Logging

“We therefore consider this bottleneck as the most dangerous to
future scalability”

@z Canonical recovery algorithm

@ Decouples data writing from log
writing

ARIES

@ Write ahead logging
@ Restoring database to pre-crash
z Undoing uncommitted txns

3 Components

@ Create an additional log while
undoing transactions to recover
multiple crashes

Multiple Crashes

Aether

@ OLTP txns are small and frequent
@ More cores — more contention
@ Other bottlenecks disappearing

Motivation

I/O delay
Lock contention

] 7

Schedule overhead

]

Log butfer contention

]

[] Lock Mgr. LogMgr. A\ Working 1 _ 1 Waiting

Convoluted Drawing

Tradeoffs suck.

Speed + security rocks.

@ Critical path
@ Decouple to reduce contention
z Commit # return

Key Ideas

@ Critical path
@ Decouple to reduce contention
z Commit # return

Key Ideas

[/O Delay and Scheduling

@ Release locks on commit
@ Track dependencies
@ Abort and rollback if necessary

Early Lock Release

Client Request Database Commit

il_,

il_,

Client Request Database Commit

il_,

@ Decouples transaction commit
from scheduling

@ Keeps threads busy

Flush Pipelining

@ Allowing other transactions to
proceed speculatively + providing
the threads to actually execute
them rivals asynchronous commit,

but SAFELY

Combining the Two

Questions?

Scalable Log Butter

O Log mgr.
contention
O Other
contention g
@ Log mgr.
work
B Other work

=
2
=]
o
4
i)
1]
e
&
o
E
'_

ain elo e sl so s eo oo e
SR R U

System load

High core count +
high load —
bottleneck in the log
buffer

Log Buffer Bottleneck

@ To write to the log, threads
8§ Acquire space in the buffer
§ Fill space

8 Release buffer space for writing

The Problem

@z Group logs together to write to the
buffer at once

@z Use a consolidation array as a backoft
structure

Solution C

Lve

Push@)

Pop()

<

v

Observation

linearizable stack

After an equal number
of pushes and pops,
stack stays the same

Art of Multiprocessor Programming 23

23

Uioe

Push@©)

Pop

ldea: Elimination Array

stack

Elimination
Array

Art of Multiprocessor Programming 24

24

Push Collides With Pop

Lioe

Push@©) % stack
[eleliil

Pop

No need to

m access stack

1

g !:‘ Art of Multiprocessor Programming 25

25

No Collision

stack

n

If pushes collide
or pops collide
access stack

Art of Multiprocessor Programming 26 26

Elimination-Backoff Stack

* Lock-free stack + elimination array

* Access Lock-free stack,
— If uncontended, apply operation

—if contended, back off to elimination array
and attempt elimination

e

Art of Multiprocessor Programming 27

27

@ Consolidation array combines
updates rather than eliminating them

@ Group leader does all the work
@ Great in theory as well as practice

Consolidation Array

@ Buffer fill is not inherently serial

@ Must release regions in proper order

Decoupled Butter Fill

z Hybrid approach

@z Consolidate and fill buffer in parallel

Two > One

Quick Summary

Does it actually work?

Throughput (GB/s)
100

w =« CDinL1
--- @ Left shows record size

average held to 120B
constant

@ Right shows thread
count constant (64)

=~ + =« Baseline

12 120 1200 12000

Thread count Log record size (bytes)

Experimental Results

How good?

Throughput (GB/s)
100

w =« CDinL1
--- @ Left shows record size

average held to 120B
constant

@ Right shows thread
count constant (64)

=~ + =« Baseline

12 120 1200 12000

Thread count Log record size (bytes)

Experimental Results

Throughput (ktps)
200 Agther
- FlushPipelining + ELR _-

150 == Baseline /

Clients

Overall Picture

Flush pipelining +
ELR is most important
Log buffer contention
become increasingly
important as core-
counts grow

@ Delegation can prevent the problem
with varying record size

@ Threads wake the next in line

@ More robust, but performance
penalty in the normal case

Further Optimization

In summary...

@ Distributed logging

@z Higher level (txn + parameters)
@ Ditferent (serial excn per thread)
@ Txns strongly ordered

H-Store WAL

@ Sharing the log (one log per node)
@ Group commit

H-Store WAL

Checkpointing

@ Natural points of consistently
@ At least once per second
@ Consistent (not fuzzy)

Frequently Consistent

@ Low overhead
@ Uniform overhead
@ Fast recovery

Requirements

@ Synchronously copies state
@ Asynchronously writes to disk
@ No checkpoint-specific work

Naive-Snapshot

MW

cant pe-

|5 | [e]
3 1
1 1
& 1
l 0
3 0
uta

dnt §
M s addi-
W arc: app ates

Figure 1: Wait-Free Figeag Example

@ Maintain untouched copy of every
word for duration of checkpoint

@ Bits determine which copy to use

Wait-Free Zigzag

ait-Free Ping-Pong Example

@ Maintains extra version of app state
@ Swing pointer rather than reset all
@ Cache-friendly interleaved version

Wait-Free Ping-Pong

Uniform overhead Low overhead High throughput

i £
i -
5 2
B :
3 £
=

80 10.C 110 120 130 140 150
Time |sec] £ Wamhooses

Figure 9: Latency: 1.280K updates/sec Figure 10: MMO: Overhead Figure 12: TPC-C Throughput

Results

