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Partial-Volume Bayesian Classification of Material
Mixtures in MR Volume Data using Voxel
Histograms

David H. Laidlaw, Kurt W. Fleischer, Alan H. Barr

Abstract—We present a new algorithm for identifying the distribution ~anatomical studies, and predictive modeling of complex biolog-
of different material types in volumetric datasets such as those produced jcg| shapes and behavior.
with Magnetic Resonance Imaging (MRI) or Computed Tomography (CT).

Because we allow for mixtures of materials and treat voxels as regions, . e . . .
our technique reduces errors that other classification techniques can create A- A partial-volume classification approach using voxel his-
along boundaries between materials and is particularly useful for creating tograms.

accurate geometric models and renderings from volume data. It also has

the potential to make volume measurements more accurately and classifies We use Bayesian probability theory to estimate the highest-

noisy, low-resolution data well. probability combination of materials within each voxel-sized re-
There are two unusual aspects to our approach. First, we assume that, gion. The estimation is based on the histogram of data values

due to partial-volume effects, or blurring, voxels can contain more than ithin th . Th teri babilit hich
one material, e.g., both muscle and fat; we compute the relative propor- within the region. € posterior probability, which we max-

tion of each material in the voxels. Second, we incorporate information imize, is based on conditional and prior probabilities derived
from neighboring voxels into the classification process by reconstructing a from the assumptions about what we are measuring and how the

continuous function, p(z), from the samples and then looking at the dis- . . - . i}
tribution of values that p(z) takes on within the region of a voxel. This measurement process works [3]. With this information we iden

distribution of values is represented by a histogram taken over the region tify the materials contained within each voxel based on the sam-
of the voxel; the mixture of materials that those values measure is identi- ple values for the voxel and its neighbors. We treat each voxel as

fied within the voxel using a probabilistic Bayesian approach that matches a region (see Figure 2) not as a single point The sampling the-
the histogram by finding the mixture of materials within each voxel most ! ’

likely to have created the histogram. The size of regions that we classify is OT€M [4] allows us to reconstruct a continuous functiof),
chosen to match the spacing of the samples because the spacing is intrinsifrom the samples. We then represent all of the valuesgfgt

cally related to the minimum feature size that the reconstructed continuous - tgkes on within a voxel by creating a histogranp(f) over the
function can represent. voxel. Figure 3(a) shows samples, Figure 3(b) shows the func-

Keywords—Bayesian probability theory, discrete signal processing, fea- .: :
ture detection, function theory, geometric modeling, image processing, par- tion p(af) reconstructed from the samples, and Figure 3(0) shows

tial volume, mixture modeling and estimation, multiscale analysis, mul- @ continuous histogram calculated froifx).
tispectral classification, multivariate segmentation, magnetic resonance  \We assume that each voxel is a mixture of materials, with
imaging microscopy, scale space, tissue classification, volume measurementivtires occurring where partial-volume effects occur, i.e
where the band-limiting process blurs measurements of pure
materials together. From this assumption we derive basis func-
I. INTRODUCTION tions that model histograms of voxels containing a pure mate-
rial and of voxels containing a mixture of two materials. Linear

DENTIFYING different materials within sampled datasets o 2 .
) . : combinations of these basis histograms are fit to each voxel, and
can be an important step in understanding the geome

anatomy, or pathology of a subject. By accurately locating dif; ?I;nOSt likely combination of materials is chosen probabilisti-

ferent materials, we can identify them as individual parts an . .
) : The regions that we classify could be smaller or larger than
measure their size and shape. We can also use the spatial loca-

tion of materials to selectively visualize parts of the data, thyf xels. Smaller reglons_\{vou]d include less information, and so
better controlling a volume-rendered image [1], a surface moder context for the classification would be reduced and accuracy
[2], or a volume model created from the data ,and making vi§N|-OUId suffer. Larger regions would contain more complicated

' ' ometry because the features that could be represented would

ble otherwise obscured or subtle features. Classification is a lgegy . )
; ; smaller than the region. Again, accuracy would suffer. Be-
step towards understanding such geometry. Figure 1 shows an

example of classified MRI data; each color represents a sin fise the spacing (.)f sample values is intrinsically Te'a‘ed to the
o o o Inimum feature size that the reconstructed continuous func-
material identified within the data.

Applicat f classified | q i del tion, p(z), can represent, that spacing is a natural choice for the
pplications of classified images and geometric models d§1'29 of regions to be classified.

rived from them include surgical planning and assistance, di-
agnostic medical imaging, conventional computer animatiog, rejated work.
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Fig. 2. We define a sample as a scalar or vector valued element of a 2-D or 3-D
dataset. A voxel is the region surrounding a sample.

"feature space”
V,

(b) continuous

reconstruction (c) histogram

(a) sampled data

Fig. 3. Continuous histograms. The scalar data in (a) and (b) represent mea-
surements from a dataset containing two materidlgnd B, as shown in
Figure 5. One material has measurement valuesmgand the other near
vp. These values correspond to the Gaussian-shaped peaks centered around
v andvg in the histograms, which are shown on their sides to emphasize
the axis that they share. This shared axis is “feature space.”

Many of these algorithms generate artifacts like those shown
in Figure 4, an example of data classified with a maximum-
likelihood technique based on sample values. These techniques

3 (b) Results of Algorithm work well in regions where a voxel contains only a single ma-
Classified White Matter (white), Gray Matter (gray) terial, but tend to break down at boundaries between materials.
Cerebro-Spinal Fluid (blue), Muscle (red) In Figure 4 note the introduction of both stair-step artifacts, as

shown between gray matter and white matter within the brain,

and thin layers of misclassified voxels, as shown by the white

matter between the skull and the skin. Both types of artifacts

can be ascribed to the partial-volume effects ignored by the seg-
mentation algorithms and to the assignment of discrete material
types to each voxel.

[10] presents a technique that usegriori information about
brain anatomy to avoid the layers of misclassified voxels. How-
ever, this work still produces a classification where each voxel is
assigned to a single, discrete material; results continue to exhibit
stair-step artifacts. It is also very dependent on brain anatomy
information for its accuracy; broader applicability is not clear.

[11] demonstrates that accounting for mixtures of materials
within a voxel can reduce both types of artifacts, and approxi-
mates the relative volume of each material represented by a sam-
ple as the probability that the sample is that material. Their tech-
nigue works well for differentiating air, soft tissue, and bone in
CT data, but not for differentiating materials in MR data, where
Fig. 1. One slice of data from a human brain. (a) The original two-valugdie measured data value for one material is often identical to the

MRI data. (b) Four of the identified materials, white matter, gray mattefegsured value for a mixture of two other materials.
cerebro-spinal fluid, and muscle, separated out into separate images. (

Overlaid results of the new classification mapped to different colors. Note [12] @nd [13] avoid partial-volume artifacts by taking linear

the smooth boundaries where materials meet and the much lower incideg@mbinations of components of vector measurements. An ad-

of misclassified samples than in Figure 4. vantage of their techniques is that the linear operations they per-
form preserve the partial-volume mixtures within each sample
value, and so partial-volume artifacts are not created. A disad-
vantage is that the linear operations are not as flexible as non-

(c) Combined Classified Image
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Il. OVERVIEW

In this section we describe the classification problem that we
solve, define terms, state assumptions we make about the data
we classify, and sketch the algorithm and its derivation. Sec-
tions 11I-VI give more information on each part of the process,
with detailed derivations in Appendices A and B. Section VII
shows results of the application of the algorithm to simulated
MR data and to real MR data of a human brain, hand, and
tooth. We discuss some limitations and future extensions in Sec-
tion VIl and conclude in Section IX.

A. Problem statement.

The input to our process is sampled measurement data, from
which we can reconstruct a continuous, band-limited function,
p(z), that measures distinguishing properties of the underlying

materials. The output is sampled data measuring the relative
Fig. 4. Discrete, maximum-likelihood (DML) classification of the same braiyg]ume of each material in each voxel.
data shown in Figure 1. This existing method assigns each voxel to a single
material class. The class is identified here by its color: gray for gray matter, L
blue for CSF/fluid, white for white matter, red for muscle. Note the jaggeB. Definitions.
boundaries between materials within the brain and the layer of misclassified . .
white matter outside of the skull. See Section VII for more detail. We refer to the coordinate system of the space containing the

object we are measuring as “spatial coordinates,” and generally

usex € X to refer to points. This space is-dimensional,
linear operations, and so either more data must be acquired'eren is three for volume data, can be two for slices, and
classification results will not be as accurate. is one for the example in Figure 3. Each measurement, which

, . . .. may be a scalar or vector, lies in “feature space” (see Figure 3),
[14] and [15] address the partial-volume issue by identifyingip, points frequently denoted ase V. Feature space is, -

combinations of materials for each sample value. As with magy,ensional. where... is one for scalar-valued data. two for
1 v ]

other approaches to identifying mixtures, these techniques Wsg_\alued vector data, etc. Tables IV and V in Appendix B
only a single measurement taken within a voxel to represent ii$qtain these and other definitions.

contents. Without the additional information available within
each voxel region, these classification algorithms are Iimitedd'p Assumptions
their accuracy.

[16] derives a distribution of data values taken on for partial We make a set of assumptions about the objects that we are

volume mixtures of two materials. We share the distributiorlli'e"",Surlng and thg measurement proces\.c,. ) .

that they derive. Their application of the distribution, howevet: Discrete materials. The first assumption is that materials
fits a histogram of an entire dataset and then quantifies matdthin the objects that we measure are discrete at the resolution
rial amounts over the entire volume. In contrast with our workat we are sampling. Boundaries need not be aligned with the
they represent each voxel with a single measurement for cI§&MPling grid. Figure 5(a) shows an object with two materials.

sification purposes, and do not calculate histograms over sin\g\(@ make this assumption because we are generally looking for
voxels. oundaries between materials, and because we start from sam-

. , , . pled data, where information about detail finer than the sampling
[17] presents an interesting approach to partial-volume iM3%te is blurred.

ing that makes assumptions similar to ours about the underyyis 45sumption does not preclude homogeneous combinations
ing geometry being measured and about the measurement BfQsy,h_materials that can be treated as a single material at our
cess. The results of their algorithm are amat_erlal asmgnmen_té%p“ng resolution. For example, muscle may contain some
each sub-voxel of the dataset. Taken collectively, these multiplge; and yet be treated as a separate material from water. This
sub-voxel results provide a measure of the mixtures of materiglsy, mption is not satisfied where materials gradually transition
within a voxel but arrive at it in a very different manner than W o gne to another over many samples or are not relatively uni-
do. This work has been applied to satellite imaging data, agmy mixed: however, our algorithm appears to degrade grace-
so their results are difficult to compare with ours, but aspectsfgny even in these cases.
both may combine well. 2: Normally-distributed noise. We assume that noise from the
[18] gives an overview of the technique presented below in theeasurement process is added to each discrete sample and that
context of the Human Brain Project, and [19] gives a completige noise is normally distributed. We assume a different vari-
description. [20] describes an imaging protocol for acquirirgnce in the noise for each material. This assumption is not
MRI data from solids and applies our classification techniquedtrictly satisfied for MRI data, but seems to be satisfied suffi-
the extraction of a geometric model from MRI data of a humaiently to classify data well. Note that the sample values with
tooth (see Figure 10). noise added are interpolated to reconstruct the continuous func-
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For many types of medical imaging data, including MRI and
CT, these assumptions hold reasonably well, or can be satisfied
sufficiently with preprocessing [21]. Other types of sampled
data, e.g., ultrasound, and video or film images with lighting
and shading, violate these assumptions, thus our technique does
not apply directly to them.

D. Sketch of derivation.

Histograms represent the values taken orpfy) over var-

ious spatial regions. In section Il we describe the histogram
equation for a normalized histogram of data values within a re-
gion. In Section IV we use the histogram equation to create basis
functions that model histograms taken over small, voxel-sized
regions. These basis functions model histograms for regions
consisting of single materials and for regions consisting of mix-
tures of two materials. Using Bayes’ Theorem, the histogram of
an entire dataset, our histogram model basis functions, and a se-
ries of approximations, we derive an estimate of the most likely
set of materials within an entire dataset in Section V. Similarly,
given the histogram of a voxel-sized region, we derive, in Sec-
tion VI, an estimate of the most likely density for each material
in that voxel. The classification process is illustrated in Figure 6.

(a) Real World Object

(b) Sampled Data

Fig. 5. Partial-volume effects. We start from the assumption that in a real-world IIl. NORMALIZED HISTOGRAMS
object each point is exactly one material, as in (a). The measurement process . . . . .
creates samples that mix materials together: from the samples we reconstrud this section we present the equation for a normalized his-

a continuous, band-limited measurement functjefn;). PointsP1 andP»  togram of a sampled dataset over a region. We will use this

lie inside regions of a single material. PoiPj lies near a boundary between equation as a building block in several later sections. with re-
materials, and so in (b) lies in the A&B region where materials A and B are. !

mixed. The grid lines show sample spacing and illustrate how the regiddiONns that vary from the size of a single voxel to the size of the
may span voxels. entire dataset. We will also use this equation to derive basis
functions that model histograms over regions containing single
materials and regions containing mixtures of materials.
tion, p(z). The effect of this band-limited noise is discussed o 5 given region in spatial coordinates, specified7by
further in Section VI. the histogramh™ (v) specifies the relative portion of that re-

3: Sampling theorem is satisfied. The third assumption we gion wherep(z) = v, as shown in Figure 3. Because we

make is that the sampled datasets we classify satisfy the s§@; 4 dataset as a continuous function over space, histograms,
pling theorem [4]. The sampling theorem states that if we SaR () : R™ — R, are also continuous functions:
: , :

ple a sufficiently band-limited function, we can exactly recon-

struct that function from the samples, as demonstrated in Fig- R

ure 3(b). The band-limiting creates smooth transitiong(ir) h™(v) = /R(m)é(p(m) —v)dz (1)

as it traverses boundaries where otherwige) would be dis- i i i i ,
continuous. The intermediate region of Figure 5(b) showsEguation 1 is the continuous analogue of a discrete histogram.
sampling grid and the effect of sampling that satisfies the Sa?%(a:) is non-zero within the region of interest and integrates to

pling theorem. Partial-volume mixing of measurements occlf8€- We seR(x) constant in the region of interest, making ev-
in the region labeled “A & B.” Multi-slice MRI acquisitions do €'Y SPatial point contribute equally to the histograff(v), but

not satisfy this assumption in the through-plane direction. FBr(%) can be considered a weighting function that takes on val-
neues other than zero and one to more smoothly transition between
4: Linear mixtures. Each voxel measurement is a linear confdiacent regions. Note also thelt (v) integrates to one, which
bination of pure material measurements and measurement§'gRNS that it can be treated as a probability density function, or
their pair-wise mixtures created by band limiting (see Figure 8]0F-d is the Dirac-delta function.

5: Uniform tissue measurementsMeasurements of the same, i | hist

material have the same expected value and variance througho‘u? omputing voxet histograms.

a dataset. We calculate histograms in constant-sized rectangular “bins,”
6: Box filtering for voxel histograms. The spatial measure-sized such that the width of a bin is smaller than the standard
ment kernel, or point-spread function, can be approximated byeviation of the noise within the dataset. This ensures that we
box filter for the purpose of deriving histogram basis functionslo not lose significant features in the histogram.

7: Materials identifiable in histogram of entire dataset. The We first initialize the bins to zero. We subdivide each voxel
signatures for each material and mixture must be identifiableiimo sub-voxels, usually 4 for 2-D data or 8 for 3-D data, and
a histogram of the entire dataset. evaluatep(z) and its derivative at the center of each sub-voxel.
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Fig. 7. Parameters for histogram basis function. (a) Single-material histogram
parameters include the mean value for the material, asidvhich measures
the standard deviation of measurements (see Equation 2). (b) Correspond-
ing parameters for a two-material mixture basis functieg.ands; affect
the slopes of the two-material histogram basis function at either end. For
vector-valued data; ands are vectors and are the mean values and standard
deviations of the noise for the two constituent materials (see Equation 3).

A&B

Fitted Histogram

Histograms of
Voxel-sized
Regions,hVoX )

consisting of pairwise mixtures of materials. Other voxel con-
tents are also possible and are discussed in Section VIII. The
parameters of the basis functions specify the expected value,
and standard deviatios, of each material's measurements (see
Figure 7).

We use Equation 1 to derive these basis functions which we
fit to histograms of the data. We then verify that the equations
provide reasonable fits to typical MR data, which gives us con-
fidence that our assumptions about the measurement function,
p(z), are reasonable. The details of the derivations are in Ap-
pendix A.

For a single material, the histogram basis function is a Gaus-
sian distribution:

mostly B

Fitted
Histograms

mixture
A&B
Ny

W “’“ fsingle(v;ca 5) = (I[l ﬁ) €xXp (-%i <vi ; ci>2> )

Material Densities (2
wherec is the vector-valued meas the vector-valued standard
Fig. 6. The classification process. We collect MR data, calculate a hgeviation, andv;, c;, and s; scalar components af, ¢, and s,
i 11 i . . . . . .
togram of the entire datasét®"(v), and use that to determine parameterIeSpectlvewl We derive this equation by manipulating Equa-

of histogram-fitting basis functions, one for each pure material and one for | d . i ial. wh h
each mixture in the dataset. We then calculate histograms of each vo Ken 1 evaluated over a region of constant material, where the

sized regionh¥°*(v), and identify the most likely mixture of materials for measurement functiom,(z), is a constant value plus additive,
that region. The result is a sampled dataset of material densities within eggiymally-distributed noise. Because the noise in different chan-
. . . .
voxe nels of multi-valued MRI images is not correlated, the general
vector-valued normal distribution reduces to this equation with

w

__—I.I

p(z) is interpolated from the discrete data using a tri-cubic B-€70 co-variances. _

spline basis [22] that approximates a Gaussian. Thus, functiod " mixtures along a boundary between two materials, we
and derivative evaluations can be made not only at sample loggLive another equation similarly:

tions, but anywhere between samples as well. From the function L

vglug and the _derivative we use Equation 1 to calculate the con- Faouble(v; ¢, 8) = / kn((1 = t)er +tes —v3s)dt (3)
tribution of a linear approximation gf(z) over the sub-voxel 0

to each histogram bin, accumulating the contributions from all . ) . ] o

would obtain by evaluating only the function values at the sanféluation 1 evaluated over a region where two materials mix.
number of points. In this case, we approximate the band-limiting filter that causes

partial-volume effects with a box filter and make the assump-
tion that the variance of the additive noise is constant across the
region. This basis function is a superposition of normal distribu-
tions representing different amounts of the two constituent pure
In this section we describe basis functions that model hiswaterials.k,, is the normal distribution, centered at zetdhe
tograms of regions consisting of pure materials and of regioreative quantity of the second materialicomprised of:; and

IV. HISTOGRAM BASIS FUNCTIONS FOR PURE MATERIALS
AND MIXTURES
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two-material mixtures. We define,, as the number of pure

materials in a dataset, amd: as the number of histogram ba-

sis functions. Note thaiy > n,,, sinceny includes any basis

functions for mixtures, as well as those for pure materials.
The optimization minimizes the function

. Hall 2
£ ¢, 5) = %/ (M) v, (4)

w(v)

with respect tam®!, ¢, ands, where:

ny
g(v;0™,¢,5) = B () =Y o fi(vicy,85)  (5)
j=1

Note thatf; may be a pure or a mixture basis function and that
its parameter; will be a single feature-space point for a pure

Fig. 8. Basis functions fit to histogram of entire dataset. This figure illustraté8aterial or a pair for a mixture. The functiar(v) is analogous
the results of fitting basis functions to the histogram of the hand datasgl. a standard deviation at each point,in feature space, and

The five Iabel(_ed circu_lar regions repres_ent the distr!bution of data valuglﬁ/es the expected value M(U” We approximateu(v) as a

for pure materials, while the colored regions connecting them represent the . . . .

distribution of data values for mixtures. The mixture between muscle (re@PnStant, and discuss it further in Section VIIl. .
and fat (white), for example, is a salmon-colored streak. The green streakEquations 4 and 5 are derived in Appendix B using Bayesian

between the red and yellow dots is a mixture of skin and muscle. These f“}?ﬁbbability theory with estimates of prior and conditional prob-

basis functions were used to produce the classified data used in Figure 11, .. .
abilities.

Vo

c») the expected values of the two materials, artde standard V1. CLASSIFICATION

deviation of measurements. In this section we describe the process of classifying each
The assumption of a box filter affects the shape of the reswigxel. This process is similar to that described in Section V
ing histogram basis function. We derived similar equations féer fitting the histogram basis functions to the entire dataset
different filters (triangle, Gaussian, and Hamming), but choséstogram, but now we are fitting histograms taken over small,
the box filter derivation because we found it sufficiently accioxel-sized regions. We use the previously computed histogram
rate in practice and because its numerical tractability saves digsis functions calculated from the entire dataset histogram and

nificant computation. no longer vary the mean vecter,or standard deviatios, The
only parameters allowed to vary are the relative material vol-
V. ESTIMATING HISTOGRAM BASIS FUNCTION umes (vector'°*), and an estimate of the local noise in the
PARAMETERS local region (vectoiV) (see Equations 6 and 7).

In this section we describe parameter-estimation procedure©Ver large regions including many voxels, the noisg i)
for fitting histogram basis functions to a histogram of an entjfé normally distributed, with zero mean; however, for voxel re-
dataset. For a given dataset we first calculate the histogr&Hns the noise mean is generally non-zero. This is because nor-
h2(v), of the entire dataset. We then combine an interactipadlly d|§tr|buted noise is added to each sample value, not to
process of specifying the number of materials and approxim&@ch point ofp(z). When the samples are used to reconstruct
feature-space locations for them with an automated optimiz4#), the values(z) takes on near a particular sample tend to
tion [21] to refine the parameter estimates. Under some circuf® Similar, and so have a non-zero mean. We label the local
stances, users may wish to group materials with similar még€an voxel noise valus’. As derived in Appendix B the equa-
surements into a single “material,” whereas in other cases tH@p that we minimize, with respect to™* and N, is:
may wish the materials to be separate. The result of this pro-
cess is a set of parameterized histogram basis functions, together ~ 18 /NN 1 g(v; v, N) 2
with values for their parameters. The parameters describe thé(a'**, N) = = Z ( ’) + —/ ( : ’ ) dv
various materials and mixtures of interest in the dataset. Fig- i=1 2
ure 8 shows the results of fitting a histogram. Each colored re- (6)
gion represents one distribution, with the labeled spot-shapéaere
regions representing pure materials and connecting shapes rep- ny
resenting mixtures. q(v;a"* N) = h"*(v — N) — Z af fi(v),  (7)
To fit a group of histogram basis functions to a histogram, j=1
as in Figure 8, the optimization process estimates the relative . = = = | , i
volume of each pure material or mixture (vecté¥'), and the e Minimization is subject to the constraints
mean value (vectar) and standard deviation (vectoyof mea- ny
surements of each material. The process is derived from the 0 <aj®™ <1, and Za}"" =1,

assumption that all values were produced by pure materials and i=1

o w(v)
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and vectow is the standard deviation of the noise over the entire TABLE |

dataset. For MR data the standard deviations in the signals fgt"PARATIVE RMS ERROR FOR THREE ALGORITHMSPVB, PPVC AND

different materials are reasonably similar, and so we estideléXEL. THE PPVC/PVBCOMPARISON IS FROM A SIMULATED DATA TEST

o to be an average of the standard deviations of the histogram CASE ''LUSTRATED INFIGURE9, SNR=14.2. HE PPVC/MXEL

basis functions. COMPARISON IS TAKEN FROMFIGURES7 AND 8 IN [14], SNR=21.6. PVB,
Wlth optimal VeCtOI'OéVOX fOf a given VOXG'-SiZGd region and IN THE PRESENCE OF MORE NOISEREDUCES THEPPVC RMSERROR TO

the mean value, vectar, within that region, we solve for the APPROXIMATELY HALF THAT OF THE MIXEL ALGORITHM .

amount of each pure material contributed by each mixture to the

voxel. This is our output, the estimates of the amount of each Improvement Ratio
pure material in the voxel-sized region. PPVC  PVB PPVC/PVB
Background 20% 6.5% 3.09
~ vox o Outer 25% 4.3% 5.79
v = / R (W) =3 i fringle(v) | dv (8) Inner 20%  6.5% 3.04
_ ns th anature of the bortion of the hi PPVC Mixel _ PPVC/Mixel
v contains the mean signature of the portion of the histogram Background 16%  95% 168
that arises only from regions with partial-volume effects. We o
determine h h of h t of Dairwi .~ Tumor 21% 13.5% 1.56
te ermTe. :)w mulc(:]I bo eacd %utre componen othpa|rW|se rtmx- White matter  37%  16.0% 231
ure materials would be needed to genefatgiven the amoun Gray matter 36% 17.0% 511
of each mixture that¥°* indicates is in the voxeli, repre-
. . : . R CSF 18% 13.0% 1.38
sents this relative amount for mixtuke with ¢;, = 0 indicating
. ; : \ All other 20% 10.0% 2.00
that the mixture is comprised of only the first pure component,
t;, = 1indicating that it is comprised of only its second compo- TABLE I

nent, and intermediate valuestgfindicating intermediate mix-
tures. Thet. values are calculated by minimizina the followin COMPARATIVE VOLUME MEASUREMENT ERROR FOR THREE ALGORITHMS
) k y g g(PVB, PPVCAND MIXEL). THE PPVC/PVBCOMPARISON IS FROM THE

equation with respect t subject to the constraift< ¢ < 1. SIMULATED DATA TEST CASE ILLUSTRATED INFIGURE 9, SNR=14.2. HE

PPVC/MXEL COMPARISON IS TAKEN FROMFIGURE 9 AND TABLE V IN

ny 2 [14], SNR=21.6.
E(t) = (U - > (trora + (1 tk)%b)) (9)
h=nm+1 PPVC PVB| PPVC Mixel
Vectorey, is the mean value for the first pure material compo- 22% 0.01%| 5.6% 1.6%
nent of mixturek, and vectogey, the mean value for the second -5.3% -0.45%| 44.1% 7.0%
component. The total amount of each material is the amount of 0.3% 0.15%

pure material added to thg-weighted portion of each mixture.
VIl. RESULTS has been introduced between the two lighter regions, and where
We have applied our new technique to both simulated ajafjged boundaries occur between each pair of materials. In both
collected MRI datasets. When results can be verified and ceases this is caused by partial-volume effects, where multiple
ditions are controlled, as shown with the classification of simumaterials are present in the same voxel.
lated data, the algorithm comes very close to “ground truth,” or Table | shows comparative RMS error results for the PPVC
perfect classification. The results based on collected data illasd PVB simulated data results, and also compares PPVC with
trate that the algorithm works well on real data, with a geomettice Mixel algorithm. Signal-to-noise ratio (SNR) for the data
model of a tooth showing boundaries between materials, a sesed in PPVC/PVB comparison was 14.2. SNR for the data
tion of a human brain showing classification results mapped osed in PPVC/Mixel comparison was 21.6. Despite lower SNR,
to colors, and a volume-rendered image of a human hand sh&®VC/PVB RMS error improvement is approximately double
ing complex geometric relationships between different tissuethat of the PPVC/Mixel improvement. RMS error is defined as
We compare our Partial Volume Bayesian algorithm (PVB)/Y_, (a(z) — p(z))?, wherea(z) is classified data ang(z)
with three other algorithms. The first, DML (Discrete Maximunis ground truth. The sum is made only over voxels that contain
Likelihood), assigns each voxel or sample to a single materialltiple materials.
using a Maximum Likelihood algorithm. The second, PPVC Table Il shows similar comparative results for volume mea-
(Probabilistic Partial Volume Classifier), is described in [235urements made between PPVC and PVB on simulated data,
and the third is a Mixel classifier [14]. and between PPVC and Mixel on real data. Volume measure-
PVB significantly reduces artifacts introduced by the othenents made with PVB are significantly more accurate that those
techniques at boundaries between materials. In Figure 9 meade with PPVC, and the PPVC to PVB improvement is better
compare performance of PVB, DML and PPVC on simulatatian the PPVC to Mixel improvement.
data. PVB produces many fewer misclassified voxels, particu-Figures 1 and 4 also show comparative results between PVB
larly in regions where materials are mixed due to partial-volunad DML. Note that the same artifacts shown in Figure 9 occur
effects. In Figure 9(b) and (d) the difference is particularly navith real data and are reduced by our technique.
ticeable where an incorrect layer of dark background materialModels and volume-rendered images, as shown in Figures 10
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dAdddde

(a) ground truth (b) DML (c) PVB (d) PPVC (e) Slice Geometry

Fig. 9. Comparison of DML classification (b), our new PVB classification (c), and PPVC classification (d). (a) is a reference for what “ideal” sassifast
produce. Note the band of dark background material in (b) and (d) between the two curved regions. This band is incorrectly classified, and cautitdead to e
in models or images produced from the classified data. The original dataset is simulated, two-valued data of two concentric shells, as showrSNRe), wit
of 14.2.

TABLE Ill
MRI DATASET SOURCESACQUISITION PARAMETERS AND FIGURE
REFERENCES

Object Machine  Voxel Size Ty /T, /Tr, Figs.

mm s/ms/ms
shells  simulated 1.97 x 3 N/A 9
brain  GE 0942 x3  2/25/50 1,4
hand  GE 0.72x3  2/23/50 11
tooth  Bruker  0.3123 15/0.080 10

Fig. 11. A volume-rendering image of a human hand dataset. The opacity of
different materials is decreased above cutting planes to show details of the
classification process within the hand.

and 11, benefit from our new techniques because less incorrect
information is introduced into the classified datasets, thus the

images and models more accurately depict the objects they are
representing. Models and images such as these are particularly
sensitive to errors at geometric boundaries because they illus-
trate the underlying geometries.

Table 11l lists the datasets, the MRI machine they were col-
lected on, some collection parameters, the voxel size, and the
figures in which each dataset appears. The GE machine was a
1.5T Signa. The Bruker machine was an 11.7T AMX500. Ac-
quired data were collected with a spin-echo or fast spin-echo
protocol, with one proton-weighted and dfigweighted acqui-
sition. The tooth was acquired with a technique described in
[20]. Preprocessing was only performed on data used for the
hand example (Figure 11). For this case each axial slice was
Fig. 10. A geometric model of tooth dentine and enamel created by Co"thuItipIied by a constant and then offset by another to compen-

ing MRI data samples using a technique that images hard solid materials for i itv falloff f . f the di f h
[20] and classifying dentine, enamel, and air in the volume data with oﬁpte or Intensity alo as a function of the distance from the
new PVB algorithm. Polygonal isosurfaces define the bounding surfacesc@nter of the RF coil. The constants were chosen to make the

the dentine and enamel. The enamel-dentine boundary, shown in the |gf¢an values of user-identified material regions consistent from
images, is difficult to examine non-invasively using any other technique. slice to slice
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VIll. DIscuUssION

Pure A Pure C
We have made several assumptions and approximations while Pure B

developing and implementing this algorithm. This section will g
discuss some of the tradeoffs, suggest some possible directions g
for further work, and consider some related issues. = AGC

. ) & B&
A. Mixtures of three or more materials.

Image intensity

We assume that each measurement contains values from at
most two materials. We chose two-material mixtures based on ()
a dimensionality argument. In an object that consists of regions
of pure materials, as shown in Figure 5, voxels containing one .
material will be most prevalent because they correspond to vol- "
umes. Voxels containing two materials will be next most preva-
lent, because they correspond to surfaces where two materials
meet. As such, they are the first choice to model after those
containing a single material. Our approach can be extended in a
straightforward manner to handle the three-material case as well
as cases with other less-frequent geometries, such as skin, tubes
or points where four materials meet. This extension could be
useful for identifying sub-voxel-sized geometry within sampled
data, thus extending the resolution.

B. Mixtures of materials within an object.

Based on our assumptions, voxels only contain mixtures of
materials when those mixtures are caused by partial-volume ef—v1
fects. These assumptions are not true in many cases. By relaxing
them and then introducing varying concentrations of given ma-
terials within an object, one could derive histogram basis func-
tions parameterized by the concentrations and could fit them to
measured data. The derivation would be substantially similar to
that presented here.

C. Benefits of vector-valued data.

A ith ther techni K t | Fig. 12. Benefits of histograms of vector-valued data. We show histograms
S With many other techniques, ours works on vector-valued: ; 5, object with three materials. (a) This histogram of scalar data shows

volume data, in which each material has a characteristic vec- that material mean values are collinear. Distinguishing among more than
tor value rather than a characteristic scalar value. Vector-valuedtwo matefiaISf is often almb;gléous (? ar?d (C% are two reﬁresenhations of
: Istograms of vector-value: ata and show that mean values often move
datas,e_ts have a number of advantages and generally give bettez\way from collinearity in higher dimensions, and so materials are easier
classification results. Such datasets have improved SNR and fréo distinguish. High/bright locations indicate more-comnieg, v1) data

guently distinguish similar materials more effectively (see Fig- values. While less likely, (d) shows that the collinearity problem can exist
ure 12). with vector-valued data.

D. Partial mixtures.

We note that the histograma;**(v), for some voxel-sized , pettar match histograms [18], [19]. Modeling the histogram
regions are not ideally matched by a linear sum of basis f“‘k‘-}iape as a function of the distance of a voxel from a boundary
tions. We discuss two possible sources of this mismatch.  payveen materials is likely to address both of these effects and

The first source is the assumption that within a small regigf,e 5 result with a physical interpretation that will make geo-

we still have normally distributed nois& models the fact that eric model extraction more justifiable and the resulting mod-
the noise no longer averages to zero, but we do not attempLQ more accurate.

model the change in shape of the distribution as the region size
shrinks. We postulate that these two effects weight the optimization
The second source is related. A small region may not cgorocess such that it tends to makenuch larger than we expect.
tain the full range of values that the mixture of materials caks a result, we have found that settingv) to approximately 30
produce. The range of values is dependent on the bandwidthiofes the maximum value ihv°*(v) gives good classification
the sampling kernel function. As a result, the histogram ovegsults. Smaller values tend to alloWwto move too much, and
that small region is not modeled ideally by a linear combinatidarger values hold it constant. Without these problems we would
of pure material and mixture distributions. We are investigaéxpectw(v) to take on values equal to some small percentage of
ing model histogram basis functions with additional parametete maximum ofi"°*(v).
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E. Non-uniform spatial intensities. containing multiple materials, it works well on low-resolution

ata, where such voxels are more prevalent. The examples also

Spatial intensity in MRI datasets can vary due to inhomﬁ- : .
geneities in the RF or gradient fields. We assume that they strate that it vvprks well on noisy datSI@R < 15)'
he construction of a continuous function is based on the

small enough to be negligible for our algorithm, but it would be

possible to incorporate them into the histogram basis functio?%mp.“ng thgorem, an'd. wh.|Ie It doe§ not introduce new |nfo'rma—
by making the parametevary spatially. tion, it provides classification algorithms such as ours a richer

context for the information. It incorporates neighbor informa-
F. Quantitative comparison with other algorithms tion into the clagsification process for a voxel in'a natural and
. ) ) ) mathematically rigorous way and thereby greatly increases clas-
_Because of the lack of a “gold standard” against which clagfication accuracy. In addition, because the operations that can
sification glgonthms can be measured,' itis difficult to compapg, safely performed directly on sampled data are so limited,
our technique with others. Each technique presents a set Ofifgating the data as a continuous function helps to avoid intro-
sults from some application area, and so anecdotal comparisgfi§ing artifacts.
can be made, but quantitative comparisons require reimplementyisiograms are a natural choice for representing voxel con-
ing other algorithms. Work in generating a standard Wouldns for a number of reasons. First, they generalize single mea-
greatly assist in the search for effective and accurate classifiggrements to measurements over a region, allowing classifica-
tion techniques. Our technique appears to achieve a given lgygh concepts that apply to single measurements to be general-
of accuracy with fewer vector elements than the eigenimagggy. second, the histograms can be calculated easily. Third, the
of [12] or the classification results of [14], which use 3-valueglisiograms capture information about neighboring voxels; this
data. Their results are visually similar to ours, and underscqfigreases the information content over single measurements and
the need for quantitative comparison. Because we interpolgigyroves classification results. Fourth, histograms are orienta-
neighboring sample values, we are able to achieve a given aGgys independent; orientation independence reduces the number

racy with two-valued or even scalar data, while their techniq@g parameters in the classification process hence simplifying and
is likely to require more vector components. [13] shows go%celerating it.

results for a human brain dataset, but we believe their techniquetial-volume effects are a nemesis of classification algo-

will be less robu§tithe presence of material mixture signaturf%ms, which traditionally have drawn from techniques that
that overlap, a situation their examples do not include. classify isolated measurements. These techniques do not take
into account the related nature of spatially-correlated measure-
ments. Many attempts have been made to model partial-volume
Our implementation is written in C and C++ on Unix work-effects, and ours continues that trend, with results that suggest
stations. We use a sequential-quadratic-programming (SQ®3t continued study is warranted.
constrained-optimization algorithm [24] to fitv®* for each We believe that the Bayesian approach we describe is a
voxel-sized region, and a quasi-Newton optimization algorithaseful formalism for capturing the assumptions and informa-
for fitting ~*!. The algorithm classifies approximately 10 voxtion gleaned from the continuous representation of the sample
els per second on a single HP9000/730, IBM RS6000/550E \wailues, the histograms calculated from them, and the partial-
DEC Alpha AXP 3000 Model 500 workstation. We have implevolume effects of imaging. Together, these allow a general-
mented this algorithm in parallel on these machines and geitzation of many sample-based classification techniques, one of
corresponding speedup on multiple machines. The performamnddch we have demonstrated.
is slower than many other methods and the current implementa-
tion would not be practical for a clinical situation. However, we X. ACKNOWLEDGMENTS
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P gag For a mixture of two pure materials, we assume the measure-

APPENDIX ment function has the form:

|. DERIVATION OF HISTOGRAM BASIS FUNCTIONS pouble(T) = Laouble(T; €1, €2) + 1(; 5) (13)

In this appendix we derive parameterized model histograms ) o o
that we use as basis functiorfs, for fitting histograms of data. Wherelaeunie @pproximates the band-limiting filtering process,
We derive two forms of basis functions: one for single, pu,@convolution with a box filter, by interpolating the values within
materials; another for two-material mixtures that arise due ¥ region of mixtures linearly betweenandc, the mean val-

partial-volume effects in sampling. Equation 1, the histogran¢s for the two materials.

equation, is:
Ldouble = (1 — t)01 + teo (14)
R (v) = / R(@)5(p(x) — v)ds
and measures a histogram of the functigm) over a region Faouble(V; €, 8) =
defined byR(z). x ranges over spatial locations, andver
feature space. Note thatgfz) contains additive noise,(z; s), /R($)5(pdoub1e (z) —v)da
with a particular distributionk,, (v; s), then the histogram qf
with noise is the convolution df,, (v; s) with p(x) —n(x; s) (i.e, = /R(x)d(édouble (z;¢1,c0) +n(x;s) —v)de
p(z) without noise).k,(v; s) is, in general, a normal distribu-
tion. Thus, = kn(v;s) * /R(:U)J(fdouble(x; c1,c2) —v)dx
1
WR0) = a(vis) [ R@B((p(o) - n(ais)) - 0)dd0) TR "
0
. 1
A. Pure Materials _ / (1= t)ey + tes — v; 5)dt (15)
0

For a single pure material we assume that the measurement

function has the form:
Il. DERIVATION OF CLASSIFICATION PARAMETER

Psingle (T) = ¢ + n(z; s) (11) ESTIMATION

_ In this appendix we derive the equations that we optimize to
wherec is the constant expected value of a measurementpig model histogram parameters and to classify voxel-sized re-
the pure materlal, and is the standard deviation of addltlve,gions_ We use Bayesian probabmty theory [3] to derive an ex-

normally-distributed noise. _ _ pression for the probability that a given histogram was produced
The basis function we use to fit the histogram of the measufgr a particular set of parameter values in our model. We maxi-
ments of a pure material is mize an approximation to this “posterior probability” to estimate

the best-fit parameters.
fsingle(v; €, 8) =

/R(m)(S(p nete () — v)dz maximize P( parameters | histogram ) (16)
single

We use this optimization procedure for two purposes:

o Find model histogram parameters Initially, we find param-
eters of basis functions to fit histograms of the entire daf&det

= Fn(vis) x /R(m)&(c —v)dz This gives us a set of basis functions that describes histograms
of voxels containing pure materials or pairwise mixtures.

= kp(v;s) * <5(c — ) /R(x)dx) « Classify voxel-sized regions We fit a weighted sum of the
basis functions to the histogram of a voxel-sized redidft.

= kn(v;s) % 6(c —v) This gives us our classification (in terms of the weights

= kn(v—cs) The posterior probabilitie®*! and P¥°* share many common

terms. In the following derivation we distinguish them only

_ ﬁ; ex _1%(1%—02')2 (12) . . I .
= Jon p 5 o where necessary, usifgywhere their definitions coincide.

/R(m)&(c +n(z;s) —v)de

i=1 Si i=1 v

Thus, fsingle(v; ¢, s) is a Gaussian distribution with mearand A. Definitions

standard deviation. v;, ¢;, ands; are scalar componentsofc, Table IV lists Bayesian probability terminology as used in [3]
ands. We assume the noise is independent in each elementafl in our derivations. Table V defines additional terms used in
vector-valued data, which for MRI appears to be reasonable.this section.
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TABLE IV

Because the elements afrepresent relative volumes, we re-
PROBABILITIES, USING BAYESIAN TERMINOLOGY FROM [3].

quire that they sum to 1 and are positive.

P(a,c,s, N|h) posterior probability (we maximize this) 0 if il a;#1

P(a,c,s,N) prior probability Pla)=¢ 0 ifaj<0ora;>1 (20)
P(h|a, ¢, s,N) likelihood p1 (constant) otherwise

P(h) global likelihood

We use a different assumption f&c, s) depending on which
fit we are doing k2! or h¥°¥). For fitting h2!!(v), we consider
all values ofc, s equally likely:

TABLE V
DEFINITIONS OF TERMS USED IN THE DERIVATIONS

Pall(cv S) = Ps6 (21)
Term Dim. Definition - L
. For fitting A¥°*, the means and standard deviations;, are
o scalar number of pure materials ' 0 0 : oo
) . fixed atc’, s” (the values determined by the earlier fit to the
ng scalar number of pure materials & mix- . )
entire data set):
tures
Ny scalar dim. of measurement (feature space) P"%(¢c,s) = 6(c— 5 — 5%) (22)
o ny relative volume of each mixture and . _ _
material within the region For a small region, we assume that the mean noise véctor,
c ng X ny mean of material measurements for has normal distribution with standard deviation
each material o s iy (&)2
s ng X ny standard deviation of material mea- P™(N) = pse T (23)

surements (chosen by procedure dis-g 5 |arge region, the mean noise vectdt, should be very
cussed in Section V) for each mate- close to zero; hence?*! () will be a delta function centered

_ rial atN = 0.
N Ny mean value of noise over the region
Di-—6 scalars arbitrary constants C.2 Likelihood.

r(v)  R™ — R histogram of an entire dataset
hv*(v) R™ — R histogram of a tiny, voxel-sized re-
gion

We approximate the likelihood?(h|a, ¢, s, N), by analogy
to a discrete normal distribution. We defipév) to measure
the difference between the “expected” or “mean” histogram for
particulare, ¢, s, N and a given histograr(v):

B. Optimization

ny
via,c,s,N)=h(v—N)— a;ifi(vye, s 24
We perform the following optimization to find the best-fit pa- al ) =h ) ; i ) (24)
rameters:
maximize P(a, ¢, s, N|h) (17) Nowwe createa normal-distribution-like functian(v) is anal-

ogous to the standard deviation @fat each point of feature
With P = P!, we fit histogram basis function parametergpace:

¢, s, o®!' to the histogram of an entire datasét,'(v). With .

P = P**, we fita*, N to classify the histogram of a voxel- P(hlayc, s, N) = pge~ 2 J (F5675) @ (95

sized regionhY°*(v).

C.3 Global likelihood.
Note that the denominator of Equation 18 is a constant nor-
We start with Bayes’ Theorem, expressing the posterior prafalization of the numerator:

ability in term of the likelihood, the prior probability, and the R . R

global likelihood. P(h) = /P(&, ¢,8, N)P(h|&, ¢, 8, N)dadédsdN(26)

= P4 (27)
(18) C.4 Assembly

C. Derivation of the posterior probability?(«, ¢, s, N|h)

P(a,c,s, N)P(h|a,c,s, N)
P(h)

P(a,c,s,N|h) =
Using the approximations discussed above, we arrive at the

Each of the terms on the right side is approximated below, usifegglowing expression for the posterior probability:
p1—¢ to denote positive constants (which can be ignored during

the optimization process). P(a,c,s, N|h) =
1es (N;)°
C.1 Prior probabilities. psP(a)P(c, s) exp —52 P (28)
We assume that, c, s, andN are independent, so 2__1 N
ox _1/<q(v;a,c,s,N)> o
P(a, ¢, 5,N) = P(a)P(c,s)P(N) (19) Pl 72 w(v)



112

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. Y, FEBRUARY 1998

For fitting 2!, the mean noise is assumed to be zero, so Ma6] Peter Santago and H. Donald Gage, “Quantification of MR brain images
imizing equation 28 is equivalent to minimizigg" to find the

free parameter&®!! ¢, s):

(17]
1 q(v;a® e, s) 2
all / all _ - ’ y Uy
E¥(a™, e, 5) = 5 / <7w(v) dv (29) 18]
subject toP (o) # 0. Because botl® (o) and P¥!!(c, s) are
constant valued in that region, they are not included. [19]

For fitting h¥°*, the parametersands are fixed, so maximiz- 5,

ing equation 28 is equivalent to minimizigg°* to find the free

parameterga‘°*, N):

[21]
n o 2 o 2
VOX VOX A7 _1 - & 1 q(v;avox’N) [22]
EV¥ ,N)—2;<Ui> +2/<7w(v) >dv
(30) 23]

subject toP(a¥°*) # 0.
As stated in Equation 6, Section VI, Equation 30 is minimized

to estimate relative material volumes°*, and the mean noise

vector,N.

(2]

3]

(4]
(3]

(6l

(7]

(8]

(20]

(11]

[12]

[13]

[14]

[15]
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