Logging

“We therefore consider this bottleneck as the most dangerous to
future scalability”



@z Canonical recovery algorithm

@ Decouples data writing from log
writing

ARIES



@ Write ahead logging
@ Restoring database to pre-crash
z Undoing uncommitted txns

3 Components



@ Create an additional log while
undoing transactions to recover
multiple crashes

Multiple Crashes



Aether



@ OLTP txns are small and frequent
@ More cores — more contention
@ Other bottlenecks disappearing

Motivation
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Convoluted Drawing



Tradeoffs suck.



Speed + security rocks.



@ Critical path
@ Decouple to reduce contention
z Commit # return

Key Ideas



@ Critical path
@ Decouple to reduce contention
z Commit # return

Key Ideas



[/O Delay and Scheduling



@ Release locks on commit
@ Track dependencies
@ Abort and rollback if necessary

Early Lock Release



Client Request Database Commit
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Client Request Database Commit
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@ Decouples transaction commit
from scheduling

@ Keeps threads busy

Flush Pipelining



@ Allowing other transactions to
proceed speculatively + providing
the threads to actually execute
them rivals asynchronous commit,

but SAFELY

Combining the Two



Questions?



Scalable Log Butter
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System load

High core count +
high load —
bottleneck in the log
buffer

Log Buffer Bottleneck



@ To write to the log, threads
8§ Acquire space in the buffer
§ Fill space

8 Release buffer space for writing

The Problem



@z Group logs together to write to the
buffer at once

@z Use a consolidation array as a backoft
structure

Solution C



Lve

Push@)

Pop()

<

v

Observation

linearizable stack

After an equal number
of pushes and pops,
stack stays the same
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ldea: Elimination Array

stack

Elimination
Array
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Push Collides With Pop
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Push@©) % stack
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Pop

No need to

m access stack
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No Collision

stack

n

If pushes collide
or pops collide
access stack
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Elimination-Backoff Stack

* Lock-free stack + elimination array

* Access Lock-free stack,
— If uncontended, apply operation

—if contended, back off to elimination array
and attempt elimination

e
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@ Consolidation array combines
updates rather than eliminating them

@ Group leader does all the work
@ Great in theory as well as practice

Consolidation Array



@ Buffer fill is not inherently serial

@ Must release regions in proper order

Decoupled Butter Fill



z Hybrid approach

@z Consolidate and fill buffer in parallel

Two > One



Quick Summary



Does it actually work?
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How good?
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Throughput (ktps)
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Overall Picture

Flush pipelining +
ELR is most important
Log buffer contention
become increasingly
important as core-
counts grow



@ Delegation can prevent the problem
with varying record size

@ Threads wake the next in line

@ More robust, but performance
penalty in the normal case

Further Optimization



In summary...



@ Distributed logging

@z Higher level (txn + parameters)
@ Ditferent (serial excn per thread)
@ Txns strongly ordered

H-Store WAL



@ Sharing the log (one log per node)
@ Group commit

H-Store WAL



Checkpointing



@ Natural points of consistently
@ At least once per second
@ Consistent (not fuzzy)

Frequently Consistent



@ Low overhead
@ Uniform overhead
@ Fast recovery

Requirements



@ Synchronously copies state
@ Asynchronously writes to disk
@ No checkpoint-specific work

Naive-Snapshot
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Figure 1: Wait-Free Figeag Example

@ Maintain untouched copy of every
word for duration of checkpoint

@ Bits determine which copy to use

Wait-Free Zigzag



ait-Free Ping-Pong Example

@ Maintains extra version of app state
@ Swing pointer rather than reset all
@ Cache-friendly interleaved version

Wait-Free Ping-Pong



Uniform overhead Low overhead High throughput
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