
{
Logging

“We therefore consider this bottleneck as the most dangerous to
future scalability”

 Canonical recovery algorithm

 Decouples data writing from log
writing

ARIES

 Write ahead logging

 Restoring database to pre-crash

 Undoing uncommitted txns

3 Components

 Create an additional log while
undoing transactions to recover
multiple crashes

Multiple Crashes

Aether

 OLTP txns are small and frequent

 More cores → more contention

 Other bottlenecks disappearing

Motivation

{
 I/O delay

 Lock contention

 Schedule overhead

 Log buffer contention

Convoluted Drawing

Tradeoffs suck.

Speed + security rocks.

 Critical path

 Decouple to reduce contention

 Commit ≠ return

Key Ideas

 Critical path

 Decouple to reduce contention

 Commit ≠ return

Key Ideas

I/O Delay and Scheduling

 Release locks on commit

 Track dependencies

 Abort and rollback if necessary

Early Lock Release

W14

Client Request Database Commit

R14

W14

Client Request Database Commit

R14

 Decouples transaction commit
from scheduling

 Keeps threads busy

Flush Pipelining

 Allowing other transactions to
proceed speculatively + providing
the threads to actually execute
them rivals asynchronous commit,
but SAFELY

Combining the Two

Questions?

Scalable Log Buffer

{
 High core count +

high load →
bottleneck in the log
buffer

Log Buffer Bottleneck

 To write to the log, threads

 Acquire space in the buffer

 Fill space

 Release buffer space for writing

The Problem

 Group logs together to write to the
buffer at once

 Use a consolidation array as a backoff
structure

Solution C

Art of Multiprocessor Programming 23 23

Observation

Push()

Pop()

linearizable stack

After an equal number

of pushes and pops,

stack stays the same Yes!

Art of Multiprocessor Programming 24 24

Idea: Elimination Array

Push()

Pop()

stack

Pick at

random

Pick at

random
Elimination

Array

Art of Multiprocessor Programming 25 25

Push Collides With Pop

Push()

Pop()

stack

continue

continue

No need to

access stack
Yes!

Art of Multiprocessor Programming 26 26

No Collision

Push()

Pop()

stack

If no collision,

access stack

If pushes collide

or pops collide

access stack

Art of Multiprocessor Programming 27 27

Elimination-Backoff Stack

• Lock-free stack + elimination array

• Access Lock-free stack,

– If uncontended, apply operation

– if contended, back off to elimination array

and attempt elimination

 Consolidation array combines
updates rather than eliminating them

 Group leader does all the work

 Great in theory as well as practice

Consolidation Array

 Buffer fill is not inherently serial

 Must release regions in proper order

Decoupled Buffer Fill

 Hybrid approach

 Consolidate and fill buffer in parallel

Two > One

Quick Summary

Does it actually work?

{
 Left shows record size

average held to 120B
constant

 Right shows thread
count constant (64)

Experimental Results

How good?

{
 Left shows record size

average held to 120B
constant

 Right shows thread
count constant (64)

Experimental Results

{

 Flush pipelining +
ELR is most important

 Log buffer contention
become increasingly
important as core-
counts grow

Overall Picture

 Delegation can prevent the problem
with varying record size

 Threads wake the next in line

 More robust, but performance
penalty in the normal case

Further Optimization

In summary…

 Distributed logging

 Higher level (txn + parameters)

 Different (serial excn per thread)

 Txns strongly ordered

H-Store WAL

 Sharing the log (one log per node)

 Group commit

H-Store WAL

Checkpointing

 Natural points of consistently

 At least once per second

 Consistent (not fuzzy)

Frequently Consistent

 Low overhead

 Uniform overhead

 Fast recovery

Requirements

 Synchronously copies state

 Asynchronously writes to disk

 No checkpoint-specific work

Naïve-Snapshot

 Maintain untouched copy of every
word for duration of checkpoint

 Bits determine which copy to use

Wait-Free Zigzag

 Maintains extra version of app state

 Swing pointer rather than reset all

 Cache-friendly interleaved version

Wait-Free Ping-Pong

Results

Uniform overhead Low overhead High throughput

