and workshops—plus generous discounts on registration fees.

6. Discounts on print books, tutorials, conference proceedings, and extended online
reference book collections too!

7. Opportunities to participate in 40+ Technical Committees and over 160 Standards
Working Groups.

8. Membership in the nearest of over 150 local chapters worldwide – free!

9. Prestigious email alias of your.name@computer.org – free!

10. Be part of the profession and a network of over 100,000 of the best and brightest
computing professionals around the world.

1010

www.ieee.org/renewalDo it today!

