
CS196-2 – Innovating Game Development – Project 0: Level Design

Project 0: Level Design
Due Date: Friday, February 10th, 11:59 PM

1 Introduction

The purpose of this assignment is to familiarize you with our game engine Dojo
and get you thinking about what makes a game fun to play. As such, in this
assignment you will be creating a map using GtkRadiant (or the Quake 3 map
editor of your choice) and incorporating it into Dojo. Because Dojo incorporates
physics (via the Open Dynamics Engine), we envision a marble navigation game,
such as Marble Blast by Garage Games. You will load your level into Dojo and
deal with issues such as character control, basic game interaction, triggers, etc...
While the technical side of this assignment is very important, remember that
the purpose of games is to entertain. Creativity and fun are necessary parts of
this assignment; if you don’t think your map is interesting, we probably won’t
either.

2 Requirements

For this assignment you must create a map that is playable using our game
engine Dojo. Your map must incorporate triggers (for things such as scoring
points, teleporting, extra lives etc.) that your character can interact with. We
provide a few example triggers but you should also create your own. We realize
this assignment probably seems pretty open ended, but that’s how we designed
it. Beyond these few requirements, your grade for this assignment will be based
primarily on how creative you get with your map and triggers.

3 Creating a Map

To create a map you will use GtkRadiant (or whatever Quake 3 map editor
you want as long as it works with our support code). GtkRadiant is a free
cross-platform map editor available at http://www.qeradiant.com. Make look
at the GtkRadiant help session slides if you are not already familiar
with a map editor. For this assignment you will have to create a map and
create a series of triggers that affect game play (see 5).

4 Dojo

After creating your map and exporting it to .bsp format, you will run it in
Dojo. Make sure you look at the Dojo help session slides. To use
your map with Dojo you must first copy your bsp file to (your dojo direc-
tory)/scratch/build/install/q3maps/maps and your textures to (your dojo

1

http://www.garagegames.com/products/15
http://www.qeradiant.com

CS196-2 – Innovating Game Development – Project 0: Level Design

directory)/scratch/build/install/q3maps/textures. You can then edit the line
in App.cpp that reads:

Q3Map* map = Q3Map::create(”Map”, ”q3maps/”, ”example.bsp”);

to read:

Q3Map* map = Q3Map::create(”Map”, ”q3maps/”, ”<my map name>.bsp”);

You can now run Dojo and it will load your map.

4.1 Loading a Map

Dojo already has code to load Quake 3 maps (see BSPMAP::Map, Dojo::Q3Map
and Dojo::Q3MapModel) so all you have to do is use it. If, however, you find
some cool feature in the Quake 3 file format that Dojo does not support feel free
to augment the map loading code however you like. In fact, if you do something
really cool and let us know about it you’ll probably get bonus points!

4.2 Heads Up Display (HUD)

The HUD package provides basic functionality to display icons, buttons, text,
or fullscreen backgrounds in Dojo. Use the GameUI class to control the HUD.
There are two ways to create the HUD: one, you can call all the GameUI::add*
functions in your C++ code (see Demo::onInit and Demo::onGraphics), or (two)
you can pass it a Lua script file that allows the HUD to build itself. Here are a
few examples:

File: hud.lua

assert(G_UI)
x = 50
y = 400
width = 72
height = 216
AddSprite(G_UI,"gamesprites/sidebar.bmp",x,y,width,height)

text = {font = "font/venusrising.fnt",
size = 14,

x = 50,
y = 60,
color = {1, 0.5, 0.5 }, -- optional
outline = { 0, 0, 0.5, 1 }, -- optional
text = "hello world"
}

2

CS196-2 – Innovating Game Development – Project 0: Level Design

AddText(G_UI,text)
AddButton(G_UI,

50,80,25,25,"gamesprites/neutral.png",
"gamesprites/hover.png",
"gamesprites/down.png")

The nice thing about using the Lua script is that you can change the look
of your user interface without recompiling your code, which you would have to
do if you use the C++ functions.

Note that all of the Lua functions take a parameter, G UI. This is very
important. It will be explained in the Lua helpsession.

To display the HUD, call GameUI::doUIGraphics and pass it a RenderDe-
vice. In order to achieve realtime effects like mouseover button changes, call
GameUI::update with the current mouse position. The RealTime parameter is
there to support animating UI items, which don’t exist yet. To see if a button
was clicked on a mouseup event (because the button doesn’t actually ’release’
until a mouseup), call GameUI::doClick. It takes the position of the click, and
passes back a boolean (true if a button reacts) and a reference to the button’s
handle. You can then act accordingly (quit if the quit button was pressed, etc).

In order to manipulate the items, use the GameUI::set* functions, or call
functions on the UIItems themselves.

4.2.1 Character Control

We have provided you with basic character controls (Demo::onUserInput), it is
up to you whether or not to make any changes. We have also provided simple
mouse based camera controls (Demo::onSimulation), again, feel free to change
them however you wish.

5 Triggers

Part of your assignment is to create triggers in your map. Triggers can be things
such as jump pads, telelporters, free lives, etc... GtkRadiant has a series of built
in triggers called entities. To place an entity in GtkRadiant right-click on the
grid view of your map and a menu with a series of entities will pop-up. Once you
place an entity you can move it around the map using the standard GtkRadiant
controls. Some entities, however, must be attached to an object already within
the map in which case you must first select that object and then place the entity.
There are also entities that need to be targeted (connected) to another entity
(usually a target position). To do this, place the target position, then select
the entity to connect it to and press ctrl+K. If this is done correctly an arrow
should appear linking the two. Entities can have different parameters so consult
the GtkRadiant documentation (and go to the GtkRadiant help session). You
may want to have a trigger that teleports the player or respawns the player
etc., and to do this you will want to manually change the player’s position

3

CS196-2 – Innovating Game Development – Project 0: Level Design

using Entity::setFrame. However, manually changing the player’s position while
ODE is processing physics wil cause an error. As a result, you must find some
way to call Entity::setFrame outside of the physics callbacks (i.e. outside of
Entity::onCollision).

Dojo loads entities into a list BSPMAP::BSPEntity objects that you can ac-
cess using Q3Map::entityArray(). We have given you examples of how to use this
information, see TriggerFactory.[h|cpp],Trigger.[h|cpp]. Each BSPMAP::BSPEntity
contains the following information:

Vector3 position - the location of the entity

std::string name - the name of the entity

int spawnflags - the value of the spawflags option

std::string target - the entity this points to (the empty string
if no such entity exists)

std::string targetName - can be used the same way as target, but
depends on the specific entity (be sure to look at the GtkRadiant
documentation)

int modelNum - the index into the list of BSPModels1 that this
entity points to (-1 if it points to nothing)

std::string otherInfo - any other info loaded from the bsp file
(check the documentation for each specific entity)

For the most part you can interpret these however you want, but there are
a few exceptions.

- info player deathmatch - this is used to specify the starting location
of your character.

- light - this is used to specify lights in the map.

- target position - this is a special entity used to target entities such as
trigger push or trigger teleport. See TargetedPushTrigger.[h|cpp] for an
example of how to use this.

- path corner - you can use this if you want, but it will be used in the
next assignment so you may want to avoid using it to avoid confusion.

It is your responsibility to create the functionality of the triggers in Dojo. We
have provided code to create a TriggerFactory for you in App.cpp and examples
of how to write triggers:

For examples of different types of entities see ScoreTrigger and Targeted-
PushTrigger.

1A BSPMAP::BSPModel is a specific type of geometry in the bsp file format. The main
information that you need to consider for this assignment are the max and min values that
each BSPModel stores, which are the max and min points of the bounding box around the
geometry. The list of BSPModels can be accessed using Q3Map::modelArray()

4

CS196-2 – Innovating Game Development – Project 0: Level Design

6 Getting Started

After attending the help sessions, begin by running Dojo with the example
maps we provide to get a feel for how the character controls work, and to see
the example triggers. The more familiar you are with the game mechanics,
the better you will be able to design your level. We have provided you with
a sample map (dojo/scratch/build/install/q3maps/maps/example.bsp) to get
you started.

7 Handing In

7.1 What to Hand In

Make sure that you hand in all of your code as well as your map and textures.
Along with this, you must handin a README in which you explain your design
choices in creating your map as well as the changes you made to Dojo.

7.2 Handin Script

IMPORTANT: Make sure to clean your solution (Build>Clean Soluction in
Visual Studio) before handing in.

To handin your project, run /u/course/cs196-2/bin/cs196-2 handin in your
project’s the base directory.

Appendix: Where Things Happen in Dojo

Loading a Map: BSPMAP.cpp, BSPMAP.h, BSPMAPLoad.cpp

Loading your Map: App.cpp

Creating Triggers: TriggerFactory.cpp, TriggerFactory.h

Main Rendering: Demo.cpp, World.cpp

Character and Camera Controls: Demo.cpp

UI: GameUI.cpp, GameUI.h

Interfacing with ODE (physics): Entity.cpp, Entity.h, World.cpp,
World.h

5

	Introduction
	Requirements
	Creating a Map
	Dojo
	Loading a Map
	Heads Up Display (HUD)
	Character Control

	Triggers
	Getting Started
	Handing In
	What to Hand In
	Handin Script

