
CS224: Interactive Computer Graphics

Rendering Warmup
Due: Thursday 2/18, 11:59 PM

1 Introduction

In this warmup assignment, we will explore the basics of physically-based ren-
dering. There are many different rendering algorithms that attempt to solve the
rendering equation Spike presented in class and they are usually very effective
at accurately reproducing a specific subset of physical phenomenon. In many of
these algorithms, there is little attention paid to the physical units of the scene
specification1 and they often use other hacks that have no physical justification.

In this assignment, your job is to create the scene we’ve specified, paying atten-
tion to the physical units and compute the radiance at every pixel seen by the
camera. It will be very important that you understand the rendering equation
and what value you are trying to compute. The scene we’ve specified is ex-
tremely simple and the focus should be on getting the physically correct values2.

If you want to review what Spike covered in class, there are a few good sources
on the course website (under docs).

2 Scene

The scene consists of a single area light, a perfectly diffuse (lambertian) surface
and a pinhole camera. Spike’s physical measurements can be found here:

/course/cs224/data/DiffusePhotos

2.1 Geometry

The scene has a perfectly lambertian surface lying on the y = 0 plane. It is
perfectly diffuse and has the BRDF ρ(ωo, ωi) = .5/π for all p on the plane. The
normal at all points on the surface is (0, 1, 0).

1What does a light that is (240, 220, 220) with brightness ”20” mean?
2You do not need to implement or design for any functionality that goes beyond rendering

this specific scene (handling arbitrary geometry, reading in scene formats, shadows, specular,
reflection highlights, etc). The emphasis is entirely on numerically estimating the result of
the rendering equation.



CS224 Rendering WarmupThursday 2/18, 11:59 PM

2.2 Light

The light in the scene is a single-sided, circular light with radius 1.75 cm. The
light is 26.35 cm above the plane with a normal at every point (0,−1, 0). It
emits light uniformly in all directions and all points on the surface. It emits
energy uniformly in the visible spectrum at 1.2W.

2.3 Camera

The camera is 1m above the surface with a look vector (0, -1, 0) and an up
vector (1, 0, 0). A camera model has been provided for you and example usage
is given in (MyRenderer::sample).

3 Requirements

There will be a written and coding component for this assignment.

In the written component (include in your README), we would like you to:

• Compute the radiance coming from the center of the square going through
the center of the film by computing the exact solution from the integral.

• If you had to compute the same integral, but from a point not directly sit-
uated under the light (the point (-1, 0, -1), for example), what specifically
would have to change in your calculations?

• Comment on how closely your rendered results matched your exact solu-
tions.

• Write down the exact formula you used to estimate the radiance and justify
why each term should be there. (i.e. this is the dot product between the
light vector and the surface normal).

• In Matlab, plot the radiance at each point of your computed image and
compare your radiance distribution to the photograph we’ve provided. In
your README discuss how closely they match.

In the coding component:

• Fill in the function sample in MyRenderer.cpp to estimate the radiance
at every pixel by approximating the integral using ray casting. How does
the image quality change if you use few samples to estimate the radiance
arriving at the surface vs many samples? How many samples do you
need before you stop noticing the problems? Can you give any intuition,

2



CS224 Rendering WarmupThursday 2/18, 11:59 PM

quantitatively, to explain the relation between variance and number of
samples?

4 Support Code

Part of the purpose of this project is to familiarize yourself with the C++ sup-
port code we have for rendering. You will be using this same library for Photon
Mapping. We’re using a new rendering library named Milton written by Travis
Fischer for this assignment. We will be using a very small subset of what it
provides since a lot of its functionality is tailored towards more complex ren-
derering tasks.

You should make good use of the Milton documentation at
http://milton.mjacobs.net/docs/doxygen/index.php.

The classes that you will need to use for this assignment are Ray and Vector3
(and possibly Camera and Viewport, though you shouldn’t have to touch them).
The stencil code will automatically save your radiance values to out.radiance.
If you would like to save your image (as seen on the canavs), take a look at the
Image class or you may save your results from the built-in Gui. After ’make’ing
the support code we give you and running the resulting executable, you should
see a noisy black and white image; the skeleton code is setup by default to
set the radiance for a pixel to a random value inbetween 0 and 1. You should
change this functionality to instead compute the correct, meaningful radiance
given the scene description above.

We have also provided you a matlab function that will read the radiance and
produce an (width x height) array. The function is ReadRadiance and you
should pass it the file.

4.1 stencil

You can find the stencil code for this assignment in
/course/cs224/asgn/RenderWarmup. We have taken care of going from screen
space to world space and looping through all of image pixels. The only function
you should have to change is sample. The sample function is expected to
return the radiance at that pixel in the out-parameter ’outSample’. The support
code is setup to compile a dynamic plugin and accompanying executable that
interfaces with the Milton framework. The (public) source to Milton is available
in /course/cs224/lib/milton/include. There are some parts of the source
that are not currently public (such as its photon mapping implementation).

3



CS224 Rendering WarmupThursday 2/18, 11:59 PM

5 Suggestions

• As you learned in HW2, anytime you take samples nonuniformly in your
sample domain, you will need to compensate for this fact. It is not always
obvious how to adjust for this and you should be very careful if you are
sampling nonuniformly. In many cases they will produce nice looking but
incorrect results.

• Always make sure you know what physical value you are computing at
each step. Writing down the units will help a lot.

6 Handing In

As usual, include the standard README(compiling instructions, bugs, usage,
etc.). Make sure your readme answers the questions in the requirements.

/course/cs224/bin/cs224 handin renderWarmup

4


