
Project Codename: Swordplay

Project Members:
desilver
dignatof
lquirk

mkatzour



1. Storyboard and Conceptual Images

Lincoln demonstrates the basic 
concept of the game. A sword and 

shield appear on the screen, bound to 
the location and orientation of each 

of his wanda controllers.

Lincoln swings his sword at a 
fearsome foe.

A side view of Lincoln in action.



Lincoln begins casting a spell. A 
button is pressed to initiate the spell, 
at which point, the tip of the sword 

draws onto the screen.

This particular spell has the user 
trace a circle with a triangle inside it. 

After successfully casting…

Lincoln thrusts his sword through 
the center of the spell, triggering it 
and launching a projectile forward!



This is an additional feature to be 
added into the project, the bow and 

arrow!

Lincoln presses a button to switch 
modes from sword and shield to bow 
and arrow. He then brings the arrow 

to the center of a bow and holds 
down another button.

While keeping the button held, 
Lincoln pulls the arrow back.

When he releases the button…

FIRE!!!



Related works:

Zelda Zelda has been a major influence gameplay for both the adventure 
feel and puzzle-solving nature.

Morrowind Morrowind's combat system takes a first person perspective and 
involves sword and magical combat, so its gameplay feel resembles 

ours.
Black & White Black and White recognizes gestures to cast spells, but is limited in 

that users can only provide mouse input.
Nintendo 

Revolution
The Nintendo Revolution controller detects position and orientation, 

similar to the controllers we will use.
Doom Swordplay is played in first-person perspective, and thus borrows 

many gameplay fundamentals from DOOM.
Castlevania: 

Dawn of Sorrow
Castlevania, for the Nintendo DS, gave us the idea of projecting 3D 

movements into a 2D space. Its spell system uses several points along 
a circle, which can be connected with the user's stylus in different 

orders to cast spells.
Time Crisis Time Crisis has a pedal, which players use to duck and avoid bullets 

intuitively. We aim to capture a similar feel of intuitive control with 
both our “sword” and the ability to duck and dodge attacks.

Star Ocean 3 The Star Ocean series' strength is its battle system. It was one of the 
first well-known RPG to incorporate a fully real-time battle system. It 
also features a heavy use of spells/skills that effect areas rather than 

specific targets or “all enemies”.
Surround-

Screen 
Projection-Based 

Virtual Reality

http://portal.acm.org/citation.cfm?id=166134 – using the CAVE as a 
virtual reality environment

CavePainting http://portal.acm.org/citation.cfm?id=364370 – we want to capture 
the “drawing” feel of casting a spell. This work is in the CAVE and 

uses CAVE input devices.

http://portal.acm.org/citation.cfm?id=166134
http://portal.acm.org/citation.cfm?id=364370


2.1 Requirements

Requirements (by priority; 10 is critical, 1 is lowest)
Priority Description

10 Two controllers/Wandas can be used to directly represent the sword, 
shield, bow, and arrows used by the player. This includes both the visual 
aspect of seeing the weapons appear on the screen while being used, and 
the technical aspect of having them exist within the world/game, capable 

of interacting with other objects.
10 The controllers can be used for symbolic input. (For example, pressing 

and releasing a button while using the bow loads and releases an arrow)
10 The controllers can be used to cast spells. This involves tracing out one of 

many patterns, and having the system appropriately react.
9 Actions taken in the game have visible and/or aural representations. (For 

example, casting a spell displays some type of animation)
Note that flashiness/prettiness is not the point of the game. That factor 

will only be taken care of if time remains to do do.
9 The player can move through the 3D environment using the 

controllers/wandas. This includes, at the bare minimum, moving 
forward/backwards and turning. This can also be extended to include 

other types of movement, such as strafing.
8 Enemies and other members in the environment exist and can interact 

with the player, and/or vice versa.
7 Special interaction relating to the sword is implemented, such as a sword 

hitting another sword or shield. This includes how the UI handles the 
short loss of control over the sword (from the sword bouncing back)

5 The player can interact with the environment by using spells (For 
example, by freezing part of the ground to reduce its friction)

4 Enemy monsters have some form of AI (actual or simulated) controlling 
them during combat.

2 Levels included in the game contain a aspects of puzzle solving and 
exploration.

1 Plot
1 Spell Backfiring. This is an addition that makes a spell backfire on the 

player if improperly cast.
1 Additional AI for enemies out of combat. This includes a method of 

detecting the player's presence.



2.2 Design

Our main requirements are to get movement, combat, and spell casting working. 
Movement will be done using the remote controls to input symbolic movement, with 
wanda providing the interface between the remote and the software. Combat, with swords 
and bow/arrow will be implemented by mapping the position of the wands to the position 
of the weapon in the game, using simulated physics to model how the weapons interact 
with other objects. Spells will transform the input from points to an image and analyze it 
using “GOCR”, an image comparison library that will match images to predefined 
diagrams.

In addition, symbolic actions, such as nocking and releasing an arrow or beginning a spell 
will be done by a button press. To further explain this concept, the left controller controls 
a bow, while the right controller is used to nock an arrow and draw the string back. The 
arrow is nocked upon the button press, and released when the button is released.

Visual representation will be done in the CAVE, but we will use relatively simplistic 
models or textures until better ones can be found or made. We will be using G3D and 
VRG3D, which provides us with graphics and collision detection. We have also been 
offered assistance by the Brown University Center for Computation and Visualization in 
this process.

Levels and possible puzzles will be done in GTK.

We will be using The CAVE and Wanda remote controls for output/input.



This is a data flow diagram. The arrows are in the direction of function calls, and all 
interface calls are listed either in the diagram or below. Return values and arguments are 
described below.

The game engine contains an Input Interface class that, for our project, will be a Wanda 
Interface. The game will take input in the onUserInput function and pass it directly to the 
interface in the convertData function. This function will take the data and convert it into 
either a button press, and return the name of the button. On every simulation step, the 
game engine will take the input from the two devices and send it to the Wanda Interface 
once for each device, through convertData. This is a different method with the same name 
that will convert the data into a six dimensional point.

The wanda interface will return a six dimensional point, or a button press. The game 
engine will take the point and send it to one of the analyzers, depending on what the last 
button press was (spell, bow, or none). The spell analyzer will take a point in a sendPoint 
function, which returns a boolean telling the engine whether the spell is done or not. 
When that function returns true, the engine will call a getSpell function to get the abstract 
spell data structure. The sword analyzer will take a point and convert it to a force and 
torque to apply to the sword object, returning a struct containing this data. The bow 
analyzer (optional) will take two untransformed points (one for each controller) and 
return a struct containing the point at the front of the bow, the point where string meets 
the arrow, and the rotation of the bow around the direction vector. Finally, button presses 
will either change a flag to {SPELL,SWORD,BOW} or one of several movement 
buttons.

After getting a completed spell, the engine will create a spell object, sending the type, 
direction, and the rest of the spell effect is defined inside the spell class. Similarly, after 
getting the force and torque for the sword, that data is simply passed from the engine to 
the weapon class which applies the force. The bow data is passed to the weapon and any 
firing mechanism is done entirely within the weapon class.



The engine will give each enemy a reference to a game state that will allow for any AI 
that will be implemented. The engine will tell the player how to move.



2.3 Implementation

Our project will be based on the G3D and VRG3D. We will make use of two 6-DOF 
controllers and the CAVE. The CAVE will be providing us with the controllers. 
However, there is a desktop version of the cave which hopefully will be fixed before the 
end of the semester.

A module will compute and provide numeric representations of the controllers' position 
and orientation. Accessing these values will not consume any significant amount of 
system memory or processing time.

Performance will not be an issue because the CAVE is run by four separate computers, 
each with a high-powered graphics card, and our graphics and physics requirements are 
not heavy.

We are developing on Linux for the CAVE. As such we will be using GDB to debug. The 
CAVE development machines have a desktop output mode, so that we don't actually have 
to load the program in the CAVE every time we want to test something.

To implement the spell recognition system, we will be building off of the open source 
image database management program GOCR. GOCR is intended as an Optical Character 
Recognition library, but it is sufficiently extensible to be useful in our project. When a 
user presses the button to start drawing a spell diagram, we will project the tip of the 
sword onto a plane in front of the user. These projections will be recorded to create an 
image that will then be fed to GOCR. We will populate GOCR's database with the correct 
spell diagram images. To compose a three-dimensional spell gesture, we can project to 
more than one plane (e.g., one in front of the user, one beneath the user, and one to the 
side of the user).



2.4 Testing

The majority of our testing will be directly related to the UI. Our testing will be done 
incrementally, relating to how much has been programmed so far.

1) Display the coordinates/orientation of the remotes, and a basic shape in the perceived 
location of each of the controllers. Make sure that the values update correctly when 
moved to any direction or location. Try to break the system by flailing the controls rapidly 
or dropping them. See what happens when a person walks in front of a controller, or what 
happens when a player spins around. Check if and when the controllers must be re-
initialized.

2) Represent the sword and shield as physical objects in the game, replacing the basic 
shaped used in part 1. First check that the algorithm works in expected situations, such as 
holding the controller steady, swinging it, thrusting it forwards, and slow to medium 
speed movements. Then try to break the moving/balancing algorithm using the above 
methods.

3) For pattern matching with spells, first implement a utility that traces a line in 3D space 
coming from the tip of the sword object. Set up the interface to display notification of 
which pattern, if any, is matched. Starting from the simplest of registered patterns, trace 
out the pattern multiple times and assure that it can be detected. Then trace out the same 
pattern scaled smaller, then larger, making sure that only reasonable traces are accepted. 
Try slight variations of the pattern and make sure that the algorithm is neither too strict or 
loose. Try variations which mostly follow the pattern and at one or 2 points differ 
drastically, making sure that those are rejected. Try variations which are significantly off, 
yet resemble the pattern. Finally, try random movements.

The rest of the testing is done using the now tested UI to test individual pieces of the 
game.

1) Add a single target within swinging range, represented as a box. We will have the 
onCollision method detect when the sword intersects with the box, and display that on the 
screen.

2) Add a shield to the box to test its collision. Swing the sword the the shield from 
various different angles and at different speeds. The goal is to make sure that the sword is 
properly deflected. Also test striking near the shield without hitting it.

3) Add a sword to the the box to collide with. The sword will move in a preset pattern 
with a certain amount of force, for example, going back and forth in a 90 degree arc. (We 
will use multiple different movement patterns.) Make collisions between the player and 
enemy sword. Also, we will test it by moving our sword very quickly to see if the 
intersection is still registered, and again, flail the sword around and see if it intersects as it 
should. Finally, we will interpose our shield and see if that reacts correctly, as well as 
moving the shield rapidly to break the system.



4) To test movement, we will use the controller to move. To break it, we will try to walk 
through walls and objects, and make sure that the sword collides with the wall properly.
Then we can test movement of the player through the environment to meet enemies. We 
will test interactions of spells and objects, spells and enemies. Also, we will test the bow 
and arrow.

5) The lower priority features will be tested by directly observing correctness. Spell-
environment interactions will be tested first by applying spells to the targets that should 
be affected, then applying them to surfaces that do not have a defined interaction. 
Incremental AI development can be tested by combat with the enemies.



3. Project Timeline

Date Goals
2/24 Project proposal approved.
3/3 Project proposal revised, experimentation with CAVE, experimentation with 

GOCR.
3/10 Run our application in CAVE; be able to extract information on the sword's 

position and orientation, including information on the tip of the sword and its 
speed.

3/17 Reflect movements of sword onto the screen. Integrate the gesture recognition 
libraries. Create basic collidable objects in world.

3/24 Be able to reflect intersections of sword and object. Be able to raycast from 
sword, and recognize gestures such as circles, triangles, etc. “Core” is done.

3/31 Spring break, test as much of core as possible, individual work and research.
4/7 Implement movement, spell visual and game effects, have an enemy that can 

get hit
4/14 Have an enemy that has preset attacks, bow and arrow
4/21 Write a level utilizing enemies and puzzles
4/28 Everything above completed and thoroughly tested (catch-up week)
5/5 Environment and spell interactions, non-preset enemy attacks, begin 

plot/motivation development including HUD interaction.
5/12 Finish plot/motivation, polish level, spell backfiring, etc... if there is time.



4. Rubric

Task identification and assignment:
Item Point Value Name

Input/UI 40
Equipped items' position and orientation 
directly controlled by two wandas

15 lquirk,mkatzour

Sword trace is drawn for the user while casting 5 mkatzour
Sword-tip coordinates used to compose an 
image for interpretation of spells

5 mkatzour,lquirk

Intuitive transition from sword and shield 
control to bow and arrow control

3 lquirk,dignatof

Interaction/control scheme for nocking, 
drawing, and releasing an arrow.

3 desilver

Button presses to user input (e.g. player 
movement, spell initiation)

4 desilver

Player can dodge attacks by moving or leaning 5 lquirk

Spells 20 desilver,lquirk
Display (Spell success/failure is visualized) 2 Lquirk,desilver
Recognition of a spell, given an image 15 dignatof,desilver
Spell interaction with environment/objects 3 Lquirk,desilver

Sword 15 mkatzour,dignatof
Display (Sword and shield are displayed) 1 dignatof
Sword/shield collision effects 10 mkatzour
Velocity of sword and shield are tracked 4 dignatof

Bow 5 mkatzour,dignatof
Display (Bow and arrow are displayed) 2 desilver
Arrow trajectory and collision effects 3 mkatzour



Item Point Value Name
Enemy 5 dignatof,desilver

mkatzour
Display (Enemy and its actions are shown) 1 desilver
Attacking (precanned attack sequences) 2 dignatof
Movement (unintelligent) 2 mkatzour
Advanced AI, Blocking player attacks, 
intelligent path planning

(extra credit) TBD

Content 5
Level design mkatzour,dignatof
Textures and animation all
Game and environment objects dignatof,mkatzour
Sound Effects (collisions, cast) desilver
Music desilver

GameApp / Core Required lquirk,desilver
Player
Camera
Setup & startup

Game Menu Optional TBD
Start game
Calibrate controller

Administrative 10
Version control repository desilver
Weekly presentations mkatzour
Documentation dignatof
Web lquirk
Wiki lquirk



5. Selection of a mentor

Graham has already acquiesced to being our mentor.


