
1

Rendering and Photon
Mapping

Plan of action

• Find a way to approximate the Li terms
• Find a way to approximate the integral
• This will produce Lo result.
• Do this only for points x and directions ω

that contribute to the image you’re making

() () () ()∫ →→+=
S

ireo dAxxGxxVxxxLxxxfxLxL ')',()',(',,',,, ωωω

Practical Constraints

• Our goal is often to produce the best
image within a limited amount of time

• This means we can’t perfectly simulate LT
• Variance Errors

– Look like noise
• Bias (Mean) Errors

– Physically wrong (e.g. too dark in certain
places)

Noisy Estimators

• Say the true value is LrT(x, ω)
• Imagine some method that computes

• Limit as N goes to infinity is correct
• For any finite N, the result is noisy (has

variance)

() () ∑
=

+=
N

i
rTrN rand

N
xLxL

1
()1,, ωω

Biased Sampling Estimators

• Say the true value is LrT(x, ω)

• Imagine some method that computes
LrB(x, ω) = LrT(x, ω) – K(x, ω)/M

• Limit as M goes to infinity is correct
• If K is everywhere positive, then for any finite M,

our solution is too small

Sources of Bias

• May result from assumptions about model
– Radiosity assumes perfectly diffuse surfaces

• May result from biased sampling
– Photon mapping emphasizes LS*DE and LDE

paths

2

Joton

• Representation of a probabilistic photon
group – a bunch of photons that we may
want to sample.

• J = (x, ωI, Φ), where Φ is power arriving at
the surface, and ωI is the direction of
incident light, x = pt on surface. Units of J
= radiance.

• Photon map = record of lots of J-values.

Estimating light from a surface to
the eye

• Look at J values near the relevant surface
point

• Reflectance function (fR) on the surface
• Combine by summation (low budget

integration) to estimate LR

Russian Roulette

• Suppose 100 Jotons of power 1 hit a
surface that reflects diffusely with
reflectance k.

• Naïve sim: 100 Jotons with power k leave
surface

• Clever hack: (100 k) photons with power 1
leave surface.

Why?

• Fewer jotons (‘cuz k < 1)
• “Weak” jotons disappear and we don’t

waste computation on them
• Photon map will only store photons with

power ~ 1, so all contribute equally to
estimate of integral, so variance is
reduced.

How does Photon Mapping work?

• Reflect jotons just like photons…but instead of a
fraction of incoming power, reflect with a
probability proportional to reflectance.

• If not reflected, it gets dropped from simulation.
• P(bounce A) = LR(x, ωO) / L I(x, ωI)

• (for diffuse surface, this is just diffuse
reflectivity!)

Program Structure

• Psuedo-code for the Photon Mapping algorithm:
Forward Trace Caustic (Specular Interreflection)

Paths into Caustic Photon Map (High-res)
Forward Trace Diffuse Interreflection Paths into

Diffuse Photon Map (Low-res)
Balance Caustic and Diffuse Trees
Backward Trace Photons

– Illumination = Caustic + Diffuse + direct illumination

3

Caustic tracing
repeat numCaustics times

J := random photon from random light
absorbed = false
do

S = first intersection between J and scene
r = random(0,1)
if (r < P(diffuse)) // diff. reflection

if “LS+” path then write J to caustics map
absorbed := true

else if (r < P(diffuse) + P(specular))
J := mirror J about normal
scale Jpower by specular color

else if r < P(diffuse) + P(specular) + P(transmit)
J : = refract J
if total internal refraction then

absorbed = true
scale Jpower by transmission color

else
absorbed := true

while not absorbed

Initial joton power

• For each point from which jotons are emitted:
Starting power = totalEmitterPower/numCaustics
Dealing with color:

(brdf.emissive/brdf.emissive.sum()) *
(totalEmitterPower / numCaustics)

TotalEmitterPower = Sum(tri.triangle.area() *
emissive.sum())

Summed over all emitters.

Diffuse tracingrepeat numDiffuse times
J : = random photon from random light
absorbed := false
while not absorbed

S = first intersection between J and scene
r := random(0, 1)
if r < P(diffuse) // i.e., if it’s diffusely reflected

if (not “LS*D” path)
write J to diffuse photon map
scale Jpower by diffuse color
J := random hemisphere direction

else if r < P(diffuse) + P(specular)
J := reflect J about normal
scale Jpower by specular color

else if r < P(diffuse) + P(specular) + P(transmission)
J := refract J
if total internal refraction then absorbed = true
scale Jpower by transmission color

else
absorbed := true

Backward Tracing

for each pixel(x, y)
R := ray from eye through (x, y)
S := get first intersection(R, Scene)
image(x,y) :=

direct illumination at S
from all lights (with shadowing)

+ caustic radiance estimate
+ diffuse radiance estimate

Direct Illumination
Direct Illumination (x, N)
C := 0
for each light L with normal NL, radiosity B
for count := 1 … numShadowRays

xL := random point on L
ωL := (xL – x) / || xL – x ||
r := || xL – x ||
if visible(x, xL)

C := C + max(N ⋅ ωL, 0) * kd *
max(-NL ⋅ ωL, 0) * B(xL) / (π * r2)

C := C * AL / numShadowRays
return C

4

Radiance Estimate(x, N)

(used for both diffuse and caustic maps)
C := 0
For each photon J in photon map within
radius r of x

C := C + max(N ⋅ -ωJ, 0) * kd * LJ

return C / (π r2)

Fin

