The CQL Continuous Query
Language: Semantic Foundations
and Query Execution

You are here!

INTRODUCTION

CQL — Continuous Query Language

2003: A CQL Odyssey

“Many papers include example continuous
queries expressed in some declarative language
.... However, ... a precise language semantics, ...

often is left unclear.”1l

2003: A CQL Odyssey

“Furthermore, very little has been published to
date covering execution details of general-
purpose continuous queries.” 1]

2003: A CQL Odyssey

“It may appear initially that defining a
continuous query language over (relational)
streams is not difficult

However, as queries get more complex ... the
situation becomes much murkier.” 111

It’s all about the abstract semantics

CQL abstract semantics is based on

2 data types 3 classes of operators
e Streams Stream-to-Relation
e Relations e Relation-to-Relation

e Relation-to-Stream

It’s all about the abstract semantics
— Goals

1. Make it easy to understand; familiar.

2. Simple queries should be easy to write, compact, and
shouldn’t be visually deceiving.

Query Execution Plans Matter Too!
— Goals

1. Plans should consist of modular and pluggable
components based on generic interfaces

2. An execution model that efficiently captures the
combination of streams and relations

3. An architecture that makes performance-based
experimentation easy.

A Roadmap

Introduction
Definitions
caL

CQL in STREAM

Other Language Comparisons

The technical stuff.

DEFINITIONS

Streams vs. Relations

Streams Relations
 “0 (possibly infinite) bag <+ “Arelation R is a
(multiset*) of elements mapping from T to a
<s, T>"12 finite but unbounded
bag of tuples belonging

to the schema of R.”3

Abstract Semantics

Continuous Semantics

Assume a discrete, ordered time domain T.

Inputs are either streams or relations

In discussing the result of a continuous query Q at a
time t s, there are 2 possibilities:

1. The outermost operator in Q is relation-to-stream. The
result of Q at time tis S (the produced stream) up to t.

2. The outermost operator in Q is stream-to-relation or
relation-to-relation. The result of Q at time tis R(7) (the
produced relation).

Time only “advances” from t from (t— 1) when all
inputs up to T—1 have been processed.

What we’re all here for.

CQL

Operators:
Stream-to-Relation

* Based on the concept of a sliding window over a

St re a m . Intial Window
e SQL-99 derivative.
1 2 3 4 5 6 7 3 9 1
o3c|asses: \\\\\\\N\J
1. Time-based ey
“S [Range T]" Window Slides —»
2. Tuple-based
“ ” t 12 3 4 5 8 7 8 9|10
S [Rows N] R N N RN N J
3. Partitioned >

“S [Partition By A1, ..., Ak Rows NJ~

Operators:
Relation-to-Relation

 Derived from traditional SQL.

Operators:
Relation-to-Stream

* 3 operators:

— Istream (“insert stream”)
Istream(R) = | J((R(1) — R(r — 1)) x {7})
720
— Dstream (“delete stream”)
Dstream(R) = U ((R(t —1) — R(7)) x {1})

7>0
— Rstream (“relation stream”)

Rstream(R) = U (R(1) x {7})

720

Operators:
Example

Relation-to-Stream

/ Stream-to-Relation

SELECT Istream(*) /’
FROM PosSpeedStr [Range Unbounded]

WHERE speed > 65

N\

Relation-to-Relation

Shortcuts & Defaults

Default Windows

 Unbounded windows are applied to streams
by default.

Default Relation-to-Stream Operators

* Anintended Istream operator may be omitted
from a CQL query.

Post Shortcut Query Example

SELECT *
FROM PosSpeedStr
WHERE speed > 65

Equivalences

* Important for query-rewrite optimizations

* All equivalences that hold in SQL with
standard relational semantics carry over to
the relational portion of CQL.

e 2 stream-based equivalences in CQL:
1. Window reduction
2. Filter-window commutativity

Equivalences:
Window Reduction

SELECT Istream(L)

FROM S [Range Unbounded]
WHERE C

is equivalent to

SELECT Rstream(L)
FROM S [Now]
WHERE C

Equivalences:
Window Reduction

SELECT Istream(L)
FROM S [Range Unbounded]
WHERE C

is equivalent to

SELECT Rstream(L)

FROM S [Now]

Equivalences:
Filter-Window Commutativity
(SELECT L

FROM S
WHERE C) [Range T]

is equivalent to

SELECT L
FROM S [Range T]
WHERE C

Equivalences:
Filter-Window Commutativity

FROM S

WHERE C) [Range T

is equivalent to

SELECT L
FROM S [Range T]
WHERE C

Equivalences:
Filter-Window Commutativity
(SELECT L

FROM S
WHERE C) [Range T]

is equivalent to

SELECT L
FROM S [Range T]
WHERE C

Time Management

e More realistic conditions: we make the
aforementioned assumption.

— The network conveying the stream elements to
the DSMS may not guarantee in-order
transmission

— Streams pause and restart

* Use additional “meta-input” to the system to
cope
— ‘heartbeats’ in STREAM

Time Management:

Heartbeats
* A heartbeat consists simply of a timestamp
TET.

e After arrival of the heartbeat, the system will
reject stream elements with timestamp < t.

e Various ways to generate heartbeats

Environment Overview

- Answers
DSMS Query | Query
Processor Plans
cQ, '002 ~CQ,
' Tuples |
<T
Heartbeat < Input Buffered

Stream arrival

L; Network L,
<v,T> 7 LV >
<v> <v,T>

S Sh

Stream emission
Source Source

¢1 | L] L] ¢n

Hot and STREAM-y.

CQL IMPLEMENTATION IN STREAM

STREAM Query Plans

* Each query plan runs continuously and is
composed of 3 different types of components:

— Operators
— Queues
— Synopses

Operators

* Read from one or more input queues,
processes the input based on its semantics,
and writes its output to an output queue.

* In STREAM, every operator is either a CQL
operator or a system operator.

Operators

| Name | Operator Type | Description |

seq-window stream-to-relation | Implements time-based, tuple-based,
and partitioned windows

select relation-to-relation | Filters tuples based on predicate(s)

project relation-to-relation | Duplicate-preserving projection

binary-join relation-to-relation | Joins two input relations

mjoin relation-to-relation | Multiway join from [VNBO3]

union relation-to-relation | Bag union

except relation-to-relation | Bag difference

intersect relation-to-relation | Bag intersection

antisemijoin relation-to-relation | Antisemijoin of two input relations

aggregate relation-to-relation | Performs grouping and aggregation

duplicate-eliminate

relation-to-relation

Performs duplicate elimination

i-stream relation-to-stream | Implements Istream semantics
d-stream relation-to-stream | Implements Dstream semantics
r-stream relation-to-stream | Implements Rstream semantics

stream-shepherd

system operator

Handles input streams arriving
over the network

stream-sample

system operator

Samples specified fraction of tuples

stream-glue

system operator

Adapter for merging a stream-
producing view into a plan

rel-glue

system operator

Adapter for merging a relation-
producing view into a plan

shared-rel-op

system operator

Materializes a relation for sharing

output

system operator

Sends results to remote clients

Queues

* Connect its input operator to its output
operator.

e Stored entirely in memory.*

Synopses

Store the intermediate state needed by
continuous query plans.

— E.g. performing a windowed join of two streams

Many synopses are logical “stubs” that
primarily point into other synopses.

Most common use of a synopsis is to
materialize the current state of a relation.

Also stored entirely in memory.*

Example Query Plan

Q1l:
SELECT B, max(A)
FROM S1 [Rows 50,000]
GROUP BY B

Q2:

SELECT Istream(*)
FROM S1 [Rows 40,000],

S2 [Range 600 Seconds]
WHERE S1.A=S2.A

7
f

Syn

N
\

Syn6‘

I N -

4

3

-

F 4

Nt

’

\-

N\

Query Optimization

* Nalve query plan generator.

e Commonly applied heuristics:
— Push selections below joins

— Maintain and use indexes for synopses on binary-
join, mjoin, and aggregate operators.

— Share synopses within query plans whenever
possible.

ENSEN

We're #1.

COMPARISON WITH OTHER
LANGUAGES

Tapestry

* Expressed using SQL syntax.

* Does not support sliding windows over
streams or any relation-to-stream operators.

Tribeca

* Based on stream-to-stream operators.

* Queries take a single stream as input and
produce a single stream as output, with no
notion of relation.

Aurora

* Difficult to compare the procedural query
interface of Aurora against a declarative
language (CQL).

e Some distinctions:

— Aggregation operators defined by user-defined
functions and have optional parameters set by the

user
— Aurora does not explicitly support relations.

TelegraphCQ
(Stream-Only)

* Note that we can derive a stream-only
language in CQL anyways.

* Motivations for CQL’s dual approach:
— Make it easy to understand; familiar.
— More intuitive queries.

— Use of both relations and streams cleanly
generalizes materialized views.

El finito.

THE END

Image Sources (in order)

http://www.ellenfinkelstein.com/pptblog/wordpress/wp-content/uploads/2011/the-beginning-road-sign.jpg
StartFragment EndFragment

http://medcitynews.com/wp-content/uploads/Black-Box-Art.png

StartFragment EndFragment

http://www.harborfreight.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/i/
m/image_16157.jpg

StartFragment EndFragment
http://bethesdalutherancommunities.org/view.image?ld=2216

StartFragment EndFragment

http://wiki.treck.com/images/d/d4/Fig1.39_Sliding_ Window_Protocol.gif
StartFragment EndFragment

U. Srivastava and J. Widom. Flexible time management in data stream systems. Page 264
StartFragment EndFragment

https://edc2.healthtap.com/ht-staging/user_answer/avatars/211738/large/
What_is_a_Steam_Shower 8666546 460.jpeg?1386553186

The CQL Continuous Query Language: Semantic Foundations and Query Execution, Page 25

The CQL Continuous Query Language: Semantic Foundations and Query Execution, Page 22

StartFragment EndFragment

http://28.media.tumblr.com/tumblr_|e900rkVhplgzexonol 500.png
https://40.media.tumblr.com/3290de4ee413685c60f08dc775310524/tumblr_mydnbyvVBrirz41fxo2_400.jpg

