
CS196-2 – Innovating Game Development – Project 1: Path Planning

Project 1: Path Planning
Due Date: Friday, February 24th, 11:59 PM

1 Introduction

I hate getting lost. So do videogame characters. Your videogame characters
thus far have been sad and lost in their level, wandering semiaimlessly in an
attempt to fulfill their basic needs and inner programming. Help them.

In this assignment, you must create characters that are able to get from point
A to point B without falling into point C, which is a large hole, fire, etc. In
order to do this, you will be writing a pathplanning algorithm. Your character
must be able to navigate a series of waypoints, specified in your map-file. The
endgoal for this assignment is an NPC capable of “capturing” a character you
control.

2 Dojo

In the previous assignment you did not have to spend much time interacting
with Dojo itself; however, in this assignment you will have to interact with
the map geometry loaded into Dojo. We have provided a simple class called a
Waypoint that is specified in the map file. Your job is to create a “line-of-sight”
connectivity graph of the waypoints when you load a map. Basically you have
to determine if you have a straight line path from one way point to another. We
have provided you with the World::rayCast method to do this (you probably
want to cast multiple rays from the perimeter and the interior of your NPC to
make sure nothing is blocking its path; and remember to make sure that your
NPC will not fall through a hole, so make sure you check the ground along a
given path). You will then search this connectivity graph in game to find the
best path for your NPC to use. You will also be responsible for getting your
NPC to and from waypoints, i.e. once you navigate to the waypoint nearest the
player you may have to leave the waypoints to “capture” the player.

There is also example code on how to use Quake 2 models as your characters.
This is in no way required, but you may be tired of just using a plain ball so we
thought we’d include it.

2.1 A*

This is pronounced ay-star. It is one of the simpler pathplanning algorithms, and
is easily one of the most well-known and oft-used. It’s a variation of Dijkstra’s
search algorithm where you use a combination of a heuristic and cost. The
cost in this case will be physical distance. It is guaranteed to give an optimal
solution given a good heuristic, but it is not guaranteed to give the solution in
the fastest amount of time.

Here’s a description of A* as taken from Gamasutra
(http://www.gamasutra.com/features/20010314/pinter 01.htm)

1



CS196-2 – Innovating Game Development – Project 1: Path Planning

The A* algorithm is a venerable technique which was originally ap-
plied to various mathematical problems and was adapted to pathfind-
ing during the early years of artificial intelligence research. The ba-
sic algorithm, when applied to a pathfinding problem, is as follows:
Start at the initial waypoint (node) and place it on the Open list,
along with its estimated cost to the destination, which is determined
by a heuristic. The heuristic is often just the geometric distance be-
tween two nodes. Then perform the following loop while the Open
list is nonempty:

* Pop the node off the Open list that has the lowest estimated
cost to the destination.

* If the node is the destination, we’ve successfully finished (quit).
* Examine the node’s neighboring nodes.
* For each of the nodes which are not blocked, calculate the esti-

mated cost to the goal of the path that goes through that node.
(This is the actual cost to reach that node from the origin, plus
the heuristic cost to the destination.)

* Push all those nonblocked surrounding nodes onto the Open
list, and repeat loop.

You don’t have to use A* to search your connectivity graph if you don’t want
to. We’re just recommending it.

2.2 Waypoints

To specify a waypoint in your map, use the path corner entity in GtkRadiant.
We’re using line-of-sight waypoints for pathfinding, so it’s very important when
creating test maps that each waypoint can “see” at least one other waypoint.
This makes proper map design very important.

3 Requirements

You should turn in a working bot that can “capture” (i.e. chase/follow) a
human controlled character. We provide you with a simple example map to use
for testing. But you should definitely build, and turn in, your own maps to test
more complicated cases and show off your AI.

4 Getting Started

The first thing you should do is create the connectivity graph. It is important
to make sure that this is correct before you start writing your search algorithm
because it will make the search algortihm easier to debug. Also, this assignment
is considerable more work than the previous assignment, so make sure you get
an early start.

2



CS196-2 – Innovating Game Development – Project 1: Path Planning

5 Handing In

5.1 What to Hand In

Make sure that you hand in all of your code as well any maps and textures.
Along with this, you must handin a README in which you explain your design
choices in creating your map as well as the changes you made to Dojo.

5.2 Handin Script

IMPORTANT: Make sure to clean your solution (Build>Clean Soluction in
Visual Studio) before handing in.

To handin your project, run /u/course/cs196-2/bin/cs196-2 handin asgn1 in
your project’s the base directory.

6 Extra Credit

Line-of-sight waypoint algorithms are not great. As you may notice, your char-
acters’ movement is largely dependent on the map file’s waypoints: if two way-
points should be traverseable but the character thinks they’re not, that generally
means that more waypoints are needed as a guide. So, do real pathplanning
without waypoints. That would be cool. See the following article on 3D path-
planning:

http://www.gamasutra.com/features/20020405/smith 01.htm
If you’re interested in this let us know and we can give you code to easily

access the map geometry itself.

3


