Q-Boltz Millennium Wars

A Campaign version of Quake which features enemies controlled by a learning Al.
By: Emuye Taylor and Brandon Lees

Software Engineering Analysis
In first person shooter games currently available, the artificial intelligence used to control non-player
characters (NPC) is static. Even the most advanced Al present in first person shooters, such as Half-
life 2, is very limited in it's ability to adapt. While NPC's in Half-life 2 are able to react to actions of
the player in an almost human-like manner, the reactions are pre-defined. An example of this behavior
is that while an NPC may be able to duck from a player shooting at them, they would never learn to
adapt to the player's specific pattern of shooting.

Many traditional approaches to Al for first person shooters is based on a Finite State Machine (FSM)
design. This approach models the AI's functionality (Wander, Attack, Retreat, Chase, etc) as states in
an FSM. In order to create more complicated Al, more states are added to the FSM to represent more
fine grained actions. In order to create Al that is more difficult to play against, the Al's accuracy is
improved. Another method used to make more challenging Al is to allow the Al to perform actions
which the player is unable to. For example, the AI might be given a speed bonus or a damage bonus.
From a player's point of view, the shortcoming of this approach is that regardless of difficulty, the Al
will play the same. An additional shortcoming is that at higher levels of difficulty, for the player, the



game play can feel as if the Al is cheating.

Example FSM with Retreat

Events:
E=Enemy Seen
S=Sound Heard
D=Die

L=Low Health

Each feature
with N values
can require N
times as many
states

Chase
~D,S,-L,

To address these problems in current Artificial Intelligence we plan to implement a more dynamic Al
which is based on learning. The goal of this implementation is to offer a game which provides a more
realistic and challenging experience to the gamer. This Al will be able to react not only to a player's
individual actions but also to patterns in these actions. The end result will be a game in which the
player will be able to play against NPCS that are able to adapt and react to the player's style of play.

Software Engineering Design

Below is a description of the design plan for several of the components for this project.

Game Model:

In order to create an Al that can adapt to the player, we will model the game as a Markov Decision
Process (MDP). An MDP consists of a set of states, a set of actions, a matrix of probabilities of state
transitions, and a reward function. Using a reinforcement learning algorithm (see below), we will
generate and optimal strategy for the Al to follow.

States:

The goal of the states is to create an accurate representation of the game while containing only
information relevant to the Al's actions. A trade-off exists between the size of the state space and the
speed and accuracy with which the Al will be able to learn from it's environment. A smaller state
space would imply that each state will be visited more often, which would result in more accurate
learning of optimal actions from each state. Additionally, it would take less time for the Al to learn



these optimal actions. However, a small state space would group many slightly different situations into
a single state. This might lead to the Al doing something less that optimal in certain situations. A
larger state space would allow for more differentiation and therefore more fined-grained control of the
Al's actions although there is a drawback of potentially slower learning. We have created a state
representation that we think accurately represents the world but is limited enough to allow efficient
learning.

The states which will be used to model the game will be structures we define. During game play
information regarding the players activity will be used to create the states. In order to limit the number
of states values such as enemy count, health level, etc. will be in predefined levels as opposed to actual
counts.

State Content:
* Relative Position to Target : Far, Medium, Close
¢ Relative Position to Cover: Far, Medium, Close
e Al Health Level: 90, 80, 70, ...
e Al Target Health Level: 90, 80, 70, ...
e Current Weapon: Shotgun, Rocket Launcher, Rail Gun, ...
* Target Current Weapon: Shotgun, Rocket Launcher, Rail Gun, ...
* Being Shot
* Is Al Target Visible




Relative Position to Enemies/Cover:

In order to determine relative position, the area surrounding the Al will be represented by a grid. This
grid will be a 2d array and we will define the position of the target and cover as shown below. We will
map all possible locations to only the positions shown below using predefined thresholds.

Close Position

Alis Here

Wrote sereenshebasaheb0010, Ean

eyspi ke
Al EDtl INE: ’

Al Bot 2
Relative Podition: Close

Al Health Level:

To model the Al's current health level we will use predefined threshold levels.

Al Target Health Level:

To model the Al target's current health level we will use predefined threshold levels.



Current Weapon:
In order to model the Al's current weapon selection we will map a number to each weapon, and each
game state will include this number.

Target Current Weapon:
In order to model the Al target's current weapon selection we will map a number to each weapon, and
each game state will include this number.

Being Shot:

We will use a boolean value that indicates whether or not the Al is being shot.

Al Target Visible:
A boolean value to indicate whether the Al's target is visible.

Actions/Transitions:

Move towards target and cover

Move towards target and away cover
Move away from target and towards cover
Move away from target and cover

Move towards target

Move away from target

Move towards cover

Move away from cover

No movement

Sub-Actions:
no sub action
shooting
changing weapon

Action Directions:

In this game we will not consider absolute direction. For the purposes of the Al, only movements
relative to specific objects are important, ie towards/away from target. Therefore, we will use a grid
representation in combination with movements relative to object positions to account for Al direction.

Reward Function:
The reward function generates a utility value for a given state and is used by the learning algorithm to
determine the relative value of different actions. For our game Al, the primary goal will be to kill the



player while losing as little health as possible. To represent this, our reward function will be based on
the Al's health and the Al target's health. Since the ultimate goal is to kill the target player, there will
be a small bonus added to states where the Al's target is dead. Additionally, to promote survival
behavior for the Al, a death penalty will be incorporated into the reward function for states where the
Al is dead. In order to promote good weapon choices, a weapon selection bonus will be added which is
determined based on surroundings and distance to the Al's target. For example, a bonus would be
added if the Al were using a shotgun in very close combat or a rail gun when very far from it's target.

R = Al health — Al target health + Kill Bonus + Death Penalty + Weapon Choice Bonus

Markov Decision Process:

A Markov Decision Process (MDP) is a discrete time stochastic control process characterized by a set
of states, actions, and transition probability matrices that depend on the actions chosen within a given
state. It has the Markov property - the past is irrelevant for predicting the future, given knowledge of
the present.

Learning Algorithm:
We will be using Q-learning for our learning algorithm. To calculate Q-values we will repeat the
following algorithm.

1. From the current state s, select an action a. This will cause a receipt of an immediate reward r,
and arrival at a next state s'.

2. Update Q(s,a) based upon this experience as follows:

Q(s,a) = Q(s,a) + x[r + y max(Q(s’D)) - Q(s,a)]

where x is the learning rate and 0 <y < 1 is the discount factor
x: We will start with a learning rate of 1 and make adjustments as necessary.

y: It will require experimentation to determine an appropriate value of the discount
factor. We will initially start with a lower discount factor.

To determine the action in the first step, we will use the Boltzmann distribution strategy. This
selection strategy favors actions which have high Q-values, however all actions have a nonzero
probability. This will ensure that the entire action space is explored which guarantees that the optimal
strategy will be found. Additionally, this strategy allows the Al to adjust to changes in the target's play
to allow adaptations to the optimal strategy.

Boltzmann Distribution:

The Al will try actions probabilistically based on their Q-values using a Boltzmann distribution. Given



a state s, it tries out action a with probability:

s 0(s,a)

e

The temperature T controls the amount of exploration (the probability of executing actions other than
the one with the highest Q-value). If T is high, or if Q-values are all the same, this will pick a random
action. If T is low and Q-values are different, it will tend to pick the action with the highest Q-value.
High values of T would cause the Al to take more random actions, even if some actions have high Q-
values. A low value for T could result in less exploration of the state space and sub-optimal policies.
T values that decrease with time could better ensure that the optimal policy is found, and that once this
occurs, the Al will continue to use this optimal policy. We will experiment with both high and low
constant values of T as well as values that decrease with time.

Al Actions:

In order to determine the actual Al's actions we will need to convert the abstract action from the Q-
learning to actual movements. This convergence will need to take into account object avoidance and
simple path-planning.

Quake Integration:

We will be using the open-source Quake III engine to develop our game. The significant change we
will be making to the engine is to alter the Al to use our learning algorithm. The engine includes a
basic Al which is used in the game to control bots. We will be creating an alternative AI which we will
use instead to control the enemies.

Because our game will be a single player campaign as opposed to a multi-player like Quake we will
need to make additional changes. We will utilize existing Quake III maps which are more suited for
campaign levels as a starting point. We will modify these maps to create the actual maps which we will
use in our game.

Testing
Overview:
Testing this project will be completed through out the entire life cycle of the project. All of the
individual components for this project will be tested once as stand alone pieces, and then again after
each step of integration for this project. This level of testing will consist of functionality testing for all
classes and code written for the components. Another level of testing which must be completed for this
project consists of testing the code through game play. While the first level of testing will focus on
testing individual components, the second level will focus on testing the project as a whole.



State Generation:

Once the state generation code is fully integrated into the project the function will be to query the game
for all of the data which must populate the state. However, to test this code as a stand alone component
we will hard code game scenarios with which to compare the generated states.

AI Learning Algorithm:

The focus of this testing is to ensure that the Al algorithm correctly changes the Q-values associated
with transition actions based on the reward function. To test this component we will randomly pick an
action and simulate its occurrence, passing values to the Al algorithm as if it occurred in the game. We
will run many iterations of this test and verify that the Q-values associated with the actions have
changed to signify the rewards of each action.

Action Convergence:

The focus of this testing is to ensure that wall detection, path-planning, and other Al checks are
working properly. Additionally, we will use this test to ensure that the QI is appropriately performing
actions as determined by the Q-learning. This testing will involve actually playing the game and
observing the Al's actions and debugging the Q-learning output.

Testing of Al with different discount and learning factors:

To ensure that we are using the most effective discount and learning values we will experiment with
many different values during this phase of the testing. We will observe the Al actions and
demonstrated learning given these different values. Additionally we will compare this behavior with a
control policy which simply picks random actions for the Al

Game Play/Performance Testing:

The focus of the first round of game play testing is to test that the Al adapts to various game play
strategies. Also, we will test the overall performance of the Al over several matches between the Al
and human players. In addition to the developers playing the game, other individuals in the target age
group for this game will be brought in to play and demonstrate their strategies. An additional major
concern to address with this testing is the map layout. Some issues which will be addressed are the
placement of enemies and cover, and the paths used to complete the map.

Final Testing:

The focus of this testing will be to verify the overall game experience. We will spend a lot of time
playing the game and trying to break our code. Additionally, we will bring in other people to play the
game to identify any final bugs or problems with the code.

Timeline



Date Goal:
3/10 Project Proposal final draft approved
3/17 State generation code completed and tested
3/24 Begin Al Learning Algorithm
3/31 Al Learning Algorithm completed and tested
477 2 completed maps
4/14 Action convergence code completed and tested
4/21 Testing of Al with different discount and learning factors
4/28 Game play testing complete/Performance
5/5 Final testing and modifications mostly complete
5/12 Game complete

Rubric

While the overall performance of the Al is important to this project. This is not criteria which should be
used to evaluate our grade. The important element to this project is that the Al learns and adapts to
different users. We certainly hope that our approach will create Al which is more effective in killing
human players than an FSM approach, or one that uses random actions. However, because this is a
new, innovative approach, we can not make any guarantees about the extent to which this will happen.
The criteria we define to evaluate our project is centered around the Al's ability to learn and adapt.
Unfortunately, the most efficient criteria which we can use to demonstrate our Al is its ability to reduce
the human player's health. As a result, we will incorporate this as criteria to the A grade, but B and C
will be primarily centered around the Al learning without this demonstration.

A: The state generation and Al learning algorithm code is complete. These game components have

been integrated with Quake III. The Al demonstrates more advanced learning, which means that over

time the Q-values change dramatically. Additionally, the Al shows observable improvement over

random actions in reducing the players health. During game play there are no observable major bugs.
e Code completely

Quake III integration

Al demonstrates more advanced learning/Q-values change dramatically over time

Al shows observable improvement over random action Al

Code has been fully tested and contains no major bugs

B: The state generation and Al learning algorithm code is complete. These game components have
been integrated with Quake III. The Al demonstrates minimal learning, which means that over time the



Q-values associated with state transitions change. Game play shows that the code has some bugs.
o (Code complete
e Quake III integration
o Al demonstrates minimal learning/Q-Values change over time
o (Code has some bugs

C: The state generation and Al learning algorithm code is complete, however these game
components have not been integrated. Although each component has been completed, instead of a
game we have developed components which could be used in a game.

o (Code complete

e Components but no game integration

Breakdown
Because there are only two people working on this project a breakdown is not necessary. Most of the
work will be done in collaboration. Usually there will be one person coding and other looking on to
ensure code integrity. Both members will serve as both programmer and overseer.

Related Work

As discussed previously, the Al the we will develop for this game will differ from existing first person
shooter enemy AIl. Although it is difficult to find specific information on the implementation
techniques used to create the more advanced Al in newer commercial games, we have compiled some
information.

Halo 2 AI:
From an Interview with the designer of the Halo 2 Al, Chris Butcher:

The Al functionality for enemy bots in Halo 2 is modeled as actions in an FSM. The four states used in
this FSM are:

* Idle

* Guard/Patrol

» Attack/Defend

* Retreat

Each character has a specific set of actions which it can perform. Actions are chosen based on the Al's
environment and its character type. “... decisions about what the most appropriate thing to do is made
based on the knowledge of what is going on in the world and knowledge about the type of character the
Al is. For example, at that top-most level, it should say, 'If there are enemies I can see, then I should be
engaging them in combat.' But if the Al is a cowardly character, it might say, 'If I am faced with



overwhelming force, then I will retreat." That is the level where our game designers come into play.
They have access to all this game information and to all the numerical quantities that control the
behavior of the AL.”

Additionally, the Al's actions are completely static. The developers tried to create Al which would be
predictable. “We don't do things by random chance very much. The goal is not to create something that
is unpredictable. What you want is an artificial intelligence that is consistent so that the player can give
it certain inputs. The player can do things and expect the Al will react in a certain way. “

F.E.A.R.:

The Al for F.E.A.R is far more advanced then most Al for first person shooters, in some ways. The
focus for this project was to have realistic team interactions for the enemy players. Additionally, the Al
can perform a variety of actions in any particular setting as opposed to formulaic responses. Although,
these actions may be determined by the human player's actions in part, the Al does not learn from the
human player. This approach improves current Al in that it allows a more dynamic feel to the enemy
players. However, the extent to this dynamism is limited to action response and does not incorporate
adaptation over time.

Quake 3 Al:

The AI functionality for enemy bots in Quake 3 is modeled as actions in an FSM. This approach is very
similar to the approach used for Halo 2. However, Quake 3 Al also uses Fuzzy Logic to determine the
Al's specific goal. Although this method is somewhat more advanced then that used for Halo 2, the
Quake 3 bots demonstrate very static behavior.

Soar Quakebot:

The Soar Quakebot is an Al based on the Soar Al architecture developed by John Laird. Soar is an
architecture for developing systems that exhibit intelligent behavior. The Quakebot uses the Soar
architecture to control a character in a Quake II death match that reacts to other players and
incorporates tactics via hierarchical goals. The Al is based on a set of rules that are grouped into
tactics such as Collect powerups, Attack, Retreat, Chase, Ambush, Hunt. For each tactic, there are
several hundred rules which the Al uses to determine what action to take. For example, to Attack,
there might first be a sub-rule to face the target, then move towards the target, then fire at the target.
The Soar architecture uses these rules to make intelligent decisions about how to react. This differs
from the approach of our Al since our Al defines only basic actions and the Al will learn how to react
based on a reward function, not on predefined rules.

N.E.R.O.

Neuro-Evolving Robotic Operatives (N.E.R.O.), a game developed my researchers at UT-Austin
allows players to train a team of robots and then have them fight robots trained by other players. The
algorithm used for the AI, Neuroevolution, is based on a neural network and a genetic learning



algorithm. The algorithm rewards agents in the game that perform the best and punishes those that
perform the worst. The rewards and punishments are specified by the player based on how the player
wants the agents to act. The Al for N.E.R.O. is similar to the Al for our project since it allows the
agents in the game to learn and adapt based on actions of the player. Our game, however, is a first
person shooter whereas N.E.R.O. is a real-time strategy game. Also, the goal of our Al is to learn the
best strategy while the goal of the Al for N.E.R.O. is to learn how the player wants the Al to respond.

Full Spectrum Warrior:

Full Spectrum Warrior is a combat game with Al based on research done by Michael van Lent. The
goal of the Al is for the computer controlled agents to emulate real soldiers as much as possible. A
large focus is placed on team interactions to allow the player to act as part of a real squad of soldiers.
While the Al allows for very realistic team interactions, the Al does not learn from the player. The
goal of our project is different since we have no interest in realism, we want our Al to learn the best
strategy for playing the game.

Q-BMW vs. Existing Games:

The Al for Q-BMW will be drastically different from existing first person shooter Al. Q-BMW will
feature AI which is dynamic. The control policy to determine specific actions will be a form of
reinforcement learning. This will allow the Al action policies to changer depending on a users style of
play. This approach will create enemies which have less predictable behavior and adaptive strategies.
Additionally, to create different difficulty settings in this game we will be able to adjust the learning for
the Al instead of using Al which cheats. These changes will create improved Al that offers a more fun,
challenging, and new game experience.

Related Work Links:

http://www.idsoftware.com

http://www.planetquake.com/quake3/

http://en.wikipedia.org/wiki/Quake III Arena
http://half-life2.com/

References

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node65.html
http://www.doc.ic.ac.uk/~nd/surprise 96/journal/vol2/zah/article2.html

http://www.cs.northwestern.edu/~forbus/c95-gd/lectures/Game Al Introduction.pdf

http://en.wikipedia.org/wiki/Markov decision process
http://www.planethalflife.com
http://www.computing.dcu.ie/~humphrys/PhD/ch2.html
http://www.stuffo.com/halo2-ai3.htm



http://www.computing.dcu.ie/~humphrys/PhD/ch2.html
http://www.planethalflife.com/
http://en.wikipedia.org/wiki/Markov_decision_process
http://www.cs.northwestern.edu/~forbus/c95-gd/lectures/Game_AI_Introduction.pdf
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/zah/article2.html
http://www.cs.ualberta.ca/~sutton/book/ebook/node65.html
http://half-life2.com/
http://en.wikipedia.org/wiki/Quake_III_Arena
http://www.planetquake.com/quake3/
http://www.idsoftware.com/

