
CS196-2 – Innovating Game Development – Project 2: Character Animation

Project 2: Character Animation
Due Date: Friday, March 10th, 11:59 PM

1 Introduction

The technique of motion capture, or using the recorded movements of a live
actor to drive a virtual character, has recently become very popular in video
games. Characters that are animated with motion capture data appear very
realistic and exhibit subtleties of human motion that are hard to replicate, even
by a skilled animator. The amount of time required to produce an animation
sequence is also much less with motion capture than with traditional animation
techniques.

There are a number of different formats in which motion capture data is
stored (Dojo supports the ASF and BVH formats), but the general idea is
to represent the character as a skeleton, or a hierarchy of bones. At the top
of this hierarchy is the skeleton’s root, whose orientation and position in the
world defines the entire character’s orientation and position (these are the global
degrees of freedom). The position and orientation of each bone down in the
hierarchy is defined in relation to the bone’s parent (the bone directly above it
in the hierarchy). Each parent and child pair is connected by a joint that can
have from 0 to 3 degrees of freedom (these are the local degrees of freedom; for
example a hinge joint = 1 dof, a ball joint = 3 dof). Each frame of motion
capture data contains values for all of the skeleton’s local degrees of freedom
(defining the skeleton’s pose), as well as the position and orientation of the
skeleton’s root in relation to the start frame of the motion sequence (these
global degrees of freedom are adjusted as necessary to position the character in
a scene).

In this assignment you will use motion capture data to animate a humanoid
character in your game. Specifically, you are required to use a motion graph1 and
come up with a scheme for controlling your character in-game. This animated
character should replace the character entity that you used to navigate the game
world in Project 0. For extra credit, you can integrate your control scheme
with the path-planning algorithm from Project 1 to create intelligent, animated
humanoid NPCs.

2 Motion Graph

2.1 Structure

A motion graph is a directed graph whose nodes are animation frames. In its
simplest (and not very interesting) form, a motion graph just contains a number
of node chains, each corresponding to a recorded motion sequence (diagram

1Lucas Kovar, Michael Gleicher, and Frédéric Pighin. “Motion graphs.” ACM Transactions
on Graphics, 21(3):473-482, July 2002.

1



CS196-2 – Innovating Game Development – Project 2: Character Animation

below, on the left). The motion graph becomes useful when new transitions
(edges) are added to connect different motion sequences or different parts of the
same motion sequence (diagram below, on the right). The goal is to create a
graph such that any traversal of it will yield a valid, visually pleasing motion.

Remember that each frame of motion data stores the position and orientation
of the skeleton’s root relative to the start of the sequence that contains the frame.
When a transition is added to the motion graph, it is necessary to record the
transformation (rotation and translation in 3-space) that is needed to align
the root across the transition. To understand intuitively why this is necessary,
imagine a motion graph that contains a single walking sequence, where the only
additional transition is one from the last frame to the first to create a cycle. If
the root is not properly aligned across this transition, then the character will
simply jump back to its original starting position to repeat the motion over and
over, whereas the desired effect is to have him continue walking off to infinity.

2.2 Creating new transitions

In order to generate motions that are as smooth and visually pleasing as possible,
transitions must be created only between frames that are “similar” to each other.
For example, a transition from a frame where the character is lying on his back
to one where he is jogging would be very undesirable. There are a number of
ways to measure similarity between frames, but the support code that you are
given for this assignment uses a method that compares the orientations of the
character’s joints between the two frames.2

Once the distance, or transition cost, has been computed for each pair of
nodes in the graph, it is up to you to decide where to actually create transitions,
based on the costs. A typical approach is to select a threshold and to create a
transition for each pair of nodes whose cost is below the threshold. However,
you will probably find that choosing a single good threshold for all your motion
sequences is difficult, if not impossible. Instead, you may want to set different
thresholds for different motion categories, for example one threshold to be used
for determining transitions between walk sequences and another to be used for
transitions from a walk sequence to a run sequence. Bad transitions will result
in ugly, jerky motions, so it is important that you leave yourself enough time
to experiment with this part of the assignment and to come up with a good
solution.

Even if you end up finding a really good transition, you will still most likely
see jerky motion if you simply switch from one motion sequence to the next

2For more information, see: Jim Wang, and Bobby Bodenheimer. “An Evaluation of a
Cost Metric for Selecting Transitions between Motion Segments.” Eurographics/SIGGRAPH
Symposium on Computer Animation, 2003.

2



CS196-2 – Innovating Game Development – Project 2: Character Animation

at the transition point. In order to get a smooth transition you will need to
interpolate between the two motion sequences in a window around the transition
point. You can either perform this interpolation on the fly as you traverse
the graph, or you can insert the interpolated frames as new nodes into the
motion graph when you create a transition. Note that a longer interpolation
window does not necessarily translate into a better looking motion. A window
that is too long can produce very unrealistic motion and the ideal window is
somewhere between 10 and 30 frames long. Interpolation is not required to for
this assignment, and it will be considered extra credit.

2.3 Pruning the graph

When you’ve created all of your transitions, your motion graph will likely have
a number of dead ends, nodes that have no edges leading away from them. The
final step in creating the motion graph is to remove all of these dead ends from
the graph. However, since this is not particularly interesting, we’re leaving it
as extra credit. A simple alternative method for getting rid of dead ends is to
take the last node of each motion sequence and create a transition from it to
the first node of the respective sequence. Whichever method you decide to use,
make sure that your character motion avoids unpleasant motion induced by bad
transitions.

3 Controlling the character

Once you have a motion graph set up and ready to go, you need to come up
with a way to use it to animate your character based on the player’s input.
As mentioned earlier, any walk along a motion graph should yield a plausible
motion, however while a random traversal of the graph might make for a good
screen saver, it’s not particularly useful for an interactive video game. It is
up to you to come up with a control scheme for your character: a strategy for
choosing the next path to take in the motion graph based on the current state
and the player’s input. We are deliberately leaving this part very open-ended
because every game will require a different control scheme. Be sure to put a
lot of thought into how you’re going to approach this problem. A bad control
scheme can destroy a game, while a particularly good one can be what makes a
game stand out. Feel free to discuss any ideas you might have with the course
staff.

Whatever control scheme you come up with, you should make sure that it
is sufficiently responsive to the player’s input. This means that if the player
indicates that the character should turn left, he should not have to wait 10
seconds for that action to take place (unless of course having laggy controls is
a design decision, if you’re trying to make, say, a drunken boxing simulator...
in that situation though you will have to make a very good case to the course
staff). This issue relates back to the structure of your motion graph. If you
find that your controls are very laggy, maybe there are not enough transitions

3



CS196-2 – Innovating Game Development – Project 2: Character Animation

in your motion graph.

4 Support code

As with most of the materials that we provide you with in this course, you
are completely free to ignore this support code if you have another way that
you would like to do this assignment. We’re giving you an almost complete
implementation of a motion graph so that you can focus on working on your
control scheme without having to worry about details like what the heck is a
quaternion. If something about our implementation is incompatible with an
idea that you want to try, or if you think that it’s just plain stupid, feel free to
change as much or as little as you like, though please list any changes you make
in your README for the sake of the graders’ sanity.

4.1 MGHumanoid

MGHumanoid is a subclass of Dojo’s Humanoid class that is used for handling
motion capture data. The methods that you need to worry about are:

• static MGHumanoidRef create(const std::string& name, const std::string&
filename, bool canMove = false);

This is a static method that returns a reference-counted pointer to a new
instance of MGHumanoid. (Note that you always want to call this method
and not the constructor when creating a new MGHumanoid).

name A name that you assign to this humanoid.
filename The name of the file containing the skeleton for this

humanoid (a BVH or ASF file).
canMove Always set this to false.

• Humanoid::Motion loadMotion(const std::string& filename);

This method is inherited from Humanoid and is used for loading motion
data from a file (either AMC or BVH). The file must contain motion data
that is compatible with the skeleton data from the file was used to create
the MGHumanoid.

• void setMotionGraph(MotionGraph* graph);

Use this method to set the humanoid’s motion graph once you create
it.

• bool getNextFrame(const double & dt, Frame & frame);

This is where the graph traversal is performed. At each simulation step
this method is called to see how the humanoid should be posed at this

4



CS196-2 – Innovating Game Development – Project 2: Character Animation

step. You have to fill this method with the control scheme that you de-
vise. The method returns true if a next frame is available (i.e. no error
occurred).

dt The elapsed time since this method was last called.
frame Passed by reference, you use this variable to return the Frame

of the MotionGraphNode that you determine should come next
in the graph traversal.

4.2 MotionGraph

MotionGraph is an almost complete implementation of a motion graph. Its most
important methods are:

• void addMotion(Humanoid::Motion* motion);

Adds a motion to the graph.

• void computeDistance(MotionGraphNode* a, MotionGraphNode* b);

Performs a similarity measure between two nodes in the motion graph
(the obtained cost is stored in MotionGraphNode::distanceMap). This is
already written for you. Tweak the m velocityWeight member variable
to specify how much weight is given to the bones’ rotational velocities as
opposed to just their orientations when calculating this cost.

• void computeTransitions(MotionGraphNode* node);

Creates viable transitions out of the node (call computeDistance() first).
You need to fill this method in.

Note that you will likely need to add some data to the MotionGraphNode
class based on how you decide to set up your control scheme. For example, you
might want to assign a type to each transition to help in choosing the correct
one when you traverse the graph.

This is how you should initialize your MGHumanoid and MotionGraph:

MGHumanoidRef mgHumanoid = MGHumanoid::create("mgHumanoid", "myMocapDir/f wlk1.bvh");
World::world()->insert((EntityRef)mgHumanoid, CoordinateFrame()));

MotionGraph* motionGraph = new MotionGraph("mgraph", mgHumanoid->skeletonName);
motionGraph->addMotion(&mgHumanoid->loadMotion("myMocapDir/f wlk1.bvh"));
motionGraph->addMotion(&mgHumanoid->loadMotion("myMocapDir/f wlk2.bvh"));
mgHumanoid->setMotionGraph(motionGraph);

5



CS196-2 – Innovating Game Development – Project 2: Character Animation

5 Motion capture data

A collection of motion capture data is available to you in /course/cs196-2/pub/mocap/.
Additionally, you can find more data at these sites:

• mocap.cs.cmu.edu

• www.bvhfiles.com

6 Requirements

Your grade for this assignment will be based on the following:

Quality of transitions Do you perform transitions at all? 40%
How smooth are they?
Is there an intelligent strategy for making transitions?

Control scheme Can switch between at least 3 separate actions. 40%
How responsive are the controls?

Creativity Is the control scheme interesting or well-designed? 20%
Is it fun/intuitive/useful/cool?
Or is it boring/overly complicated/frustrating?

Please explain your strategy for creating transitions in a README (for ex-
ample, if you decided to set a bunch of thresholds, explain how you arrived
at their final values). Also talk about the reason why you chose your control
scheme, why you think it’s good and any issues that you think still need to be
resolved (remember to actually provide instructions for controlling your char-
acter as well). The README must be a text file (.doc file submitters will be
prosecuted!).

7 Extra credit

There are a number of things that you can do for extra credit, though remember
to get the core assignment working first before attempting any of these.

• Integrate the motion graph with your path-planning algorithm from Project
1 to create animated humanoid NPCs.

• Interpolate between frames around transition points to get smoother tran-
sitions.

• Implement a proper graph pruning algorithm to get rid of dead ends.

• Write methods to save/load the motion graph to/from a file. In a real
video game you don’t want to be creating the motion graph from scratch
every time you start the application. Instead the graph should be built
once, saved to a file, then loaded by the game.

6



CS196-2 – Innovating Game Development – Project 2: Character Animation

• Do something that really impresses us. Be creative.

8 Handing In

8.1 What to Hand In

Make sure that you hand in all of your code as well any maps and textures. If
you used any mocap files that were not provided by us, please make sure that
those are included as well. Along with this, you must handin a README in
which you explain your design choices.

8.2 Handin Script

IMPORTANT: Make sure to clean your solution (Build>Clean Solution in
Visual Studio) before handing in.

To handin your project, run /u/course/cs196-2/bin/cs196-2 handin asgn2 in
your project’s base directory.

7


