
CS224: Interactive Computer Graphics

Photon Mapping
Due: 3/4/10, 11:59 PM

Ray Tracing 15
Photon Emission 25
Russian Roulette 15
Caustics 20
Diffuse interreflection 25
Extra Credit +25
Total 100

This assignment is worth 12% of your final grade.



CS224 Photon Mapping 3/4/10, 11:59 PM

1 Introduction

In this assignment, we simulate light transport using a Monte Carlo ray tracer
with Photon Mapping. The output is an image containing the following lighting
effects:

• Mirror reflection

• Refraction

• Caustics

• Soft shadows

• Color bleeding

We use simplified versions of the algorithms described in:

Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. AK
Peters. ISBN: 1568811470. July 2001.

Note: There are two parts to the hand-in for this assignment: some math you
need to hand in during lecture and a program to submit electronically.

2 Requirements

• Recursive raytracing with reflection and refraction (backward tracing)

• Diffuse and caustic photon tracing (forward tracing) using rejection sam-
pling and Russian roulette

• Combine the photon maps with the backward traced results to estimate
the total radiance

• Soft shadows

Support code can be grabbed from: /course/cs224/asgn/photon. Be sure to
grab all of the subdirectories as well.

There is a -preview commandline flag which can be used to view a crude
OpenGL preview of a scene. Input parameters to photon mapping such as the
number of diffuse photons to shoot, or the KNN gather radius, are all specified
in the scenefiles themselves since a lot of these parameters are inherently scene-
specific. Code to handle parsing these files and parameters has been provided
for you.

We’ve provided Milton as support code which handles a lot of the aspects of
the project which aren’t core to the photon mapping algorithm itself. Feel free

2



CS224 Photon Mapping 3/4/10, 11:59 PM

to pick and choose what you want to use. The support code has built-in spatial
acceleration for shape intersections (so rendering meshes should be fast) and for
the K-nearest neighbors (KNN) lookup (PhotonMap).

In Monte Carlo ray tracing it’s very easy to have incorrect code and still have the
image look pretty good. Be sure to check and double check your probabilities
because we’ll be looking at them.

3 Overview of the Algorithm

For this assignment, surfaces have emissive properties and reflectivity properties
(BSDF). A BSDF (the same thing as a BRDF but defined over the whole sphere)
can either be perfectly specular, which will require special consideration, or
have some other, arbitrary distribution. This distribution may be constant
(perfectly diffuse) or skewed, but the specifics have been abstracted away by
a generic BSDF sampling interface that you won’t have to worry much about.
We ignore participating media and subsurface scattering. Note that under these
limitations, the incoming photon direction and type of vertex entirely determine
the outgoing direction, and vice versa. This property makes it easy to trace
photon paths both forward and backward.

3.1 Paths Simulated Forward from the Light

Direct Caustics: LS+D

Light focused by specular bounces will collect on a diffuse emitter and be re-
flected to the eye. This does not account for indirect caustics, for example, the
caustic formed beneath a lens after light bounces off a white reflector.

These are traced forward from the light sources towards specular surfaces and
are stored in the caustics photon map.

Interreflection: (L(S|D)∗D)? − LS∗D

This is the set of all paths that are not direct caustics or direct illumination
and terminate on a diffuse bounce. It gives rise to all global illumination effects,
including color bleeding, except for reflections, refraction, direct caustics, and
direct illumination.

These are traced forward from the light sources and are stored in the diffuse

photon map.

3.2 Paths Simulated Backward from the Eye

Reflection and Refraction: (LS∗E)|(DS∗E)
Note that this also includes the trivial subpath DE, which links the forward-

3



CS224 Photon Mapping 3/4/10, 11:59 PM

traced paths above to the backward traced paths.

Direct Illumination: LD?E

Direct specular or diffuse illumination is easy to compute, so we calculate it
using direct application of the BRDF, taking shadows into account, just as in a
simple ray tracer.

4 Backwards Path Tracing (a.k.a. Ray Tracing)

We’re assuming you’re familiar with recursive ray tracing. If you’re not, read
CS123’s lecture slides or pick up a copy of Foley et al. Backward tracing com-
putes the paths denoted by [(LS

∗
E)|(DS

∗
E)] | (LD

?
E). This shouldn’t take

you more than a few hours with the methods Milton provides.

Your main implementation will be in the PhotonMapper class. evaluate will
be called for every pixel in the image, and it is your job to calculate and return
the proper radiance value along the given primary ray. Included in the skeleton
code we give you is a fully working, albeit basic ray tracer, including direct
illumination.

Check out BSDF::isSpecular() to differentiate whether a particular SurfacePoint
lies on a specular or non-specular surface. Also note SurfacePoint::bsdf.

5 Forward Path Tracing

When the program runs, it first fills the photon maps by forward tracing pho-
tons. For this we need a representation of a photon, or, rather, since Jensen’s
work does not simulate actual photons but statistical groups of photons, we need
a representation for groups of photons. Each “photon” encodes the incident di-
rection, position, and a color value. The color is a statistical measure of the
number of photons in the group at certain wavelengths. We use a similar data
structure to the one that Jensen provides in this book. Milton abstracts out
colors into a SpectralSampleSet class, representing any type of wavelength-
dependent value, sampled at n distinct wavelengths. You can pretty much as-
sume if you want for the purposes of this project that SpectralSampleSet is the
same as a ”color3” with samples taken at canonical R, G, and B wavelengths.

A Photon struct is defined for you in the support code; if you change it, you
may need to change the given PhotonMap implementation which uses the Photon
struct.

We provide you the PhotonMap structure for speeding up the KNN queries. You
can see the methods we’ve provided for you in PhotonMap.h. Be sure to call
init after you are done shooting photons. This method will create the Kd-Tree
structure. The queries will not work if you don’t do this. Note: this is

4



CS224 Photon Mapping 3/4/10, 11:59 PM

a modified version of the PhotonMap implementation that Jensen gives in his
book, extended to support thread-safe KNN queries.

6 Computing the Radiance Estimate

You can ask for the KNN neighbors in the photon map by calling getKNN.
On return it will fill the output parameter with the nearest photons and the
gather radius. The photon maps are created in the constructor of App. The
first parameter is the maximum number of photons to search for. The second
parameter is the maximum radius. If the number of photons found is greater
than the maximum requested, getKNN will return the smallest radius that con-
tains all the photons. For example, if you asked for 100 photons in a radius of 1
and the KNN structure had 200 photons within a radius of 1, on return, it will
return the radius which contains the closest 100 photons (i.e .5).

7 Visualizing the Photon Map

The PhotonKdMap structure can be visualized by saving it out to a file. You
can save the Photons out to a file at any time by calling the save method
and passing it the output filename, the camera, and an output Viewport. This
should be very useful for debugging. You should see the scene saved out with
lots of dots where the photons hit.

8 Test Scenes

We have a few test scenes availible for you that come with the support code
distribution. They are in

/course/cs224/asgn/photon/scenes

Many are variations of the cornell box. When running the program, you may
pass in the name of a scenefile, or leave it blank, and Milton will default to
loading a file named default.js in the current directory.

For example, if I wanted to run it on the cornell box scene, I would do

myprogram /course/cs224/asgn/photon/scenes/cornellBox.js

9 Extra Credit

• Tone mapping

5



CS224 Photon Mapping 3/4/10, 11:59 PM

• Distributed ray tracing

• Anisotropic reflection

• Participating media

• Sub-surface scattering

• More than three wavelengths

• Shadow photons

• Irradiance caching

• Motion blur

• Cool scenes (provided that you share them)

• Anything else you come up with!

Supersampling isn’t extra credit in CS224 :)

10 Handing In

Besides the usual README stuff (compiling instructions, bugs, extra credit,
usage, etc. etc.), please identify where your code is for the following:

• Soft shadows

• Photon emission rejection sampling

• Photon bounce Russian roulette

Also give an explanation of why your program does not double-count any pho-
tons.

We will be testing your program on several cornell box scenes, in addition to our
own, secret test scenes. You’re encouraged to make your own and share them
with others – scene authors will receive community service points. Everyone
benefits from awesome scene files!

Do not hard code any paths in your program! All loading and saving
should be based purely on arguments specified on the command line.

/course/cs224/bin/cs224 handin photon

6



CS224 Photon Mapping 3/4/10, 11:59 PM

11 Support Code Notes

Just like in RenderWarmup, you’ll be compiling an executable and your own
renderer plugin that is loaded by Milton dynamically at run-time. Take a look
at plugin/README for the order that we suggest you to fill things in.

Milton support code documentation can be found at
http://milton.mjacobs.net/docs/doxygen/index.php,
and Milton scenefile documentation can be found at
http://milton.mjacobs.net/docs/scenefile/index.php.

7



CS224 Photon Mapping 3/4/10, 11:59 PM

12 Closing Remarks

”There’s a party in my Cornell Box, and you’re invited” – Spike

No, this isn’t a disco; it comes from a perfectly correct photon mapping imple-
mentation. One problem with photon mapping it that to produce good results,
its inputs may have to change dramatically from scene to scene. What we’re
visualizing here (and what you’ll undoubtedly run into at some point), is an
example of the characteristic blotchiness that occurs during photon mapping
when either too few photons or too small of a KNN search radius is used.

8


