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Light Transport

CS224 Topic #2
John Hughes

Warmup Math

• Recall 
– Angle = ‘subset of the circle’; units: radians
– Solid Angle = ‘subset of the sphere’; units: 

steradians
• Light is described by the radiance function 

L(x, ω) with units of Watt/m^2 sr (radiance)
• Radiance is constant along rays in empty 

space!

Raytracer

• When you make a raytracer, what are the 
units of the values you store at each sample 
point in your computation? 

Light Transport

• Goal: Create realistic images
• Observation: Images are produced by light 

on film (or retina)
• Idea: Simulate the physical interaction of 

light and surfaces

How can we simulate light?

Many Optics Models

Ray
Wave

Electromagnetic
Photon

Most sophisticated

Least sophisticated
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WARNINGWARNING
We are now going to work with the Ray 
Optics model.  Like any model, it 
simulates but is not actually reality.  We us 
simplifications wherever their benefits 
outweigh the error they introduce.  For the 
remainder of the lecture series, treat every 
statement of fact as a rule from our model 
and not a statement about the true 
physical properties of light.
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and not a statement about the true 
physical properties of light.
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Ray Optics Model

• Assume light travels in rays 
• Assume geometric reflections
• Good for most human-observable effects

– e.g. reflection, refraction
• Does not capture the full richness of light

– e.g. interference on the wings of a butterfly

Other Assumptions

1. Only consider transport paths in the steady 
state

2. Reflection angle is independent of 
wavelength (color)

3. Light does not interact with air

Transport

What are we transporting along the light rays?

Photons
• A light ray is a stream of photons
• Photons are little balls of energy
• Always in motion
• Properties:

– wavelength (λ) scalar meters
– position (x) 3D vector meters
– Direction of motion (ω) 3D unitless vector

Your Eye: A Photon Detector

• A group of N photons hit your retina
• All have the same wavelength λ

– Assume 400nm < λ < 700nm
– 1nm = 10-9m

• What do you see?

Perception of Photons

N as brightness
b = log N

λ as color
λred = 700nm, …, λblue = 400nm 

This is only a rough model to help you build intuition for 
photons. Lots of factors affect the actual perception of 
color and brightness (both neural and physiological).
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EM by Wavelength

10-11 10-9 4x10-7  7x10-7       10-5               10-1         103

http://imagine.gsfc.nasa.gov/docs/science/know_l1/spectrum_chart.html

Simulating light transport

• We should consider transport at every 
single wavelength λ, but that’s impractical

• Transport at exactly  λ is always zero…but 
we can work with wavelengths  λ … λ +d 
λ, compute transport, and divide by d λ, to 
get a transport density.

• In practice: divide the visible spectrum into 
a few bands; take one representative 
frequency in each

The “selected bands” assumption

• If a surface reflects lots of light at 
wavelength  λ,  it reflects a good deal at 
wavelengths near  λ

• i.e., reflectivity is a slowly-changing 
function of  λ

• …so we can sample at a few points and lose 
not too much information

Which bands/sample wavelengths?

• We choose three bands, with central 
wavelengths corresponding to monospectral
lights that we perceive as red, green, and 
blue.

• To capture perceptual phenomenon of color 
as three-dimensional, need at least 3

• More than 3 generally not important
• For some scenes (sodium lamps, etc.) it’s 

critical.

“Colored” Photons

• Goal: Track fewer photons
• Observation: Direction of 

reflection/refraction is often independent of 
wavelength 
– Not true for a glass prism or two-tone paint

• Idea: Encode a group of photons as a single 
“colored” photon

Colored Photon Representation

x Position (m, scalar)
ω Direction (unitless, 3D vector)
c Color (unitless, 3D vector)

Interpretation: 
a group of cR photons of wavelength λR,
cG photons of wavelength λG, and cB photons of 

wavelength λB that share position x and 
direction ω.
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Photon Emitters

• A light source emits photons
• The photons are all emitted at the three 

“main” wavelengths. 
• The emission rate is constant, and has a 

known dependence on direction and 
location. 

The Image Plane

Center of projection 
(pinhole)

Image Plane

Factoring Illumination

• Not all paths are equally interesting
• What are the paths that create interesting 

effects?

Light Path Notation

• Goal: concise notation for discussing 
transport paths

• Idea: There are 4 kinds of interesting 
vertices

• L – Light 
• E – Eye
• D – Diffuse bounce
• S – Specular bounce

”?

Direct Illumination

• L(S|D)E
• Also accounts for direct shadows

Caustics

• LS+DE
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Color Bleeding

• LD+E
• a.k.a Diffuse Interreflection

Mirror Reflection and Refraction

• L(D|S)+SE

How to account for image created by 
each path-type

• Those easier to trace forward from light
– Caustics
– Color Bleeding

• Those easier to trace backward from eye
– Direct Illumination
– Reflection and Refraction

• Hard to trace
– Caustics from diffuse interreflection

The Rendering Equation

• Outgoing = Emitted + Reflected
• At point x, in direction ω
• Radiance units are W/(m2sr)

Expand the reflected term

),(),(),( ωωω xLxLxL re +=

Reflected Radiance

• fr is the Bidirectional Reflectance 
Distribution Function (BRDF)

• Li is the incident radiance
• n is the surface normal at x
• Integrate ω’ over the hemisphere (Ωi) of 

directions with ω’ . n < 0 (‘incoming light’)
• Whole sphere for tranmissive materials…
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Irradiance

• Radiance is power per area per solid angle 
arriving along a direction ω hitting a surface 
of area A that’s perpendicular to ω.

• How much power hits a surface that’s not 
perpendicular to ω? cos θ as much.That’s
irradiance.

θ
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Bidirectional Reflectance Distribution Function

• Denominator is “amount of light, from direction ω,
hitting a unit area of the surface.

• (ω’·n) in denominator accounts for “projected area”

( ) ( )
( )( )nxL

xLxf
i

r
r ⋅

=
'',

,,',
ωω
ωωω

ωω’

n

x

Substitute Back

• We can evaluate:
– Le(x, ω)
– fr (x, ω’,ω)
– (ω’ · n)

( ) ( ) ( ) ( )( )∫
Ω

⋅+= '',',',,, ωωωωωωω dnxfxLxLxL re

Integral is over a sphere---how to 
evaluate?

• Use constancy on rays! 
• Look in direction ω until you see a surface point
• Rewrite to integrate over surface locations S instead 

of sphere Ω
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⋅+= '',',',,, ωωωωωωω dnxfxLxLxL re
• Do change of variables in 2D, show how it 

changes

Integrate Over Surfaces

• Let x’→x be the unit vector from x’ to x
• Let visibility V(x, x’) be 1 if there is unobstructed line of 

sight between x and x’
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“Geometry” Term

• Collect the projected area terms into a so-called 
“geometry” term, G 
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Plan of action

• Find a way to approximate the Li terms
• Find a way to approximate the integral
• This will produce Lo result. 
• Do this only for points x and directions ω 

that contribute to the image you’re making
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Practical Constraints

• Our goal is often to produce the best image 
within a limited amount of time

• This means we can’t perfectly simulate LT
• Variance Errors

– Look like noise
• Bias (Mean) Errors

– Physically wrong (e.g. too dark in certain 
places)

Noisy Estimators

• Say the true value is LrT(x, ω)
• Imagine some method that computes 

• Limit as N goes to infinity is correct
• For any finite N, the result is noisy (has variance)
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Biased Sampling Estimators

• Say the true value is LrT(x, ω)
• Imagine some method that computes 

LrB(x, ω) = LrT(x, ω) – K(x, ω)/M
• Limit as M goes to infinity is correct
• If K is everywhere positive, then for any 

finite M, our solution is too small

Sources of Bias

• May result from limiting assumptions 
– Radiosity assumes perfectly diffuse surfaces

• May result from biased sampling 
– Photon mapping emphasizes LS*DE and LDE 

paths

Joton

• Representation of a probabilistic photon 
group – a bunch of photons that we may 
want to sample.

• J = J(x, ωI, Φ), where Φ is power arriving at 
the surface, and ωI is the direction of 
incident light, x = pt on surface. Units of J = 
radiance.

• Photon map = record of lots of J-values. 



8

Estimating light from a surface to 
the eye

• J values near the relevant surface point
• Reflectance function (fR) on the surface
• Combine by summation (low budget 

integration) to estimate LR

Russian Roulette

• Suppose 100 Jotons of power 1 hit a surface 
that reflects diffusely with reflectance k.

• Naïve sim: 100 Jotons with power k leave 
surface

• Clever hack: (100 k) photons with power 1 
leave surface. 

Why?

• Fewer jotons (‘cuz k < 1)
• “Weak” jotons disappear and we don’t 

waste computation on them
• Photon map will only store photons with 

power ~ 1, so all contribute equally to 
estimate of integral, so variance is reduced.

How does Photon Mapping work?

• Reflect jotons just like photons…but instead 
of a fraction of incoming power, reflect with 
a probability proportional to reflectance.

• If not reflected, it gets dropped from 
simulation.

• P(bounce A) = LR(x, ωO) / LI(x, ωI)

• (for diffuse surface, this is just diffuse 
reflectivity!)

Program Structure

• Psuedo-code for the Photon Mapping algorithm:
Forward Trace Caustic (Specular Interreflection) 

Paths into Caustic Photon Map
Forward Trace Diffuse Interreflection Paths into 

Diffuse Photon Map
Balance Caustic and Diffuse Trees
Backward Trace Photons

– Illumination = Caustic + Diffuse + direct illumination

Caustic tracing
repeat numCaustics times

J := random photon from random light
absorbed = false
do

S = first intersection between J and scene
if (r = random(0,1)) < P(diffuse)

if “LS+” path then write J to caustics map
absorbed := true
else if r < P(diffuse) + P(specular) 

J := mirror J about normal
scale Jpower by specular color
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else if r < P(diffuse) + P(specular) + P(transmit)
J : = refract J
if total internal refraction then 

absorbed = true
scale Jpower by transmission color

else
absorbed := true

while not absorbed

Initial joton power
• For each point from which jotons are emitted:
Starting power = totalEmitterPower/numCaustics
Dealing with color: 

(brdf.emissive/brdf.emissive.sum()) * 
(totalEmitterPower / numCaustics)

TotalEmitterPower = Sum(tri.triangle.area() * 
emissive.sum())

Summed over all emitters. 

Diffuse tracing
repeat numDiffuse times

J : = random photon from random light
absorbed := false
while not absorbed

S = first intersection between J and scene
r := random(0, 1)
if r < P(diffuse)

if (not “LS*D” path)
write J to diffuse photon map
scale Jpower by diffuse color
J := random hemisphere direction

else if r < P(diffuse) + P(specular)
J := reflect J about normal
scale Jpower by specular color

else if r < P(diffuse) + P(specular) + P(transmission)
J := refract J
if total internal refraction then absorbed = true
scale Jpower by transmission color

else
absorbed := true

Backward Tracing

for each pixel(x, y)
R := ray from eye through (x, y)
S := get first intersection(R, Scene)
image(x,y) :=  

direct illumination at S 
from all lights (with shadowing)

+ caustic radiance estimate
+ diffuse radiance estimate 

Direct Illumination
Direct Illumination (x, N)
C := 0
for each light L with normal NL, radiosity B
for count := 1 … numShadowRays

xL := random point on L
ωL := (xL – x) / || xL – x ||
r := || xL – x ||
if visible(x, xL)

C := C + max(N ⋅ ωL, 0) * kd * 
max(-NL ⋅ ωL, 0) * B(xL) / (π * r2)

C := C * AL / numShadowRays
return C

Radiance Estimate(x, N)

(used for both the diffuse and caustic maps)
C := 0
For each photon J in photon map within 
radius r of x

C := C + max(N ⋅ -ωJ, 0) * kd * LJ

return C / (π r2)
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Fin


