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Agenda

Theorem

Value iteration converges to a stationary optimal policy in

Markov decision processes.

Question

Does multiagent value iteration converge to a stationary

equilibrium policy in Markov games?
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Markov Decision Processes (MDPs)

Decision Process

◦ S is a set of states

◦ A is a set of actions

◦ R : S × A → R is a reward function

◦ P [st+1 | st, at, . . . , s0, a0] is a probabilistic transition
function that describes transitions between states,
conditioned on past states and actions

MDP = Decision Process + Markov Property:

P [st+1 | st, at, . . . , s0, a0] = P [st+1 | st, at]

∀t, ∀s0, . . . , st ∈ S, ∀a0, . . . , at ∈ A
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Bellman’s Equations

Q∗(s, a) = R(s, a) + γ
∑

s′

P [s′ | s, a]V ∗(s′) (1)

V ∗(s) = max
a∈A

Q∗(s, a) (2)

Value Iteration

VI(MDP, γ)
Inputs discount factor γ
Output optimal state-value function V ∗

optimal action-value function Q∗

Initialize V arbitrarily

REPEAT
for all s ∈ S

for all a ∈ A
Q(s, a) = R(s, a) + γ

∑

s′
P [s′ | s, a]V (s′)

V (s) = maxa Q(s, a)
FOREVER
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Markov Games

Stochastic Game

◦ N is a set of players

◦ S is a set of states

◦ Ai is the ith player’s set of actions

◦ Ri(s,~a) is the ith player’s reward at state s
given action vector ~a

◦ P [st+1 | st,~at, . . . , s0,~a0] is a probabilistic transition
function that describes transitions between states,
conditioned on past states and actions

Markov Game = Stochastic Game + Markov Property:

P [st+1 | st,~at, . . . , s0,~a0] = P [st+1 | st,~at]

∀t, ∀s0, . . . , st ∈ S, ∀~a0, . . . ,~at ∈ A
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Bellman’s Analogue

Q∗
i (s,~a) = Ri(s,~a) + γ

∑

s′

P [s′ | s,~a]V ∗
i (s′) (3)

V ∗
i (s) =

∑

~a∈A

π∗(s,~a)Q∗
i (s,~a) (4)

Foe-VI π∗(s) = (σ∗
1, σ

∗
2), a minimax equilibrium policy

[Shapley 1953, Littman 1994]

Friend-VI π∗(s) = e~a∗ where ~a∗ ∈ argmax~a∈A Q∗
i (s,~a)

[Littman 2001]

Nash-VI π∗(s) ∈ Nash(Q∗
1(s), . . . , Q

∗
n(s))

[Hu and Wellman 1998]

CE-VI π∗(s) ∈ CE(Q∗
1(s), . . . , Q

∗
n(s))

[G and Hall 2003]
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Multiagent Value Iteration

MULTI–VI(MGame, γ, f)
Inputs discount factor γ

selection mechanism f
Output equilibrium state-value function V ∗

equilibrium action-value function Q∗

Initialize V arbitrarily

REPEAT
for all s ∈ S

for all ~a ∈ A
for all i ∈ N

Qi(s,~a) = Ri(s,~a) + γ
∑

s′
P [s′ | s,~a]Vi(s

′)

π(s) ∈ f(Q1(s), . . . , Qn(s))
for all i ∈ N

Vi(s) =
∑

~a∈A
π(s,~a)Qi(s,~a)

FOREVER

Friend-or-Foe-VI always converges [Littman 2001]

Nash-VI and CE-VI converge to stationary equilibrium policies in

zero-sum & common-interest Markov games [GZ and Hall 2005]
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An Example

A B1,−2 2,−1Quit Quit

Send

Send

Observation

This game has no stationary deterministic equilibrium policy when γ > 1
2
.

Proof

(A quits, B quits) ⇒ A prefers send to quit (2γ > 1)

(A sends, B quits) ⇒ B prefers send to quit (0 > −1)

(A sends, B sends) ⇒ A prefers quit to send (1 > 0)

(A quits, B sends) ⇒ B prefers quit to send (−1 > −2)
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A Cyclic Policy

A B1,−2 2,−1Quit Quit

Send

Send

Observation

This game has a deterministic cyclic equilibrium policy when γ = 2
3
.

Example

Policy V (A) V (B)

1 (A quits, B sends) (1,−2)
(

8
9
,−4

9

)

2 (A sends, B sends)
(

4
3
,−2

3

) (

8
9
,−4

9

)

3 (A sends, B quits)
(

4
3
,−2

3

)

(2,−1)

4 (A quits, B quits) (1,−2) (2,−1)
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More Cyclic Policies

A B1,−2 2,−1Quit Quit

Send

Send

γ (A sends, B sends) Total
2
3

1 4
0.9 5 8

0.999999 693146 693149
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Random Markov Games

|N | = 2

|A| ∈ {2,3}

|S| ∈ {1, . . . ,10}

Random Rewards ∈ [0,99]

Random Deterministic Transitions

γ = 3
4
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Multiagent Q-Learning

Minimax-Q Learning [Littman 1994]

◦ provably converges to stationary minimax equilibrium policies
in zero-sum Markov games

Nash-Q Learning [Hu and Wellman 1998]
Correlated-Q Learning [G and Hall 2003]

◦ converge empiricially to stationary equilibrium policies on a
testbed of general-sum Markov games
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