
Design and the User
Interface
CSCI2340: Software Engineering of Large Systems

Steven P. Reiss

9/19/24 CSCI2340 - Lecture 9 1

User Interfaces

• Are an essential part of modern applications
• Can make or break the application
• HCI is its own field of study
• Understanding how people interact with computers
• Understanding how to evaluate and assess interfaces
• Understanding what works, what people like
• Visual design

• Having a design background helps
• Computer scientists typically design poor user interfaces

9/19/24 CSCI2340 - Lecture 9 2

Homework Discussion

• I gave you 3 possible features to be added to bouncing balls
• Were any of them easy with your current design?
• Were any of them impossible with your current design?
• What approach do you think you would take for each?

• Let’s see what happened

10/1/24 CSCI2340 - Lecture 9 3

User Interface Types
• Command-line interfaces
• Relatively easy to deal with, but limited (git, …)

• GUIs: Workstation & phone interfaces
• Widget-based, callback-based interaction, direct manipulation
• AWT/Swing, JavaFX, Motif, Qt, WPF, Android, Swift, Dart, …

• Web interfaces
• Original model: Reload a new page each time
• Today: Update page in browser; RESTful connection to server

• Natural Language Interfaces
• Search, ChatGPT, phone bots

• VR interfaces
• OpenGL (WebGL), augmented reality, 3D headsets

9/19/24 CSCI2340 - Lecture 9 4

User Interfaces

• The user interface is often critical to success
• Difficult to get right a priori
• Often needs a prototype
• Often needs multiple prototypes

• The interface affects the rest of the application
• How it works, what it needs to do,
• What data it needs, what the user can do
• Often at the design level

• The user interface is a risk to the system and to the design
• We’ve discussed how to handle risk

9/19/24 CSCI2340 - Lecture 9 5

User Interface and High-Level Design
• How these interact varies with the application
• Where does the UI fit into the design

• Can be done later (treat as low-level design)
• Can be the driving factor for the design
• Can be in between

• It depends
• How critical the user interface is to the application

• How much the design of the UI affects the design of the application
• With a completely different interface, how much of the application would persist

• How well defined the user interface is from specifications
• How sure are you of that interface

• How separable is the user interface from the rest of the system
• Different approaches are used

9/19/24 CSCI2340 - Lecture 9 6

Deferred User Interface Design
• The UI might be important, but not central to the design
• Then the user interface is not critical at this stage
• A variety of interfaces will probably work
• You don’t need to know the best from the start

• Can prototype different interfaces later on
• Isolate the UI from the rest of the design
• Determine what information might be needed by the UI
• Determine what commands are needed by the system
• Create a component with an interface or façade for the UI
• Design of the UI is now a lower-level design problem
• Don’t even need to build a full UI initially

• Examples: SHORE, UPOD/Sherpa, S6, FAIT

9/19/24 CSCI2340 - Lecture 9 7

UI-Centric Design
• Sometimes the UI drives the application
• Then the user interface is more important
• The system should exist to support the interface

• Specifications
• Give a sketch of the user interface
• Identify the commands and operations needed

• Build the user interface first
• Rebuild it until you get it right
• Fill in the rest of the system as needed
• Even if the rest of the system is complex

• Often combined with UI-first implementation
• Examples: ROSE, DYMON

9/19/24 CSCI2340 - Lecture 9 8

UI-Pervasive Design
• Sometimes the user interface is the application
• Makes it more difficult to change
• UI tightly coupled with the rest of the code

• Designing the user interface is designing the application
• The rest of the application is secondary
• Most system components interact directly with the UI
• The rest of the application fits into the UI rather than vice versa

• Prototype ideas to get the overall UI structure correct
• Then implement a real UI and fill in the details as needed
• Still try to keep many changes local

• Examples: Code Bubbles, FREDIT

9/19/24 CSCI2340 - Lecture 9 9

Interactive Interfaces Use Callbacks
• A callback is a routine/object registered with a component

• Invoked when something changes
• Example: UI buttons, drag and drop, file monitors
• Example: Debugging events in Code Bubbles

• Useful for monitoring data structures that can change
• UI registers callbacks with from the non-UI part of the application
• SHORE: monitoring state of HO trains, sensors, etc.

• In the UI to update the display when anything changes
• Internally to continually checking safety
• Updating the planning process when that happens

• Widely used in interactive UIs
• Register callbacks with the view to handle user interactions
• Done with widgets, HTML/JavaScript, …
• Most modern applications are reactive: driven by these callbacks

• Need to add appropriate callback interfaces and methods to the design

9/19/24 CSCI2340 - Lecture 9 10

User Interface Design Goals
• Separate the user interface from the rest of the application

• UI will change (a lot)
• Want to minimize the changes on the rest of the system
• At least isolate what might change
• Even if the user interface is the application

• Freezing a bubble to rearrange the screen
• Allow experimentation with the user interface

• Prototyping in whole or in part
• Before, during and after implementation

• Allow for future expansion and changes
• In the system and the user interface

• Different strategies for UI integration
• But all can be viewed as Model-View-Controller (MVC)

9/19/24 CSCI2340 - Lecture 9 11

Model-View-Controller Architecture

9/19/24 CSCI2340 - Lecture 9 12

MVC Can Mean Almost Anything

• Many ways to implement MVC
• Many very different implementations call themselves MVC designs
• Varying degrees of independence of model, view, and controller
• Varying degrees of communication between model, view, and controller
• Varying size and complexity of view, model, and controller

• MVC means different things to different people
• The components are often entangled
• Model includes Controller
• View includes Controller
• Model includes View

9/19/24 CSCI2340 - Lecture 9 13

MVC Issues: Size of Components
• Model can be a complex component or can be trivial

• Complex: SEEDE, SHERPA, DYMON
• Trivial: ROSE (all commands, very little retained)
• In Between: SHORE, TWITTER DISPLAY, FREDIT, Code Bubbles Editor

• Controller can be a complex component or combined
• Complex: TWITTER DISPLAY
• Part of view: RESTful interfaces to microservices
• Part of Model: Code Bubbles

• View depends on user interface
• Simple set of commands (git)
• Complex interactions (TWITTER DISPLAY)
• Complex graphics (DYMON)
• VR model of the world

9/19/24 CSCI2340 - Lecture 9 14

MVC Issues : Who Talks to Whom
• Communication patterns in MVC also vary
• Can model communicate directly with view and vice versa
• View can generate model update commands directly

• RESTful applications changing the database directly
• Model generates view updates directly

• Callbacks, live data

• Or must all communication go thru the controller
• View generates commands

• Controller translates these into model updates
• Model tells the controller what has changed

• Controller translates these into view updates

10/3/24 CSCI2340 - Lecture 9 15

MVC Issues: Representation
• The view needs to understand the model in the abstract

• View shouldn’t know the (implementation) details of the model
• But needs to know what the contents are enough to display them
• Also needs to know enough to query or update
• Don’t want to duplicate the model implementation in the view

• Especially with a separate front end (web/mobile applications)
• Don’t want the view to depend on model implementation
• But this is sometimes done

• Representing the view in the abstract can be tricky
• What commands are allowed or implied?
• What does direct manipulation mean?
• How much does the controller need to know
• Does the controller need a view of the model?

9/19/24 CSCI2340 - Lecture 9 16

MVC Issues: Duplication
• The model might be duplicated
• Actual model data structures in memory
• View concept of the model (for display & editing)
• Database concept of the model (for permanent storage)
• Controller concept of the model (for update commands)
• SHERPA: user’s universe as JSON, data structures

• This means that evolving the model can be complex
• Changes required in several places of the program
• Leads to more code, errors, complexity, inefficiency

• This has led to various alternate solutions
• Accessible (public) model, ORM, embed controller in model, …

9/19/24 CSCI2340 - Lecture 9 17

MVVM Architectures

• ViewModel translates
between view and
model
• Acts as simple controller
• Makes model objects easy

to manage and present
• Handles most of views

display logic
• VUE

9/19/24 CSCI2340 - Lecture 9 18

Controller

MVC Design Example: SHORE

10/1/24 CSCI2340 - Lecture 9 19

View

Safety

Network

Model

MVC Architecture Example: SHERPA

9/19/24 CSCI2340 - Lecture 9 20

DART User Interface

Model Universe

Embedded
Web Server
Commands

RESTful

Programs Devices

SensorsConditions

Universe Storage

Execution EngineMONGODB

Exercise

• How does your programming assignment fit MVC
• All these versions of MVC; which (or none) is yours?
• Breakout into small groups
• Say hello
• Sketch out your MVC model quickly
• Discuss how your programming assignment fits the MVC model

• Do you have a model?
• Do you have a controller?
• Do you have a separate view?
• How do these interact?

• 5-10 minutes

9/19/24 CSCI2340 - Lecture 9 21

User Interface and High-Level Design
• Determine what MVC approach is appropriate
• Based on complexity of model, control, user interface
• Based on software architecture & specifications
• Based on whether UI is separate process or not
• Based on the needs of the system (importance of UI)
• Determine responsible design components

• Separate the different MVC components
• As much as possible and practical

• Avoid duplication
• Avoid implementation dependencies

• Ensure high level design reflects your approach

9/19/24 CSCI2340 - Lecture 9 22

UI-Development Alternatives

• How the UI fits into the application affects development
• It affects how one designs the application
• It affects how one designs the user interface
• It affects how one approaches the implementation as well

• Alternatives
• UI-First development
• UI-Centric development
• UI-Last development

9/19/24 CSCI2340 - Lecture 9 23

UI-First Development
• Build and test a user interface first
• Prototype
• Multiple prototypes if needed
• Relatively complete user interface

• Design the rest of the application around it
• Implement UI commands one at a time

• As needed for your scenarios
• Continually test the interface

• Executing commands
• Can build the essential pieces in parallel

• But might need to revise their interfaces to accommodate the UI
• Web apps (SphereE, Twitter Data), Code Bubbles

9/19/24 CSCI2340 - Lecture 9 24

UI-First Development Pros and Cons
• Good chance of getting the interface right
• Multiple prototypes
• Lots of experience using the interface

• Provides a framework for the application
• Provides criteria for measuring performance, usability, etc.
• Slows down application development
•More difficult for multiple-person teams
• Akin to test cases first
• User interface acts as the test framework

9/19/24 CSCI2340 - Lecture 9 25

UI-Centric Development
• Many features are tied to the UI
• Build the application based on features
• Start with a very simple user interface
• Add the UI buttons and interactive capabilities one by one

• Then add the implementations
• Add the UI for the button, then add callback, then the implementation
• Do this for each button/capability/dialog/panel/…
• Can rearrange or modify the interface once buttons work

• Choose important parts of the applications based on UI & scenarios
• Can develop much of back end in parallel
• Fits in with agile development
• Examples: DYMON, SEEDE

9/19/24 CSCI2340 - Lecture 9 26

UI-Last Development

• Get an understanding of what will be needed for the UI
• Create a component (interface/façade) for the UI
• As part of the high-level design
• Can have a dummy implementation (or none)

• Get the main implementation working
• Use the UI façade or just print statements to test it

• Then work on one or more user interfaces
• Might require minor changes to the design, but not much

• Examples: SHORE (swing/javafx), SHERPA

9/19/24 CSCI2340 - Lecture 9 27

Prototyping the User Interface

• Design methods suggest designing 3+ different user interfaces
• User can choose one or create one with ideas from all 3

• Development methods talk about building multiple UIs
• Need a concrete way of evaluating the UI
• Having the wrong UI is a risk
• Its difficult to know what is the correct UI

• Building multiple examples can be helpful
• Can be shown to user to get feedback
• Can play with it to get experience

• By yourself (too tolerant)
• By others

9/19/24 CSCI2340 - Lecture 9 28

Types of Prototypes

• Low-fidelity: paper sketches
• Akin to what is provided with specifications
• Simple and cheap to create

•Medium-fidelity: clickable prototypes
• Something the user can play with
• Not necessarily detailed or pretty, just give a sense of design
• Give a sense of flow with dummy results, etc.
• Static web pages and links for a web application
• Front-end only mobile applications
• InVision is an example of a tool for this

9/19/24 CSCI2340 - Lecture 9 29

High-Fidelity Prototypes

•What looks like a complete application
• Includes interactions and transitions
• Coding the user interface portion of the system

• Tools let you do this without the code
• InVision, Principle, Framer, UXPin, Figma, HTML w/o JavaScript

•Mocking code to replace a real back end
• Implement the calls with static (or almost static) data
• Easy to do with HTML, can be done with other models

• Usable but non-functional implementation
• User can evaluate the interface

9/19/24 CSCI2340 - Lecture 9 30

What is a Prototype

• Quick and dirty implementation to try something out
• Designed to be thrown-away, not kept
• No commitment on the developer’s part
• Not perfect, just an approximation
• Might not be performant, look the best, …
• Code is not “production quality”

• Designed to be easy to change
• Designed to be reimplemented if used

9/19/24 CSCI2340 - Lecture 9 31

Do Developers Throw Away Prototypes

• Not really
• They might refactor to clean them up
• But they typically find their way into the final code

•What’s wrong with this
• Care that goes into design and code not there
• Code is messy and difficult to maintain

• If you code a prototype, code it as if it were final
• Or code in a different language (to force throwaway)

9/19/24 CSCI2340 - Lecture 9 32

User Interface Evolution

• The user interface is going to change
• As the application evolves
• As users want more or different features
• As the environment changes
• Because users expect it to be “modern”

• Try to make this easy (or at least possible)
• A plug-in style design requires a plug-in style user interface
• Core provides hooks for adding buttons, menus, etc.
• The user interface isn’t designed as much as accumulated
• Might need to be redesigned after a while

9/19/24 CSCI2340 - Lecture 9 33

Homework Assignment

•We want to add a graphic notes to Code Bubbles
• Bubble where the user could draw, image saved for the future

• Requirements
• Should be small (sticky note sized) (minimal screen space)
• Drawing interface shouldn’t get in the way
• Only mouse button 1, pull down menus (button 3) & keys are available
• Interface not used frequently

• Must be simple & obvious or self-documenting

• Develop a possible user interface
• Submit a sketch and discussion in Canvas by Thursday 10/10

9/19/24 CSCI2340 - Lecture 9 34

PROJECT Homework

• Tuesday 10/8: Initial Project Presentations
• Tuesday 10/8: Initial High-Level Design (canvas)
• Following Tuesday (10/15):
• User interface prototype for the project
• Low-fidelity is fine for now

• Statement of how the UI fits into the application
• How it fits into the design
• Approach to be used

• Would be good to have it done earlier

9/19/24 CSCI2340 - Lecture 9 35

