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Agenda

Theorem
Value iteration converges to a stationary optimal policy in

Markov decision processes.

Question
Does multiagent value iteration converge to a stationary

equilibrium policy in Markov games?



Markov Decision Processes (MDPSs)

Decision Process
o S is a set of states
o A is a set of actions
o R:5xA— R is a reward function

o P[s¢+1 ]| st,ae,--.,80,a0] is a probabilistic transition
function that describes transitions between states,
conditioned on past states and actions

MDP = Decision Process + Markov Property:
Plsiy1 | st,at,...,80,a0] = Plsi41 | st,ai]

Vt, Vso,...,st € S, Vag,...,a; € A



Bellman's Equations

Q*(s,a) = R(s,a) +v Y P[s'| s,a]V*(s) (1)
Vi (s) = maxQ’(s,a) (2)

Value Iteration

VI(MDP, ~)
Inputs discount factor ~
Output optimal state-value function V*
optimal action-value function Q*
Initialize 'V arbitrarily

REPEAT
for all se S
forallae A
Q(s,a) = R(s,a) +~ ) P[s' | s,a]V(s)
V(s) = max,Q(s,a)
FOREVER




Markov Games

Stochastic Game
o N is a set of players
o S is a set of states
o A; is the ¢th player’s set of actions

o R;(s,d) is the ith player's reward at state s
given action vector a

o P[stt+1 | st ax,--.,S0,d0] is @ probabilistic transition
function that describes transitions between states,
conditioned on past states and actions

Markov Game = Stochastic Game + Markov Property:
P[St-l—l | Sta6t7 .- '780aa:0] — P[St-l—l | Staat]

Vt, \V/So,...,StES, Vafo,...,c_itEA



Bellman's Analogue

Q;(s,@) = Ri(s,d@) +~v Y _P[s'| s,aV;"(s) (3)
Vi(s) =) w(s,@)Q;(s,d) (4)
acA
Foe-VI 7*(s) = (o3%,0%), @ minimax equilibrium policy

[Shapley 1953, Littman 1994]

Friend-VI *(s) = ez where @* € arg maxzea Q; (s, a)
[Littman 2001]

Nash-VI 7*(s) € Nash(Qi(s),...,Q%L(s))
[Hu and Wellman 1998]

CE-VI ™ (s) € CE(Q3(9),...,Q:(s))

[G and Hall 2003]



Multiagent Value Iteration

MULTI-VI(MGame,~, f)
Inputs discount factor ~
selection mechanism f
Output equilibrium state-value function V*
equilibrium action-value function Q*
Initialize V arbitrarily

REPEAT
for all se S
forallde A
forall e N
Qi(87a:) — R’L(Saa:) +’728/P[3, ‘ Saa:]‘/i(sl)
m(s) € f(Q1(5),...,Qn(s))
forall i e N
‘/;(S) — Z&'GATF(S76)Q’L'(37&:)
FOREVER

Friend-or-Foe-VI always converges [Littman 2001]
Nash-VI and CE-VI converge to stationary equilibrium policies in
zero-sum & common-interest Markov games [GZ and Hall 2005]




An Example

/Send

: :
1, —2tQuit Quit-2, —1
P L |

Send

Observation
This game has no stationary deterministic equilibrium policy when ~ > %

Proof

(A quits, B quits)

(A sends, B quits)
(A sends, B sends)
(A quits, B sends)

A prefers send to quit (2y > 1)
B prefers send to quit (0 > —1)
A prefers quit to send (1 > 0)

R

B prefers quit to send (-1 > —2)



Observation

Example

A WOND -

Policy

(A quits, B sends)
(A sends, B sends)
(A sends, B quits)
(A quits, B quits)

A Cyclic Policy

O
Quit-2, —1
P L |

This game has a deterministic cyclic equilibrium policy when v =

Quat

V(A)
(17 _2)
(3:—3)
(5:—3)

/Send

Send

V(B)
)
(5:—5)
(2,-1)
(2,-1)
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More Cyclic Policies

Send
Ve
: :
1, —2tQuit Quit-2,—1
L]
el
Send
v (A sends, B sends) | Total
2 1 4
3
0.9 5 8
0.999999 693146 693149




Random Markov Games

IN| =2

Al € {2,3}

S| € {1,...,10}

Random Rewards € [0, 99]

Random Deterministic Transitions
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Multiagent ()-Learning

Minimax-@Q Learning [Littman 1994]

o provably converges to stationary minimax equilibrium policies
in zero-sum Markov games

Nash-Q Learning [Hu and Wellman 1998]
Correlated-@ Learning [G and Hall 2003]

o converge empiricially to stationary equilibrium policies on a
testbed of general-sum Markov games
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