Roborace: Postmortem

Jacob Kuenzel, Devon Penney, Adhitya Chittur
16th May 2006

Project Vitals

Developers 3
Length of Development | 8 Weeks
Platforms Windows

Hardware Used
Software Used

Notable Technologies Motion Capture, Inverse Kinematics, Physical
Simulation
Size 2,916 lines of code written for OPAL, 164 lines

of Matlab code, 6,778 lines of standalone code
written for Dojo, and a 332 line increase in the
size of Dojo sources from modifications.

1 Original Goals

Our initial goal was to build a platform on which to research a number of new schemes for controlling 3D
articulated bodies in the context of a physical simulation. Upon completion, we planned to use what we
learned from the research to create a simple game that was both fun to play and appropriate for assessing
the effectiveness of the various control schemes.

We chose four different articulated bodies which are loosely based on common robot designs and three
different categories of control schemes with which to control these bodies. There was a four-legged hopper,
a four-legged crawler, a three-wheeled robot, and a humanoid bipedal robot. The three categories of control
schemes were Direct Control, Segmented Control, and Dimension Reduction-Based Control.

In a Direct Control Scheme, input from the user is directly connected with the position or angle to which
joints are servoed. For example, a direct control scheme for a bipedal body might consist of setting the
distance of one foot from the floor to be equal to the mouse’s y-axis position.

In a Segmented Control Scheme, the user’s screen space is split into a number of different segments,
each of which corresponds to a different part of the articulated body. When the mouse enters are particular
segment, its corresponding body part is activated in a certain way. For example, a segmented control scheme
for a crawler robot might consist of splitting the screen in to quadrants, and activating a segment would
cause the corresponding leg to take a step forward.

In a Dimension Reduction-Based Control Scheme, the idea is to treat the set of all possible poses that the
body can assume as a vector space, and to then allow the user to control where in the space the body takes
its current position from. For example, by applying Principle Component Analysis to a high dimensional set
of motion capture data, a set of basis vectors for a space with far fewer dimensions is obtained. The user’s
input is then used to create linear combinations of these basis vectors and to obtain new poses.

2 Development Team

All three members of the team have known each other for the majority of their time at Brown, and with
the exception of Devon and Adhi, have worked with one another on projects in past CS classes. When not
slaving away on CS projects, the trio has been known to get together for a drink or ten.



Jacob and Adhi have known each other since freshmen year when they took CS17/18. They have worked
on two other CS projects together: an autonomous trading agent which uses statistical models in CS141 and
a sonar mapping robot in CS148. Jacob and Adhi are currently housemates.

Adhi and Jacob have known Devon since sophomore year when they took Abstract Algebra (MA153).
Jacob and Devon have worked on one other CS project together: an extension to ray marching used to
render physically realistic rainbows in photon mapped participating media.

3 Tools Used
3.1 ODE

Right from the start, it was clear that the project would require a fast, high-quality physics simulation to
achieve the level of realism desired with the complex bodies being used. The Open Dynamics Engine (ODE)
was frequently mentioned in papers describing previous research related to the project.

ODE is an open source library for simulating rigid body physics that has been under active development
since 2001. It has a mature, full featured API and contains relatively few bugs. Its wide variety of joint
types and integrated collision detection with friction made it an ideal library to use for the project’s physics.

It was decided early on that whatever physics library was used would have to at least have feature parity
with ODE. As it turns out, the platforms that were chosen were based on ODE, so this requirement was
easily satisfied.

3.2 OPAL

A significant amount of time at the beginning of the project was devoted to finding a platform appropriate
for the project. As all three group members have far more experience with C++ development under Linux
than Windows, the ability of a platform to run on multiple operating systems was a major consideration.
The platforms that were tested include Torque, Yake, ODEJava, OgreODE, and Open Physical Abstraction
Layer (OPAL) with Ogre. OPAL was finally chosen as it appeared to have the most complete and functional
APL

OPAL is a high-level open source C++ library for interfacing low-level physics engines with applications
such as games and simulations. One of the most attractive features of OPAL is its concept of “blueprints’
XML files that describe every aspect of a physical system. We thought that these files sounded like a great
way to specify robots. Although it supports the use of multiple physics libraries, OPAL was initially written
as a wrapper for ODE. Because of this, it has a full object-oriented implementation of all ODE features that
closely resemble the ODE API. In addition, code is available on the OPAL website that allows for (relatively)
easy integration with the Ogre graphics engine.

After 2 weeks of development and nearly 2600 lines of code, OPAL was scrapped due to problems which
will be discussed in section 5.

3.3 Dojo

Dojo was not initially considered as a development platform, both because of its platform-dependence and
because of bad past experiences with G3D. At the urging of the course staff, however, and with no other
immediately available options, we made the decision to use Dojo as the new platform once OPAL was
scrapped. Usage of Dojo is also discussed in section 5.

3.4 Mocap

The dimension reduction control techniques require the use of motion capture data. The two most common
motion capture formats are BVH and ASF. During our development with OPAL, we wrote an ASF file
loader due to the availability of ASF files on mocap.cs.cmu.edu. However, this was scrapped once we moved
over to Dojo. Also, we discovered that BVH files store the motion data in a matrix form where rows are
character poses. This made computing principle component analysis on the frame data simple since PCA



requires data in a matrix form. Thus, we used BVH files provided by the course staff for the remainder of
the project.

4 Things That Went Well

4.1 PCA Development
4.2 Crawler

The Crawler character was successful in a number ways—it ended up being the easiest character to control
with the most working control schemes and also acted as catalyst for the addition of code that became more
widely useful during the project.

After an attempt at defining a hopper robot using an ASF file proved the format to be insufficient for
our needs (we needed body parts with shapes other than the capsule shape used for bones), it was decided
that other robot characters should have their structure hard-coded.

Dojo provided a way to easily add ASF characters (after modification) and Quake 2 models to the world,
but it did not provide a simple or straightforward way to build arbitrary articulated bodies. The only
references we had to work with were the code that builds the articulated body from an ASF skeleton and
a couple hard coded stick figures. The stick figures were particularly unhelpful as each piece of geometry
is constructed over a number of calls which involve CoordinateFrames that, without documentation, made
little sense while reverse engineering.

This was dealt with by abstracting geometry-creation code to methods in the Character class. By hiding
the confusing underlying calls necessary to create a piece of geometry, we were able to reduce redundant and
hard-to-read code and actually get to creating the character.

Once the geometry for the Crawler was created, a CrawlerController class was created for all control
scheme implementations for the crawler to inherit from. This class contains references to all of the Crawler’s
servos, the definition and four instances of an inner LegController class for abstracting the task of positioning
legs, and a large number of methods used to perform actions such as stepping, pushing, and kicking with
these LegController instances.

In order to perform complex actions such as stepping, it is insufficient to simply servo a limb to any one
pose - instead, a number of poses must be assumed with a small delay in between each to allow for the servos
to converge so as to have better control over the limb’s trajectory. Two possible ways of achieve this were
considered. One possibility was to detect when the servos had ceased movement above a certain threshold
before trying to assume the next pose. The other possibility was to simply wait a fixed amount of time
before assuming the next pose. Because there might be situations in which the servo would take a very long
time to stop moving, causing unresponsiveness in the controls, the fixed time delay solution was used.

Unlike conventional robot programming, in which one can achieve a delay simply by causing the control
program to sleep for a moment, a physically simulated robot’s physics do not run concurrently with its control
program. In order to circumvent this, a scheduling system was implemented in the CharacterController class.
The system works by keeping a queue of scheduled tasks and a corresponding list of delays. By decrementing
the delay times by the size of the last simulation step, the system determines when the approximate delay
time for a particular task has passed in the simulation, at which point it removes the task from the queue
and executes it.

This scheduling system, coupled with the abstraction layers, provided a very useful base on which to
implement controllers for the crawler. Writing the Direct and Segmented controllers was basically as simple
as detecting when a key was pressed or a segment was activated and then calling the appropriate method
from CrawlerController—significantly simpler than our experience with some of the other characters. The
automated controller also involved minimal additional code, requiring little more than a simple layer of
abstraction to allow stepping motion loops to be started and stopped.

Because it was completed in a relatively short amount of time, the crawler’s controls received more
attention and were able to be tweaked more, resulting in the most usable of the robots.



4.3 ODE

ODE proved to be one of the easier to use portions of our project. While there were bugs present that we
mention through this paper, overall we had a good experience, primarily due to the extensive, accurate, and
well-defined nature of the documentation. The ODE user guide was of special importance to the project.
Additionally, the API to ODE was consistently structured, making debugging physics errors considerably
easier for those of us without extensive experience working with it.

4.4 Matlab

Developing the PCA control schemes went smoothly. First, Matlab provided an excellent tool for the
numerical algorithms involved with applying dimension reduction to motion capture data. It was simple to
write BVH loaders to extract frame, compute PCA, and save the basis files. Integration with C++ was a
matter of simply parsing data generated from matlab. Next, generating and servoing to poses was simple and
easy to implement using mouse coordinates as coefficients for basis vectors lead to a plausible reconstruction
of the original motion space.

5 Things That Went Wrong
5.1 OPAL

One of the first hurdles with using OPAL was finding a Linux computer for our third group member to use.
We decided most of our development would not be taking place in the CIT, since collaboration at our places
of residence proved much easier. A significant portion of time was devoted to installing Debian Linux onto
a third computer, as some driver issues plagued the process.

Next, we wrote an ASF and AMC parser to use motion capture data within OPAL. This was not
particularly difficult code to write, but it was time consuming and took away from more exotic and interesting
areas of the project. Lastly, there were many of issues with our humanoid character simply exploding due to
bone intersections and joint gains being set improperly. This was eventually fixed shortly after we decided
to switch to using Dojo.

5.2 Dojo

We had to modify the Dojo game engine significantly to suit our needs.

Our first need was for an arbitrary ASF parser. Dojo included one, but it was specialized to the Humanoid
character. We chose to refactor this parser into an ASFCharacter and generalize it, as this made much more
sense than rewriting the parser for every arbitrary ASF character we wished to create.

Our second need was for sliding joints so that we could implement the pogo-stick hopper. This entailed
some extensive modifications to both the Entity code to support ODE sliding joints, as well as reverse
engineering and modifying the ASF parser to support sliding joints. The parser code was unfortunately not
abstracted to a very high level, possibly due to the limitations of the ASF specification, and thus the the
process of finding all the appropriate places to add support and subsequent debugging took much time away
from actual game development.

The third need we had was for servo’ed joints. To accomplish this, we modified the Entity class to
include the Servo and SlidingServo nested classes. Unfortunately, we had to track down a significant bug
in the ODE physics engine: When joints went completely stationary, they ended up locking in place, and it
became impossible to move them again without some artificial secondary force. The tracking took quite a
bit of time, and the solution, to always keep some minimum force applied to each joint, had negative effects
on some controllers.

One problem we experienced with Dojo was that some of the code we were introduced to in the assign-
ments was not present in the CVS version, and when trying to import this code, we found portions of it
were incompatible with the Dojo version we had been working with. One example of this was the Trigger
code: the actual function calls generated compile errors, and once those were resolved, the semantics of the
trigger physics were causing ODE to crash.



Another problem we experienced with using Dojo was improper usage of the data structures used by G3D.
On multiple occasions, we found that the way Dojo was iterating through lists, by using the overloaded []
operator and iterating as if it were a regular array, was actually causing crashes in Entity and the ASF
parser after we made our modifications to the base Dojo code. This is not the recommended way to iterate
through abstracted lists with STL-style iterators - in fact, changing this code to use the G3D Constlterator
fixed several strange bugs, though why this was the case we do not know.

A third problem experienced was with the Dojo documentation. The API for Dojo changed between
assignments and differed both from the CVS version and the documentation present online. Thus, when
we tried to study the Dojo documentation and assignment documentation, we were often met with much
frustration at trying to match up specification with implementation. We were told to reverse engineer these
problems, and this caused much delay in the development process.

5.3 Development Environment

The switch to using Dojo necessitated that we switch our development environment from Eclipse on Linux to
Microsoft Visual Studio on Windows. This presented several challenges to the group. First, only one group
member has had extensive experience working with Visual Studio in the Windows environment, whereas all
three have had extensive experience working with Eclipse in a Linux environment. This presented a major
issue, as only one group member, instead of three, had the IT and industrial development experience to
fix the myriad of eccentric problems present in Visual Studio and Windows which were experienced during
development.

The first major problem we encountered was in setting up our source control system. We chose CVS on
the CS filesystem for this, as it was the only option available at the time of the switch. Our first problem was
the lengthy process of setting up a Windows CVS client to work remotely. Several options were explored,
including command-line CVS, WinCVS, and TortoiseCVS. TortoiseCVS was settled on, as it was the first
one we were able to successfully SSH into the department and connect to the CVS server with. However, as
the documentation on using CVS remotely for the department was out of date and lacking in detail, it took
an entire day’s worth of development (about 8-10 man-hours) to simply figure out the correct connection
settings to use department facilities remotely - and our group is not exactly inexperienced with either the
CS systems nor their remote access capabilities.

The second major problem we encountered with CVS was that because the cvs init had (unavoidably)
been done via command line on the Linux machines, the correct differentiation between binary and text
file formats was not set. Windows executables and libraries were all set in text mode, which we could not
notice until we actually started trying to build our code, after we had started basic development. We had
two choices: either hose our current CVS repository and start again from scratch, or try to fix the problem
in-flight. We attempted the latter solution, as we estimated fewer man-hours would be lost; finding the
solution, an obscure setting in Tortoise to use Unix line endings, took away approximately another day of
development.

It should be noted that for real development work on Visual Studio, CVS is not the version control
system of choice. Microsoft Visual SourceSafe support is integrated with Visual Studio, and either a Visual
SourceSafe server or one of its compatible alternatives, such as SourceGear Vault, would have virtually
eliminated the problems we experienced. Development on an end-to-end Windows platform would have
saved much time and frustration.

Unfamiliarity with the intricacies of Visual Studio also proved a problem for development for some group
members - while from a user interface perspective Visual Studio and Eclipse are very similar, how they
operate under the hood is quite different. The functionality of project files, solution files, and IntelliSense
compilation files will not be discussed in detail here, but they posed problems with regards to the version
control system. The end solution was that each group member ended up maintaining their own set of
configuration files, to be manually edited whenever anything in the project changed. Figuring out that some
of our build problems were due to this wasted another day of development, but the end solution was luckily
not too time-consuming.

Working with Windows also proved a major problem. Please note that one group member was recently
an experienced information technology consultant with a specialty with these specific problems, yet we still
ran into the security problems endemic with Windows, namely the uncanny ability of adware/spyware to



infect supposedly secured machines. One group member’s computer had become infected with spyware near
the end of the development process so badly that it necessitated a full format and reinstall of Windows.
The other group member’s machines were infected by this offender since we were all on a local network, but
luckily not quite to the extent of a necessary format. Approximately another day’s worth of man-hours was
lost to fixing these problems.

In sum, we lost approximately a week of development time due to environment problems which we would
not have experienced on another platform.

5.4 Implementing IK

A significant amount of time was put into implementing two different and complementary IK algorithms.
While these algorithms worked well, they ended up not being incorporated into the project and therefore
represent one of the largest mistakes made during development.

After some initial experimentation with direct activation of the humanoid character using simple map-
pings between mouse axes and joint angles, we determined that if a user had any hope of balancing the
humanoid they would need a more intuitive way of controlling the positioning of the legs and the feet. IK
naturally came to mind as an intuitive way of positioning a limb in 3D, so we set out to implement it.
Initially only the Jacobian Transpose method was to be implemented, but after reading about the difficulties
it has with singularities we decided to also implement Cyclic Coordinate Descent, a complementary method
that does not exhibit such problems. Our plan was to test both methods and use whichever one felt better.

Implementation of the algorithms took approximately a week, and a significant portion of another week
was spent experimenting with different ways of using the IK, the most successful of which are described
in section 6.2.4. There were still problems balancing the character, and two main solutions were proposed,
neither of which was actually put in motion.

The first solution was to use two mice instead of one, a solution without a problem that we had envisioned
at the beginning of the project. We found that it was fairly easy to get one leg to go where we wanted using
an IK target controlled by the mouse, but that controlling the other leg at the same time was unreasonably
difficult. We surmised that by adding a second mouse-controlled IK target, the user would have a control
scheme that maps much more readily to their body, allowing for much more intuitive control. The main
problem with this solution was that using multiple mice on Windows requires using a raw device driver and
manually decoding mouse protocol packets, something we did not have the time to learn.

The second solution was to take advantage of the redundancy of our IK chains and use one of the existing
Jacobian null-space approaches in the IK solver to also optimize character balance. We began to wonder if
all the work we were putting in to IK was really worth it. When we were told after an in-class presentation
that IK has already been done and that we should move on to something else, we were more than happy to
oblige. In retrospect, however, we feel that what we were trying to do with IK had some novel aspects to
it and that had we chosen to put more time into it we could have ended up with an interesting and useful
control scheme. Unfortunately we did not feel it was worth the risk at the time, making IK one of the biggest
time-wasters of this project.

5.5 Control Schemes That Didn’t Work Well

One of the biggest downfalls and disappointing aspects of this project resided in the fact that none of the
control schemes worked very well at all. While in most cases it was possible to obtain some level of locomotion
with our control schemes, they were not robust enough to work in a game setting.

A major shortcoming of our project was the soccer game. None of the implemented control schemes
were able to play soccer well, primarily for the reason that physically accurate kicking of the ball is a very
difficult task. To send the ball on an appropriate trajectory, there is a very small range of points on the ball
that can be collided with and a very small range of direction vectors for the force. Real soccer games, such
as FIFA, do not use such a model for ball physics - they instead use precanned motion capture movements
and artificial force vectors to send the ball in the intended direction from a controlled kick. Additionally,
controlling the physical act of kicking for a humanoid character is particularly difficult due to the many
degrees of freedom for the character to change posture in the pre-kick movements. The fine grained control
our characters provided for self-movement did not translate well into manipulation of other physical objects.



6 Research Results

6.1 Hopper

6.1.1 Direct

The direct hopper controller was based solely around keyboard input. The keys were broken into two
quartets, the inner ring of {H,J,B,N} and the outer ring of {G,K,V,M}, the keys controlling each pogo leg of
the hopper respectively. The inner ring actuated the prismatic joints in the "upward" (or original resting)
position, while the outer ring actuated the joints in the opposite direction.

This controller was fairly difficult to use. The primary problem was with an ODE simulation bug, which
prevented the movement of joints once the character came to stand in a static position. This required the
hack of always maintaining some force on each of these joints. Additionally, another ODE bug was present
for slider joints: the API call to set the joint velocity was faulty (it had no effect), so the only way to actuate
the joint was to apply an impulse force, which is the time derivative of the velocity and hence provides
less precise control over the joint’s position. These two hacks made it nearly impossible to have any useful
actuation or locomotion from the character.

6.1.2 Segmented

The segmented hopper controller was based partly on keyboard input and partly on mouse input. The
controller operated by reading in the coordinates of the mouse position, calculating the scaled Cartesian
distance from each corner of the game window, and then actuating the hopper joints based on these four
distance scalars. Each corner of the screen space represented the zero point of its respective joint. The G
and H keys on the keyboard were used to actually actuate the joints in the up or down direction. This
controller suffered from the same usability issues as the Direct Hopper Controller, for the same reasons as
stated above.



6.2 PCA Humanoid

e .

6.2.1 Introduction

PCA has been used extensively for years in many areas of computer science for things such as computer
vision. However, there has been little to no research on using it for a user control interface for humanoid
characters. We had mixed results from our work, but it showed that this is an area ripe for innovation.
Please visit our website for videos pertaining to the information below.

6.2.2 Structure of Motion

All motion capture sequences have a very unique structure when projected onto a 2D plane. In the case with
a human walk, the sequence appears as a figure eight, which exemplifies the cyclic nature of the human gait.
This has a fairly intuitive control structure associated with it. By moving the mouse along the figure 8, it is
possible to obtain a walking motion. However, it was often times difficult to follow the figure eight path with
the mouse, since any deviation merely cause the character to make spastic and unpredictable movements.
With motions other than a walk, the path in 2D space was often indescernable. With these types of motions,
it was clear that a logical user control scheme is essentially impossible to obtain with the current algorithms.

6.2.3 Embedding Multiple Motions




One of the interesting applications of the PCA based control schemes was embedding multiple motions in
the screen space plane. For example, we embedded a walk and a crawl sequence. PCA inherently produces
embeddings for the two motions in different locations in the plane. This allows the user to switch between the
different motions by merely moving the mouse from the space of one to another, hence transitions between
motions are handled by the structure of the embedded space. While this worked to some degree, it did not
produce a usable control scheme as the character would jump around between the two spaces in an illogical
way. However, it is interesting to note that the user was able to transition between different motion sequences
by merely moving the mouse from the embedding of one to another.

6.2.4 Servoing Issues

Some of the problems that rendered PCA based control systems unusable are related to the servoing of
the humanoid character. First of all, the gains on the joints would need significant tweaking since. This
is because the motions recovered through PCA often produced harsh transitions between frames, which
resulted in exaggeration of the movement. Next, it was difficult to change the orientation of the humanoid
character outside of the motion capture replay. This meant that it was difficult to develop a generalized
control scheme that allowed for a full range of motion rather than simply a forward walk.

6.2.5 Beyond PCA

PCA is only one dimension reduction technique. There are many other methods that can have significant
changes on our algorithms for dimension reduction based control. Isomaps is an interesting area to explore,
which was obmitted from our project for several reasons. First, we focused more on developing a wide range
of techniques such as IK based schemes. Second, isomaps would not change the general idea of the control
scheme, but merely change the topology of the screen space projection. However, isomaps are often used to
capture more salient information about datasets since it preserves n dimensional geodesic distance from the
original dataset. However, even if isomaps were used, it would use the same control scheme of exploring the
embedded space, which would result in unpredictable results when venturing out of the motion path.

6.2.6 Conclusions

Simply following the path of motion data in a 2 dimensional space is essentially equivalent to playing back
a motion capture sequence at a lower resolution. Also, when one deviates from this path, it results in
unpredicable poses, which translates into an unintuitive control scheme. That being said, this is still an area
that is ripe for innovation. Embedding multiple motions in the plane has potential to be useful for cases
where a control scheme requires moving from one action to another quickly. Also, other dimension reduction
techniques could provide interesting insight into the problem, but this was out of the scope of our project.
The best avenue for innovation is combining an IK based control system with a probabilistic search over a
reduced dimensional space of all poses. Such a system would be very similar to StyleIK, except used in a
physics environment. However, as we found, any humanoid based control scheme requires huge amounts of
tweaking for joint gains, gravity, levitation, balancing, etc. This is a huge stumbling block for development,
which leads to unpredictable and unrealistic goals. However, the use of dimension reduction for controlling
physics based characters is an area of character animation of human computer interfaces that has several
distinct and interesting avenues for research.

6.3 Other Humanoid Control Schemes
6.3.1 Segmented

The segmented humanoid controller was based partly on keyboard input and partly on mouse input. The
mouse space was segmented into two equal areas divided by the vertical center of the game window, the
left and right sides bound to their respective legs. The Cartesian mouse position within each segment was
calculated with respect to the center of the segment and used to actuate the hip and knee joints accordingly
when the space bar on the keyboard was hit. The G and J keys straightened the left and right knee joints,
respectively. This method of control proved useful for walking in a straight line, both forwards and backwards,
especially with the cheat addition of the Y and H keys for impulse forces forwards and backwards.



The major fault of this controller is that physically accurate turning was very difficult. The problem was
twofold: the friction calculations used in ODE made it nearly impossible for a foot touching the ground to
rotate and the joint constraints for the upper body kept servoing the hips back to their original position,
instead of the hips causing the body to turn. Also, the actual physical act of a humanoid turning is a very
complex motion, and no scheme was found to discretize these motions in such a way as to provide for useful
turning capability. This controller proved useful for the straight-line race, with race times as good as the
crawler character, but was entirely deficient for playing soccer.

6.3.2 Direct control with IK

As described in section 5.4, we decided to implement IK for the humanoid after a little bit of experi-
mentation. We figured that by making the humanoid’s feet end effectors and finding an intelligent way to
control the effector targets, we could ease the task of achieving a walk. We came up with a couple different
ways of controlling the effector targets.

First we tried simply moving the target around in world space using the mouse and keyboard. We were
able to get some walking type movement from the character, but as the character moved further away from
the world’s origin it became harder to keep the target very close to the character.

The next thing we tried was moving the target around in the coordinate frame of the character’s feet and
legs. This kept the target close to the character, but it was still difficult to control the height of the foot from
the ground. Also, there were stability issues resulting from the fact that the position of the target would
effect the coordinate frame of the foot, which would in turn effect the position of the target, ad infinitum.

Finally we tried defining a circular trajectory for the target to follow. By moving the mouse, the user
could specify where on the circle the target should be. The circular shape allowed much better control of the
height of the feet. The trajectory was put in the coordinate frame of the character’s hip which minimized the
influence of the effector target and got rid of the stability problems. Unfortunately there were still balance
issues with this scheme that ultimately led to it being abandoned.

10



6.4.1 Direct

The direct crawler controller has a steep learning curve, but is one of the most effective controllers in our
demo once mastered. The keys J,K,N, and M are layed out in a square in the keyboard wich corresponds to
the layout of the crawler’s legs. When pressed, each of these keys causes the corresponding leg to step forward
by lifting up, rotating forward, and then lowering back to the ground. When released, the corresponding leg
is then rotated backward, causing it to push against the ground. The keys to the immediate left and right
of this square, H, L, B, and < are used to step backward instead of forward, and the I and O keys are used
to cause the front left and right legs, respectively, to kick out in front of the robot.

There are two ways to achieve forward or backward motion with this control scheme. The first resembles
a four-legged animal trotting—the front right and back left legs are in sync, and the front left and back right
legs are in sync. By timing the steps of these pairs of legs correctly, the character can be made to walk in
a straight line. The second way resembles a gallop—the front legs are in sync and the back legs are in sync.
When the front legs push backward, the back legs are stepping forward and vice versa. This way is much
more difficult to time correctly and is also much more difficult to control, but appears to have the potential
to achieve higher speeds.

The character can also be turned two different ways. The first involves simply altering the speed with
which each side of the character steps forward. If one side steps forward more slowly than the other, the
character will turn toward that side. This method is extremely difficult to use, however, and produces
unpredictable turns. The second way uses the forward step buttons on one side and the backward step
buttons on the other side. This results in a quick turn about the center of the character and is fairly
accurate and easy to control.

Overall, the direct crawler controller is interesting to play with, but doesn’t seem to have much of a
place in video games. It takes some practice to learn, and is tedious to use even for those experienced with
it. If it were possible to define some sort of “macro” in which a series of keystrokes were represented by a
single keystroke, it might improve the controller significantly. Users would still have full control over the
character’s motions, but wouldn’t be forced to result to incredibly tedious button mashing.

6.4.2 Segmented

The segmented controller is easy to learn and use. The screen is split into four segments and has a neutral
circle in the middle. The segments correspond to the crawler’s legs and activate the forward stepping motion
whenever the mouse is detected within the segment. The neutral circle exists to allow the user to avoid
activating a limb when necessary. A walking motion can be achieved using the same idea as a trot with the
direct controller—by synchronizing the motion of diagonally separated legs. In the segmented controller this
is achieved by making figure-eights whose center is inside the neutral circle. The walk achieved by this is
just as effective as the trot in the direct controller, and arguably easier. Most users have noticed some wrist
fatigue after using it for more than a few minutes, however.

11



Incidentally turning also works in the segmented controller. By making circular motions with the mouse
that pass through all the segments in sequence, the character can be made to turn in the direction opposite
to the circular motions. Intuitively this shouldn’t work, but it does for some reason.

The segmented controller is fairly rudimentary in our demo, but we feel that of all the control schemes
we experimented with it has the most potential. It is interesting to note that the trajectories of walking
sequences of motion capture data visualized with the PCA controller closely mirror the trajectory of the
mouse across the screen necessary to achieve a walk. The segmented controller could be extended to have
multiple bands of segments at different radii and could use the mouse’s position and/or speed in the segment
to modulate the action being performed, allowing more complicated motions.

6.4.3 Auto

While not completely relevant to our project, it is worth noting that a completely automated controller was
implemented. The controller has a target position attribute and it is constantly attempting to move the
crawler to this position. Because turning on the crawler is fairly inaccurate, the controller has two cases.
If the angle between its heading and the heading to the target is greater than 45 degrees the controller
turns the robot about its center to try to reduce this angle. When the angle is less than 45 degrees, the
controller walks in a straight line, forward or backward, toward the target. Although it is extremely simple,
the automated controller is surprisingly good at getting the crawler to where it’s supposed to be.

6.5.1 Direct

The wheeled robot was created in the hopes of an infallible and easy to use control scheme. The basic idea
was to control the rotation of the wheels independently so turns, forward and backward motion could be
created. However, with user control, there were problems with guiding the robot on an accurate trajectory.
This is because of problems with modeling the friction between the wheels and the ground. The result was
the robot would make erratic and unpredictable turns. This being said, it was still possible to guide the
wheeled robot to desired locations, albeit with a certain amount of frustration.

6.5.2 Auto

Automated control for the wheeled robot provided interesting results. The robot was coded to reach a
specified goal point. This was done by calculating the angle and distance between the current and goal
location. This method for automated control compensates for the fricion problems, and the robot is quite
efficient at obtaining its goal location.

12



6.6 User Testing
6.6.1 Introduction

We did a user study on the three most effective and well-developed control schemes. The goal of this study
is to determine the effectiveness of the control schemes by studying user behavior. We used a race setting to
test the crawler with both direct and segmented control and the wheeled robot. The race involved guiding
a character from a starting line to the end. There were no obstacles in the race course, as it is intended to
test forward motion exclusively.

6.6.2 Setup

There were six college student participants in the study. A standard desktop machine with a keyboard and
mouse was used in the study. Three of them were the creators of the project, and the other three were
friends unfamiliar with the project. Each person was given a training period where they experimented with
the control schemes. This was to ensure they were able to control the character with proficiency. Each
person used the control setups in a race application where we recorded three consecutive race times after
the afformentioned training period.

6.6.3 Results

Direct Control Crawler

Crawler Direct Race 1 Race 2 Race 3 Average
Participant 1 54.27 50.11 51.21 51.8633
Participant 2 38.44 34.12 32.15 34.9033
Participant 3 102.55 99.23 106.43 102.737
Participant 4 70.32 72.31 68.53 70.3867
Participant 5 120.32 123.87 123.12 122.437
Participant 6 95.21 96.87 96.21 96.0967

Average 79.7372

The participants took a while to master this control scheme, but found it fairly intuitive for controlling the
crawler. They found the pattern easy to master, but hard to get the crawler going fast. There was a huge
amount of variance in the data due to several factors. One participant (namely the one who created this
control scheme) was particularly adept at using it. Also, a few people never could quite get the hang of it
and were forced to go very slowly, thus never developing a good rhythm to control the gait.

Segmented Control Crawler

Crawler Segmented Race 1 Race 2 Race 3 Average

Participant 1 78.2 79.55 78.87 78.8733
Participant 2 79.84 80.12 78.03 79.33
Participant 3 99.31 102.33 100.47 100.703
Participant 4 82.43 82.83 85.31 83.5233
Participant 5 128.31 127.44 130.58 128.777
Participant 6 99.21 99.57 100.45 99.7433

Average 95.1583

Participants found this to be the easiest to learn, but the most tiring to use. The excess of mouse movement
made it difficult to keep up a good pace for the entire race. Hence, it turned into a mouse hand endurance
task more than anything. It is interesting to note that people discovered you could turn the robot with

13



different mouse gestures.

Direct Control Wheeled

Wheeled Direct

Race 1
Participant 1 20.97
Participant 2 13.96
Participant 3 33.2
Participant 4 29.32
Participant 5 32.91
Participant 6 21.51

Average

Race 2 Race 3
22.56
10.32
29.12
25.43
35.31

25.38

23.96

9.9
30.54
32.83
30.76
23.78

Average
22.4967
11.3933
30.9533
29.1933
32.9933
23.5567
25.0978

The wheeled robot had the best overall time by far. However, there was a resounding negative feeling about
the control scheme, and most participants found it annoying and difficult to use. This is partially due to
deficiencies with the friction models with ODE, which rendered wheeled control difficult to mimic. That
being said, participant 2 found a particularly good way of maintaining a forward heading by staying pressed

against a wall.

6.6.4 Discussion

100

a0

B0

70

60—

Average Time 507
40
304
20

10

Direct Crawler

Segmented Crawler

Control Scheme

Direct Wheeled

Strictly by the numbers, the best control scheme is clearly the wheeled robot. As we can see, the average
time per trial was significantly lower than the two other control schemes. Between the two control schemes
for the crawler, it is clear the direct control is better. However, in an informal side test, people found it much
easier to turn with segmented control since it translates into a circular motion through the screen. Turning
with the direct controller is much more difficult since it requires an unintuitive pattern of keystrokes. Hence,

14



it would be interesting to test control on a course which requires turning since it is quite likely the segmented
controller would perform much better.

15



