Postmortem for Q-BMW
By: Emuye Taylor and Brandon Lees

Introduction:
Vision:
Current first person shooters include some of the most popular games to date amongst general gamers.
Some important titles are, Quake, Halo, Half-Life, and Doom. Although all of these games use
different approaches to create the Al they feature, this Al has one thing in common. Current first
person shooters feature very static Al. Many traditional approaches to Al for these games are based on
a Finite State Machine (FSM) design. This approach models the Al's functionality (Wander, Attack,
Retreat, Chase, etc) as states in an FSM. In order to create more complicated Al, more states are added
to the FSM to represent more fine grained actions. From a player's point of view, the shortcoming of
this type of approach is that regardless of how the player chooses to play the game or the difficulty
level of the game, the Al will play the same. Another method used to make more challenging Al is to
allow the Al to perform actions which the player is unable to. For example, the Al might be given a
speed bonus or a damage bonus. Or, the AI might be able to shoot with an accuracy which is at a
higher level then a gamer could achieve. These methods present an additional shortcoming to the static
Al of current first person shooters. At higher levels of difficulty, for the player, the game play can feel
as if the Al is cheating.

Goals:

To address the problems with current first person shooter Al, we planned to implement a more
dynamic Al which would be based on learning. The goal of this implementation was to offer a game
which provided a more realistic, yet challenging experience to the gamer. In theory, this Al would be
able to react not only to a player's individual actions but also to patterns in these actions. The end result
would be a game in which the player would be able to play against NPCS that are able to adapt and
react to their style of play.

As a means to achieve the goals of this Al we sought to create a campaign game which would allow
versatility in the possible strategies for a player. Using a campaign mode would allow lengthier battles
between the Al and the player. Additionally, this style of game would allow more depth to a player's
possible strategies. These features would present more material which could be used to train the Al

Team:

The Q-BMW team consists of two developers (Emuye Taylor and Brandon Lees). The time frame to

complete this project was two months. Based on the limited number of possible man hours given the

size of the team and project duration the project goals were limited to a demo version which explored
the solution outlined above to static Al. Additionally we sought to modify an existing game with this

solution as opposed to creating a game from the ground up.



Tools:

To create a game to demo our Al solution we used the Quake 3 open source. Additionally, to create
campaign style maps for this demo we used GTKRadiant. Development was conducted using both
Linux and Windows which was possible because Quake 3 is designed to be cross platform.

What Went Wrong:

Quake 3 Engine as Base:

For reasons outlined previously we chose to use the Quake 3 engine to create Q-BMW. However, due
to the fact that neither group member had any previous experience with this engine, there was a
significant learning curve for determining how even the basics of this code worked. Additionally, after
we were more familiar with this code we realized that many of the implementation techniques used
were not optimal for modification, especially for our purposes. A main problem was the lack of
encapsulation of this code. In order to modify one element of this code, it was often necessary to
modify many other elements. Additionally, the general design of the Quake 3 project was much more
functional than logical. As a result, it was often difficult to determine how to correctly modify certain
aspects. Also, because Quake 3 is designed to be a multi-player game player over network the client,
and server were completely separate. As a result, sharing new information between these two elements
posed a problem.

Campaign Game Transition:
One important change which we sought to introduce to Quake 3 to provide for the transition to Q-
BMW was to make the game follow a campaign mode. Although, we made some changes to make the
game a campaign game, because the focus of our project was the Al, making the full transition proved
to be too time consuming. Some examples of campaign game features which we were able to achieve:
® The addition of many Al bots to a level.
O Prohibiting these Al bots from re-spawning (as would normally occur in Quake 3).
O Prohibiting these Al bots from targeting or decreasing the health of any bot (which does not
include the human player).
® The creating of some campaign style maps which featured larger areas than traditional Quake 3
maps.
The addition player lives which decrease with the death of a player.
The addition of a game end based on the player life count, or enemy count.
The addition of a score system.

The addition of bot classes which are able to use different weapons, whose deaths increase the
score by varying amounts, and acted based on different Al.
Some examples of campaign game features which we were unable to achieve:

® A high level objective to the game.

® The inclusion of transitions between maps.



Map Making:

Due to our inexperience with map making and GTKRadiant, creating maps for Q-BMW proved
difficult and time consuming. Additionally, because of this time commitment, in order to achieve
significant advantages towards a campaign style proved to be out of the scope of this project. Although
creating substantial maps would have greatly advanced this project, a team member solely in charge of
art, map design/layout may have been necessary.

Limited Scope of Actions:
For reasons outlined previously the scope of the project was limited. For example, the number and type
of the actions defined for he Al was restricted. The actions were primarily movements centered around
the Al's target and cover positions. Additionally, movements were defined to allow the Al to attack and
change weapons. Although, these actions allowed for a functional bot which could effectively kill its
target, to create more complicated strategies for the AI more complicated actions would need to be
defined. Below are several areas which could be expanded to provide such results:
® Movement — The current implementation allowed the bot to move towards and away from
cover and its target. Possible additions could include movements which would allow the Al to
come from behind its target, or other strategical positions. Additionally, expanding the
movement base to include simple movement based on directions might allow the Al to learn to
dodge its target's attack.
® Team Based Actions — Currently the Al bot's actions are all independent. A possible addition
would be to define actions based on the number of Al bots within a certain proximity. As a
result, bots could learn to take action based on the number of teammates that were near them. It
is important to note, that for this addition it would be necessary to modify the state
representation of the game to include information regarding the Al's teammates.

A further result of the limited scope of the Al actions relates to the measurable performance of the Al.
Because the Al's actions are so limited it is difficult to determine if the approach used for Q-BMW
would allow the Al to learn to play differently based on the different styles of the person playing the
game. Although, there were some observable differences in the Al's style, like if a player had a
tendency to stay away from the Al it would approach them, and if a player had a tendency to approach
the Al it would use cover more often. However, it is difficult to determine if these differences would
be significant enough to truly account for the differences in possible player's styles.

Another addition which could greatly improve the performance of this AI would be to incorporate a
sequence bonus to reward sequences of actions which result in the Al achieving its goal. Although a
specific implementation plan would require more analysis and planning, if a sequence based reward
system could be developed to incorporate into Q-BMW this could add further complexity to the Al's
actions. For example, the Al could learn sequences of actions like dodging in combination with
shooting.



Peak in State space Exploration:

Through analysis of the active states in several trials of Q-BMW it became apparent that the number of
explored states has a tendency to peak around 1500 (see Figure 1). From 0 to 1500 the number of
active states increased rapidly. However, after about 1500 states had been explored, the number of
active states would increase at a much slower rate. This peak may be related to a peak in the Al's
performance. More specifically, between 0 and 1500 explored states there is much more observable
difference in the Al's performance. After 1500 states, although the Al does show improvement, this
improvement is much harder to see, especially for a player less experienced with the project. As a
result of this peak in the state space exploration, it would take many hours of game play to explore all
of the states. Until all of these states have been explored, there would be many states where the Al still
took the default random actions. In order for the Al to have a completely optimal policy, and show
optimal performance, the Al would need to not take any random actions, and the current peak in the Al
state space would have to be corrected. This characteristic of the state space has many possible
explanations. One such example is that the state representation of the game includes combinations of
game features (Al/player health levels, Al weapon, Al position relative to target, etc.) which are not
often realized. A possible solution could be to keep less detailed information regarding some features,
and more detailed information regarding others. Although, determining the specifics of these detail
combinations would take much more analysis.

FiguI-e 1.
Active States vs. Time
1700 |
1600 "
1500 —
1400 -
1300
g 1
g 1000
[0) 900
> 800 /
o 700 ’/
< 60 7
500
400
300 :
200 ——
100 ‘ ‘ ‘ ‘

0 50 100 150 200
Time (mins)

What Went Right:
The AI Actually Learned:
The Al showed noticeable differences in a very short amount of time. Trials of Q-BMW were
conducted with gamers of various levels of first person shooter experience. Regardless of this level of
experience noticeable differences in the Al's play was observed. Some examples of Al learned



behavior include:
® The AI quickly learned to avoid being shot. While the Al was still taking its default random
actions, it would allow you to shoot at it. However, after only 50 explored states (see Figure
1.), it would run or try to take cover to avoid being shot.
® The Al learned to attack when appropriate. When the Al was taking random actions there was
no consistency to when it tried to attack a player. However, after only about 15 explored states,
the Al would fairly consistently shoot when approaching, and rarely shoot without a target.

To demonstrate our Al we prepared two demo versions of Q-BMW. The first version featured Al
which did not have previously learning. The second version featured Al which had ongoing learning
(of between 2 and 4 hours). Many people, with various levels of first person shooter experience played
against the Al. These trials provided evidence that the Al without previous learning was consistently
easier to beat than the Al with previous learning. Figure 2 below illustrates this evidence.

Figure 2.

Version 1 (without Version 2 (with_
previous learning) | previous learning)

3800 1400

5600 300

2400 2500

3700 1500

1400 5600

5600 1300

3200 1400

5600 2400

5600 3700

2800 2500

1200 1000

5500 1700

Average: 3866 Average: 2108

O-BMW is Easy to Play and Fun:
Due to the popularity of first person shooters in the gaming community, most players at the Q-BMW



demo had previous experience with this type of game. As a result, it was very easy for them to sit
down and begin to play without any instruction or explanation. This small learning curve allowed us to
demonstrate the innovation of our learning Al clearly without isolating people who already enjoyed
this type of game. Furthermore, people who were unfamiliar with the techniques used to develop the
Al were able to see the Al change through the game and understand what we had accomplished. Many
of the users at the demo commented that the game was fun and many people played the game many
times through, often coming back several times during the demo. Additionally, since we used Quake 3
as the base for our project, many people commented on the noticeable differences between our Al and
the Quake 3 AI. A common comment was that the Al was less scripted than Quake. This indicates that
we achieved our goal in creating a less static Al.

Component Modulization Allowed Fast Development:

When planning our project, we focused on separating all development into well defined parts. Some
examples of these components include the g-learning implementation, Al action definition, Al action
convergence, and modifying Quake to create a campaign game. Our approach was to develop and test
these components independently. This allowed us to focus our efforts on the current task.
Furthermore, by incrementally testing the components as we developed them, we could be confident
that past code was fully functional allowing us to focus on moving forward.

Additionally, because the majority of the Al code was developed as an independent module, most of it
is not reliant on Quake. As a result, it could be easily adapted into a different game. This would be
beneficial if work on the project were continued in the future since Quake 3 is somewhat difficult to
work with and may not have been the best choice for a campaign game.

Project Completed According to Schedule:

A common problem with software development is difficulty in foreseeing potential problems and
creating an accurate schedule. By thoroughly planning our project from the start, we were able to
develop a schedule that accomplished our goals and was possible to follow. Although we did
encounter problems throughout the course of the project, we had no major setbacks and were able to
meet our weekly deadlines. The largest setback we encountered was avoiding giving in to our own
enthusiasm for the project. While working on the project we were constantly thinking of new ideas and
modifications that would improve the project, however due to the limited time frame we were forced to
scrap many of these ideas. Although this was a setback to the project, it did not have a negative impact
on completion of the project and was a much more positive aspect than the usual expected setbacks in
software development.

Open Source Allowed For a Completed Game:

The decision to use an existing open source game as the base for our innovation turned out to be a good
idea. While our project was similar in scope to the other projects in the class, we were able to deliver a
functional game in addition to being able to focus on our innovation. This seemed to be a problem for



many other groups who focused their efforts on innovation and had difficulty creating a game to
effectively demonstrate it.

Conclusion:
Although, throughout the course of the Q-BMW project there were setbacks and limitations, the project
overall was a success. The high level goals set forth in the beginning of this project were met. We were
able to develop an Al that is able to learn and change it's behavior based on actions of a human player.
This Al is in many ways more dynamic than that of existing first person shooter Al , even though the
scope of the project was limited by the available development time and the size of the development
team. Although these limitations prevented this project from being something which could, in its
existing state, be put into current games, the success of this project illustrates the feasibility of our
approach. Analysis of the results of this project demonstrate that there are many areas that could have
been improved, many of which we discussed previously in this document. Regardless of these
improvements, it is apparent our approach could be scaled into an Al for a commercial person shooter.



