
{ 
Logging 

“We therefore consider this bottleneck as the most dangerous to 
future scalability” 



 Canonical recovery algorithm 

 Decouples data writing from log 
writing 

ARIES 



 Write ahead logging 

 Restoring database to pre-crash 

 Undoing uncommitted txns 

3 Components 



 Create an additional log while 
undoing transactions to recover 
multiple crashes 

Multiple Crashes 



Aether 



 OLTP txns are small and frequent 

 More cores → more contention 

 Other bottlenecks disappearing 

Motivation 



{  
 I/O delay 

 Lock contention 

 Schedule overhead 

 Log buffer contention 

Convoluted Drawing 



Tradeoffs suck. 



Speed + security rocks. 



 Critical path 

 Decouple to reduce contention 

 Commit ≠ return 

Key Ideas 



 Critical path 

 Decouple to reduce contention 

 Commit ≠ return 

Key Ideas 



I/O Delay and Scheduling 



 Release locks on commit 

 Track dependencies 

 Abort and rollback if necessary 

Early Lock Release 



W14 

Client Request Database Commit 

R14 



W14 

Client Request Database Commit 

R14 



 Decouples transaction commit 
from scheduling 

 Keeps threads busy 

Flush Pipelining 



 Allowing other transactions to 
proceed speculatively + providing 
the threads to actually execute 
them rivals asynchronous commit, 
but SAFELY 

Combining the Two 



Questions? 



Scalable Log Buffer 



{  
 High core count + 

high load → 
bottleneck in the log 
buffer 

Log Buffer Bottleneck 



 To write to the log, threads 

 Acquire space in the buffer 

 Fill space 

 Release buffer space for writing 

The Problem 



 Group logs together to write to the 
buffer at once 

 Use a consolidation array as a backoff 
structure 

Solution C 



Art of Multiprocessor Programming 23 23 

Observation 

Push(   ) 

Pop() 

linearizable stack 

After an equal number  

of pushes and pops,  

stack stays the same Yes! 



Art of Multiprocessor Programming 24 24 

Idea: Elimination Array 

Push(   ) 

Pop() 

stack 

Pick at  

random  

Pick at  

random  
Elimination  

Array 



Art of Multiprocessor Programming 25 25 

Push Collides With Pop 

Push(   ) 

Pop() 

stack 

continue 

continue 

No need to  

access stack  
Yes! 



Art of Multiprocessor Programming 26 26 

No Collision 

Push(  ) 

Pop() 

stack 

If no collision,  

access stack  

If pushes collide 

or pops collide 

access stack  



Art of Multiprocessor Programming 27 27 

Elimination-Backoff Stack 

• Lock-free stack + elimination array 

• Access Lock-free stack,  

– If uncontended, apply operation  

– if contended, back off to elimination array 

and attempt elimination  

 



 Consolidation array combines 
updates rather than eliminating them 

 Group leader does all the work 

 Great in theory as well as practice 

Consolidation Array 



 Buffer fill is not inherently serial 

 Must release regions in proper order 

Decoupled Buffer Fill 



 Hybrid approach 

 Consolidate and fill buffer in parallel 

Two > One 



Quick Summary 



Does it actually work? 



{  
 Left shows record size 

average held to 120B 
constant 

 Right shows thread 
count constant (64) 

Experimental Results 



How good? 



{  
 Left shows record size 

average held to 120B 
constant 

 Right shows thread 
count constant (64) 

Experimental Results 



{  

 Flush pipelining + 
ELR is most important 

 Log buffer contention 
become increasingly 
important as core-
counts grow 

Overall Picture 



 Delegation can prevent the problem 
with varying record size 

 Threads wake the next in line 

 More robust, but performance 
penalty in the normal case 

Further Optimization 



In summary… 



 Distributed logging 

 Higher level (txn + parameters) 

 Different (serial excn per thread) 

 Txns strongly ordered 

H-Store WAL 



 Sharing the log (one log per node) 

 Group commit 

 

H-Store WAL 



Checkpointing 



 Natural points of consistently 

 At least once per second 

 Consistent (not fuzzy) 

Frequently Consistent 



 Low overhead 

 Uniform overhead 

 Fast recovery 

Requirements 



 Synchronously copies state 

 Asynchronously writes to disk 

 No checkpoint-specific work 

Naïve-Snapshot 



 Maintain untouched copy of every 
word for duration of checkpoint 

 Bits determine which copy to use 

Wait-Free Zigzag 



 Maintains extra version of app state 

 Swing pointer rather than reset all 

 Cache-friendly interleaved version 

Wait-Free Ping-Pong 



Results 

Uniform overhead Low overhead High throughput 


