
A New Approach to Document Formatting

Jeffrey H. Kingston

Basser Department of Computer Science
University of Sydney 2006

Australia

ABSTRACT

This paper describes a new approach to document formatting, in which features
are written in a small, coherent, high-level language called Lout. The resulting
increase in productivity has permitted many advanced features to be developed
quickly and accurately, including page layout of unprecedented flexibility,
equation formatting, automatically generated tables of contents, running page
headers and footers, cross references, sorted indexes, and access to bibliographic
databases. A fully operational production implementation of the Lout system
including all these features and many others is freely available.

22 December, 1992

A New Approach to Document Formatting

Jeffrey H. Kingston

Basser Department of Computer Science
University of Sydney 2006

Australia

1. Introduction

The personal computer and the laser
printer have sparked a revolution in the
production of documents. Many authors now
routinely take their work from conception
to camera-ready copy, many publishers are
using desktop publishing systems, and it is
probable that manual assembly of documents
will become uncommon in the near future.

As control moves into the hands of
an ever-increasing number of non-technical
people, the stresses on document formatting
software increase. On the one hand, this soft-
ware must be so simple that anyone can use
it; on the other, it must supply a bewildering
array of features. A book, for example, de-
mands fonts, paragraph and page breaking,
floating figures and tables, footnotes, chap-
ters and sections, running page headers and
footers, an automatically generated table of
contents, and a sorted index. Add to this an
open-ended list of specialized features, be-
ginning with mathematical typesetting, dia-
grams, and access to bibliographic databas-
es, and the result is a nightmare for the soft-
ware developer.

One solution to this feature explosion
problem is to implement as a system primi-
tive every feature that will ever be required.
Although all of the successful interactive
document editors known to the author take
this approach (admittedly with some attempt
to generalize and unify their features), it has
clearly reached its limit. Few such systems
provide equation formatting, fewer still will
format a Pascal program, and other special-
ized features will simply never be imple-

mented.

A second solution is to provide a
relatively small system equipped with a
means of defining new features, as in
programming languages. This approach
has been taken by the batch formatters
(those which do not display a continuously
updated image of the printed document while
editing) found in academia, notably troff
[11], TEX [10], and Scribe [12]. Features
such as footnotes and automatic tables of
contents have been added to these systems
using macro definitions. Unfortunately, such
extensions are very difficult and error-prone
in practice: TEX’s footnote macro alone
contains half a page of dense, obscure code,
while those who have extended troff have
abandoned the language itself and taken
refuge in preprocessors. A more productive
basis for developing new features is needed.

This article presents a high-level
language for document formatting, called
Lout, which is intended to form such a
basis. Lout is quite accessible to non-expert
users, but its unique property is the ease with
which expert users can add new features.
We begin with a presentation of Lout as it
appears to the non-expert user who employs
the standard packages without understanding
Lout’s principles. Later sections switch to
the expert’s view, showing by examples the
principles of Lout and how advanced features
are defined.

A Unix-compatible1 batch formatter for

1Unix is a trademark of AT&T Bell Laborato-
ries.

- 2 -

Lout (called Basser Lout) has been written
which produces PostScript1 output suitable
for printing on most laser printers and many
other devices. A library of standard packages
written in Lout provides all of the features
listed above and many others. This system
is not an experimental prototype, it is a fully
operational production implementation. The
software and its supporting documentation
[3, 9, 4, 5, 6, 7, 8] are available free of charge
from the author.

2. The non-expert’s view

The non-expert user perceives Lout
as text interspersed with special symbols,
in a style reminiscent of many other batch
formatters:

@Doc @Text @Begin
@Heading { Standard Integrals }
@PP
The following list of standard
integrals should be memorized:
@NumberList
@Item @Eq {int e sup x dx = e sup x}
@Item @Eq {int dx over
 sqrt { 1 - x sup 2 } = arc sin x}
@EndList
@End @Text

Braces are used for grouping parameters
to the features. The symbols are all
taken from two of the standard packages:
DocumentLayout, which provides headings,
paragraphs, lists, footnotes, sections, and so
on, and Eq, which provides mathematical
typesetting in a style copied from the eqn
language of Kernighan and Cherry [2].

At the time of writing, packages exist
for formatting general documents, technical
reports, and books, the latter providing an
automatic table of contents, running page

1PostScript is a trademark of Adobe Systems,
Incorporated.

headers and footers, access to bibliographic
databases, and a sorted index, among many
other features. Specialized packages exist
for mathematical typesetting, drawing
figures, and formatting Pascal programs.

The advanced features maintain the
simple style established above. To produce
a footnote, for example, one simply types

@FootNote { ... }

at the appropriate point, and it will be
numbered and placed at the bottom of the
page; to add an item to the index,

expert @Index { Expert user }

is typed, and the right parameter will appear
in the index, with a page number, at a place
determined by the alphabetical ranking of the
left parameter. No technical knowledge is
required to use these features.

3. Objects

To the expert user, Lout is a high-
level functional language with a relative-
ly small repertoire of primitive features or-
ganized around four key concepts: objects,
definitions, cross references, and galleys. An
object is a rectangle with at least one horizon-
tal and one vertical mark protruding from it.
For example,

Australia

is an object which is viewed by Lout like
this:

Australia

Horizontal and vertical concatenation
operators, denoted by the symbols | and /, are
used to assemble larger objects:

USA |0.2i Australia

is the object

- 3 -

USA Australia

The parameters are separated by the length
given after the concatenation symbol (0.2
inches in this example), and their horizontal
marks are aligned.

Tables are made by combining the
two operators, with | having the higher
precedence:

USA |0.2i Australia
/0.1i Washington | Canberra

is the object

USA Australia
Washington Canberra

The second horizontal concatenation sym-
bol needs no length, since the first one de-
termines the separation between the two
columns created by the alignment of the ver-
tical marks. Objects of arbitrary complex-
ity may be assembled using these and other
operators, and braces used for grouping, in a
manner analogous to the assembly of expres-
sions in programming languages.

The lengths attached to concatenation
symbols have features which permit objects
to be positioned very precisely. In addition
to the usual units of measurement (inches,
centimetres, points, and ems), lengths may
be measured in units of the current font size,
space width, inter-line space, and available
width (for centering and right justification).

There are also six gap modes, which
determine where the lengths are measured
from. Previous examples have used edge-
to-edge mode:

Lout also provides a mark-to-mark mode,
obtained by appending x to the length:

The length will be widened if necessary to
prevent the parameters from overlapping,
thus implementing the baseline-to-baseline
spacing used between lines of text. Other
modes provide tabulation from the left
margin, overstriking, and hyphenation.

The final appearance of an object is
affected by a limited amount of information
inherited from the context, principally the
font and the width available for the object to
occupy. There are operators for setting these
attributes:

Slope @Font {
Hello, world
}

produces

Hello, world

and in a similar way

1.5i @Wide {
(1) |0.1i A small
indented paragraph
of text.
}

produces

(1) A small indented
paragraph of text.

with the paragraph inheriting and being
broken to an available width of 1.4 inches
minus the width of (1). This size inheritance
remains secure through all the complexities
of gap modes, mark alignment, the @Wide
and other operators, and so on, providing a
high-level service comparable in value with
strong typing in programming languages.

4. Definitions

Lout permits the user to define operators
which take objects as parameters and
return objects as results. This feature,

- 4 -

unremarkable in itself, has some surprising
applications, most notably to a problem
which is the litmus test of flexibility in
document formatting: the specification of
page layout.

The use of operators in document
formatting seems to have been pioneered
by the eqn equation formatting language
of Kernighan and Cherry [2]. In eqn, the
mathematical formula

2x + 1
4

for example is expressed as

{ x sup 2 + 1 } over 4

This identical expression is also used in Lout,
but in Lout the operators (sup, over and so
on) have visible definitions which are easy to
modify and extend.

For example, here is the definition of the
over operator as it appears in the Eq equation
formatting package [6]:

def over
 precedence 54
 associativity left
 left x
 right y
{
 @OneRow @OneCol
 {
 |0.5rt x
 ^//0.2f @HLine
 //0.2f |0.5rt y
 }
}

Invocations of over return the object between
the braces, with the formal parameters x and
y replaced by actual parameters which are
objects found to the left and right of the over
symbol.

The body of over makes a good demon-
stration of the way in which Lout’s oper-

ators combine together. All are Lout prim-
itives except @HLine, which calls upon
Lout’s graphics primitives to draw a horizon-
tal line. The // and ^// operators are variants
of vertical concatenation which omit mark
alignment; the separation is 0.2 times the cur-
rent font size. The two |0.5rt operators cen-
ter each parameter in the column. Finally,
the @OneRow and ^// operators work togeth-
er to ensure that only one horizontal mark
protrudes, rather than three; the result has the
structure

2x + 1
4

and so will be aligned correctly with adjacent
parts of the equation.

As is usual in functional languages,
sequences are obtained by recursive
definitions. For example, the ‘leaders’ often
seen in tables of contents can be generated by
the definition

def @Leaders
{
 .. @Leaders
}

White space after { and before } is not
significant. The recursion stops when space
runs out, so

1.5i @Wide {
Chapter 1 @Leaders 5
}

has result

Chapter 1 5

The final invocation of @Leaders is deleted
along with any preceding concatenation
operator (or white space in this case).

The specification of page layout
is a major problem for many document
formatters, because the model of a document
as a sequence of pages is built-in, and an

- 5 -

armada of tedious commands is required to
communicate with this model: commands
for setting page width and height, margins,
columns, page header and footer lines, and
so on. Even with all these commands, the
formatter will be unable to do such a simple
thing as draw a box around each page, if there
is no command for it.

Lout has no built-in model and no such
commands. Instead, a page is an object like
any other:

def @Page
 right x
{
 8i @Wide 11i @High
 {
 //1i ||1i x ||1i
 //1i
 }
}

The result of @Page is an eight by eleven
inch object containing the right parameter
within one inch margins. A document is a
vertical concatenation of numbered pages:

def @PageList
 right @PageNum
{
 @Page
 {
 |0.5rt - @PageNum -
 //0.2i @TextPlace
 //1rt @FootSect
 }
 //0i
 @PageList
 @Next @PageNum
}

The @Next operator is a Lout primitive
that returns its right parameter plus one;
all automatic numbering is effected by
combining this operator with recursion. The
result of @PageList 1 is the object

- 1 -
@TextPlace

@FootSect

- 2 -
@TextPlace

@FootSect

@PageList 3

which has the potential to expand to infinitely
many pages.

We conclude this example by defining
@FootSect to be a small horizontal line
above a list of @FootPlace symbols:

def @FootList
{
 @FootPlace
 //0.1i @FootList
}

def @FootSect
{
 1i @Wide @HLine
 //0.1i @FootList
}

This method of specifying page layout is
infinitely more flexible than the other, since
the full resources of the language may be
brought to bear. Of course, the @PageList,
@FootSect, and @FootList symbols must be
expanded only on demand, and we have yet
to see how the @TextPlace and @FootPlace
symbols can be replaced by actual text and
footnotes.

- 6 -

5. Galleys

The fundamental problem with insert-
ing text, footnotes, and floating figures into
pages is that the process seems impossible to
describe in functional terms. A footnote is
entered within a paragraph of text, but it ap-
pears somewhere else: at the foot of a page.
Some new abstraction is needed to explain
this.

The landscape of features that previ-
ous document formatting systems have in-
troduced at this point can best be described
metaphorically, as an antediluvian swamp
populated by dinosaurs and demons, whose
air is filled with the piteous cries of document
format designers in torment.

Lout’s solution to this problem is
a feature called the galley, after the metal
trays used in manual typesetting. A galley
consists of an object plus an indication that
the object is to appear somewhere other than
its invocation point. For example,

- 1 -

Galleys
The fundamen-

tal problem with in-
serting text, footnotes,
and floating figures into
pages is that the pro-
cess seems impossible
to describe in function-
al terms. A footnote is
entered within a para-

- 2 -

graph of text, but it ap-
pears somewhere else: at
the foot of a page. Some
new abstraction is need-
ed to explain this.

is the result of the expression

@PageList 1
//
@Text {
@Heading { Galleys }
@PP
The fundamental ...
... to explain this.
}

The only new definitions required are these:

def @TextPlace { @Galley }

def @Text
 into { @TextPlace&&preceding }
 right x
{ x }

They say that @TextPlace (which the reader
will recall as lying within the pages of
@PageList) is a placeholder for an incoming
galley, and that @Text is a galley whose
result is to appear, not where @Text is
invoked, but rather at some @TextPlace
preceding that point of invocation in the final
printed document.

Although the abstraction can be
understood in a static way, it is helpful to
trace what happens when the Basser Lout
batch formatter reads the expression above.

Since @PageList 1 indirectly contains
the special @Galley symbol, it will be ex-
panded only upon demand. The discov-
ery of the @Text galley initiates a search
for a @TextPlace, which is found within
@PageList 1 and so forces one such expan-
sion. The available width at this @TextPlace
is six inches, so the @Text galley is bro-
ken into six-inch components which are pro-
moted one by one until the available height
(nine inches) is exhausted. Since the @Text
galley is not entirely consumed, a forward
search of the document is made, another
@TextPlace is found within the as yet unex-
panded @PageList 2, and the process is re-
peated.

- 7 -

The treatment of footnotes is the same,
except that

def @FootNote
 into { @FootPlace&&following }

is used to make the footnote appear later in
the finished document than its invocation
point. Basser Lout suspends the promotion
of text into pages just after the component
containing the footnote’s invocation point is
promoted, switches to the placement of the
footnote galley, then resumes the body text.

A collection of galleys all targeted to the
same place may optionally appear sorted on
a designated key, thus implementing sorted
reference lists and indexes. The author was
obliged to make the sorting option a primitive
feature, since it otherwise seems to require
boolean operators which he preferred to
exclude.

The @PageList object which receives
the @Text galley can itself be viewed as
a galley whose components are pages,
and this leads to a dynamic view of Lout
document assembly as a tree of galleys, each
promoting into its parent, with the root galley
promoting into the output file. For example,
the BookLayout package [4] has @Section
galleys promoting into @Chapter galleys
promoting into a single @PageList galley,
which promotes into the output; no limit is
imposed on the height of the tree.

6. Cross references

The terms @TextPlace&&preceding
and @FootPlace&&following used above can
be thought of as arrows in the final printed
document, pointing from themselves to the
place they name. Expressed in this way,
free of any reference to the internal action
of the document formatter, they are easy to
comprehend and work with. These arrows
are called cross references in Lout.

A galley is transported forwards along

its arrow, but it turns out that a reverse
flow of information can also be very useful.
For example, large documents often have
cross references such as ‘see Table 6 on
page 57.’ If the numbers are replaced by
arrows pointing to the table in question,
it should be possible to have their values
filled in automatically (an idea introduced
by Scribe [12]). An arrow pointing outside
the document could retrieve an entry from a
database of references, Roman numerals, etc.
And a running page header like ‘Chapter 8:
Sorting’ might obtain its value from an arrow
pointing from the page header line down into
the body text of the page, where the current
chapter is known.

All these ideas are realized in Lout, but
here we will just sketch a simplified version
of the running page header definitions found
in the BookLayout package [4]. A symbol
called @Runner is first defined:

def @Runner
 right @Val
{}

@Runner produces nothing at all, which
means that we may place the invocation

@Runner { Chapter
8: Sorting }

at the end of a chapter without harm. This
invisible invocation will be carried along
with the chapter and will end up on some
page of the final printed document.

By modifying the definition of @Page-
List, we can add to each page a header line
containing the expression

@Runner&&following
@Open { @Val }

This means ‘find the nearest following
invocation of @Runner in the final printed
document and retrieve its @Val parameter.’
Every page of Chapter 8 will find the correct

- 8 -

running header, since @Runner was placed
at the end of the chapter. The invocation
@Runner {} placed at the beginning of the
chapter will suppress the header on the first
page of the chapter, as it is conventional to
do.

These invocations of @Runner are
hidden from the non-expert user within the
definition of the @Chapter operator. The
result is a reliable implementation of a
notoriously difficult feature.

7. Conclusion

The Lout document formatting system
permits features as diverse as page layout and
equation formatting to be implemented by
definitions written in a high-level language.
The consequent improvement in productivity
has allowed an unprecedented repertoire
of advanced features to be presented to the
non-expert user.

To future research in document format-
ting, Lout offers evidence of the utility of
the functional paradigm, as well as two new
abstractions: galleys and cross references.
These provide a secure foundation for fea-
tures which have proven very difficult to im-
plement in the past.

A number of improvements to the
current system can be envisaged. Better
paragraph and page breaking algorithms
could be added to the formatter without any
change to the language; non-rectangular
objects would be useful in some places.
Perhaps the most useful improvement would
be the representation of paragraphs as
horizontal galleys, since this would allow the
full power of the language to be brought to
bear on paragraph layout, in contrast to the
present built-in system which offers only the
traditional styles (ragged right, justified, and
so on).

The author of a recent interactive
document editor [1] has recommended that

the interface be supported by a functional
base language, accessible to the expert user,
for such purposes as page layout definition
and fine control over formatting. Lout
appears to be an excellent candidate for
such a language, because of its small size,
precision, and functional semantics.

References

1. Brooks, Kenneth P., Lilac: a two-view
document editor. IEEE Computer,
7–19 (1991).

2. Kernighan, Brian W. and Cherry,
Lorinda L., A system for typesetting
mathematics. Communications of the
ACM 18, 182–193 (1975).

3. Kingston, Jeffrey H., Document For-
matting with Lout (Second Edition).
Tech. Rep. 449 (1992), Basser Depart-
ment of Computer Science F09, Univer-
sity of Sydney 2006, Australia.

4. Kingston, Jeffrey H., A beginners’
guide to Lout. Tech. Rep. 450 (1992),
Basser Department of Computer Sci-
ence F09, University of Sydney 2006,
Australia.

5. Kingston, Jeffrey H., The design and
implementation of the Lout document
formatting language. Tech. Rep. 442
(1992), Basser Department of Com-
puter Science F09, University of Syd-
ney 2006, Australia. To appear in
Software—Practice and Experience.

6. Kingston, Jeffrey H., Eq – a Lout pack-
age for typesetting mathematics. Tech.
Rep. 452 (1992), Basser Department of
Computer Science F09, University of
Sydney 2006, Australia. Contains an
appendix describing the Pas Pascal for-
matter.

- 9 -

7. Kingston, Jeffrey H., Fig – a Lout
package for drawing figures. Tech.
Rep. 453 (1992), Basser Department of
Computer Science F09, University of
Sydney 2006, Australia.

8. Kingston, Jeffrey H., Tab – a Lout
package for formatting tables. Tech.
Rep. 451 (1992), Basser Department of
Computer Science F09, University of
Sydney 2006, Australia.

9. Kingston, Jeffrey H., The Basser
Lout Document Formatter, Version
2.05, 1993. Computer program, pub-
licly available in the jeff subdirec-
tory of the home directory of ftp to
host ftp.cs.su.oz.au with login name
anonymous or ftp and any non-empty
password (e.g. none). Lout distri-
butions are also available from the
comp.sources.misc newsgroup. All en-
quiries to jeff@cs.su.oz.au.

10. Knuth, Donald E., The TEXBook.
Addison-Wesley, 1984.

11. Joseph F. Ossanna, Nroff/Troff User’s
Manual. Tech. Rep. 54 (1976), Bell
Laboratories, Murray Hill, NJ 07974.

12. Reid, Brian K., A High-Level Ap-
proach to Computer Document Produc-
tion. Proceedings of the 7th Symposium
on the Principles of Programming Lan-
guages (POPL), Las Vegas NV, 1980,
24–31.

