

CS196-2
Project Proposal v3

Mike Shim

Andrew Bragdon
John Shields

Yee Cheng Chin

 1

1.0.0 Motivation

While a lot of games today boast intelligent A.I., with units making intelligent
decision, the fact is that units in games nowadays are still incredibly stupid. A primary
reason is that the way the A.I. works involves a monolithic A.I. that controls every single
unit's actions, with each unit blindly following orders from the all-knowing A.I.

Another problem to the monolithic A.I. is that it doesn't account for the fact that
real commands in an organization like the military are passed down through a chain of
command. A sergeant would not receive orders from the general, but would probably be
receiving the order from a captain, who receives the order from the colonel, who receives
the order from the general. This lack of indirection often leads to the conception of the
A.I. being inhuman. For example, an enemy grunt will sometimes know the player's
location even without having seen the player because the A.I. would know where the
player is and issue a direct order to that unit to attack the player.

A solution to this problem is instead of making units blindly following orders,
implement a hierarchal A.I. system where each unit would be able to choose what to do,
and also receives order through a chain of command, instead of directly from the
command overlord. For example, in a military, the general could be issuing an attack
order to a colonel, the colonel would then take the surroundings into account, and attempt
to make the right decision and give the correct orders to its captains, who then order its
grunts.

The A.I. system powering Ares will provide real time strategy games with an
enhanced sense of realism, suspension of disbelief, and enable new levels of engagement
on the part of players. Our ultimate goal with unlimited resources would be to create
player exclamations such as the following: “Oh my god! I can't believe the A.I. just did
that...”. Existing real time strategy games never produce sensations like these and really
only act as a placeholder opponent for users who want to learn the game or play offline.
In short: serious real time strategy game players spend their time playing against other
humans because the A.I. is artificial, but not very intelligent. We aim to change that.

1.0.1 Our Vision

Our vision is to develop a decision-making AI where agents interact in a
hierarchical structure towards a common goal. Agents receive and interpret orders from
superiors; they coordinate actions with peers; and they issue new orders to inferiors. This
AI would be implemented in a war game to provide realistic perceptions of chain of
command, teamwork, and military duty.

For our CS196-2 project we will approach this AI problem by implementing a
limited Minimax algorithm for the highest-ranking agent and use Markov decision trees
for the mid- and low-ranking agents. We will use four classes of soldiers: Generals,
Colonels, Captains, and Grunts. Graphics will be in limited 3D without a physics engine
to allow greater computational power to be devoted to the AI engine.

With five years and an unlimited budget, we would:

• Rigorously explore genetic and learning AI models to get the most bang for the
amount of processing power.

 2

• Implement a variety of human and armored units and weaponry, including: tanks,
snipers, helicopter gunships, airstrikes, paratroopers, artillery, and more with
unique AIs for each to provide realistic combat coordination.

• A variety of reconnaissance tools including night vision, satellite spying, and
drones to simulate real military intelligence gathering

• God controls (assuming we are sticking with the ARES theme) including forced
commands, emotion tweaking, and natural disasters (tornados, fires, floods, etc.)

• First-person shooter style control of units to immerse the player in the action
• Optimized graphics, textures, and explosions
• 5.1 channel surround sound
• Storylines and missions
• Stripped down physics engine that provides for ballistic projectiles and other

physics elements while not using much processing power.
• Multiplayer and/or MMO type gameplay
• Embezzle some of our unlimited funding

Our AI technology is the main feature of our game, and after years of

development it could be licensed to other game developers for a variety of genres.
Examples of possible games include:

• A “Sim-Corporation” game, where company agents from the CEO down to the
mail clerk interact in a hierarchical structure. Managers evaluate business
opportunities then give commands to their subordinates to exploit those
opportunities.

• An FPS combat game like Doom 3 where you must execute your mission as part
of a team in order to survive.

• An environment where a food chain of animals exist and they manage their
actions to ensure the survival of the ecosystem.

• A family game to teach children about respect for their elders.

1.0.2 Possible Killer Demo

This game would basically be a hybrid of FPS/RTS where the game would follow
the progression of an individual soldier. You start out the game as a new recruit that’s
just gotten into boot camp. The game is essentially a first person shooter and you know
very little of what is going on around you in the world. For the time being, you are given
orders by your superiors that you have to obey. Eventually you will move up to the rank
of a Captain. You will be in charge of a whole squad and you’ll be able to issue
commands to your soldiers. However, you still have superiors that will be giving you
commands. You’ll continue to progress and eventually reach the rank of Colonel where
you’ll be in a more real time strategy role. You’ll have control of hundreds of soldiers in
your hands. You’ll be in charge of maintaining supply lines, training new units, and
several other tasks to run an effective Brigade. However, you’ll still have to report to
your general. Finally, you’ll reach the esteemed position of the General in which you run
the show. You can decide anything. From where to produce units to where to strike,
everything is in your hands.

 3

 Your superiors and underlings will not be dumb units that follow your command
like mindless drones. Each unit will be intelligent enough to be able to make decisions
for themselves and act on those decisions. You won’t have to micromanage when
playing a commander which will allow you to focus on broader command goals. Your
underlings may also decide that your command isn’t the right one to follow and may go
ahead and follow their own commands. Also, since this is to simulate a real war,
information between units will be lagged. You may run into situations where your allies
will fire upon you because they didn’t know you were there. In the end, this should
produce the most realistic war simulation to date.

1.1 Story Board

Map View

Zoomed-In, Info on a Private

 4

Zoomed-In, Info on a Captain

 5

1.1.1 Gameplay

It is appropriate to again emphasize that our project is primarily an AI Research project
and secondarily a game, and we aim for our proposal to be accepted on those terms. That
being said, we are exploring a number of gameplay options and here are a few of them:

• God Game:
As Ares, God of War, you must achieve scenario objectives by influencing the
world and minds of the warring mortals. For instance, your object may be to cause
as many casualties in five minutes as possible. You would achieve this by making
the commanders of the losing side brave so they will continue fighting, and cause
a flood to block their retreat. You have a limited “God Power Bar” that is depleted
by your actions and recharges with time. Most actions would be executed by
“Pointing and Clicking” like other RTS and simulation games.

• Gods Game:
Like above, except now you compete against and Athena, Goddess of Strategy
and Wisdom, who will aid soldiers to act intelligently, end the war quickly, and
minimize casualties. You could play the game as either God, or play in a 1-on-1
versus game.

• General Game:
You are a General and you play against a Minimax AI General or a human. You
issue orders/objectives, the only caveat being that there is command lag before
your orders get through. Your first order is free. Lag is longer with distance, so
you’ll have to move all your units and yourself smartly to win the game. You can
also tweak organizational mechanics. The game ends when one General is killed.
You can issue several orders per colonel at a time, which are then queued. You
can also rearrange hierarchical structure, but units must be in contact range to
execute your organizational changes.

• Command Everybody Game
Like above, but now you can command everybody, but are limited by command
lag. All commands will be automated unless you are controlling that unit. You
will want to spend as much time as possible controlling at the higher levels, but
once you make an order as a Colonel you will then play as a Captain to execute
that order. You are prompted to switch up when an order has been accomplished
or failed and a new order is needed. Generals and colonels become temporarily
unavailable after orders have been given, and there is a big penalty for revising
orders. This gameplay format lends itself to multiplayer, but two people can’t
possess the same unit at once; if a player wants to be the general the other player
gets 30 seconds before he is booted/switch is forced.

• Gods and Generals
Some combination of all the above ideas: play as any unit or a God and wage war!

2.1 Analysis and Statement of Requirements

 6

The primary goal of this project is to design, implement, and optimize a new Artificial
Intelligence system for playing strategy games. The secondary goal of this project is to
create a game that demonstrates this system. Note that this is a broader set of
requirements, please refer to the Design section for implementation details.

The innovative concept in this project is the introduction of tiered, hierarchical, chain-of-
command-like decision making on the part of the A.I. system. Rather than a monolithic
A.I. which simultaneously controls all outstanding units (which is utilized in most games,
such as Age of Empires, Starcraft, etc.), our system will treat each unit as an autonomous
agent which makes decisions in the context of orders from its superiors as well as
available information.

Our hierarchy will consist of four levels: Generals, Colonels, Captain, and Foot Soldiers.
Orders propagate downwards and are subject to interpretation at every level, however
they are parameterized. There will typically be a single general, the highest commanding
officer, and two or more colonels directly under the general. The general will make
decisions based on a minimax/state evaluation look-ahead algorithm. The exact number
of look-ahead moves will be determined during testing to best-optimize performance and
difficulty. The colonels, captains, and soldiers, on the other hand, will use simple MDP
models to determine their actions – as we do not anticipate the CPU headroom necessary
for look-ahead on all units in real time.

Orders will be parameterized but vague enough to be subject to interpretation. The
orders we are currently considering will be “Move To” and “Attack”. These orders will
be accompanied by a sector location to attack. It is important to understand that the
sector size – and therefore the granularity of the order – will change based on the
command level. For example, when a general issues an order, each sector size will be
quite large – perhaps 1/16th of the total map area. Whereas a colonel’s order granularity
will be smaller, say 1/64th of the total map area, and so on.

The two Generals of either side will use a Minimax look-ahead state-evaluation to plan
broad strategy. We believe at time of writing that Minimax is the most intelligent AI
algorithm that will fit within our processor restraints. Colonels and Captains will use a
limited Utility function evaluation to choose one of several preset attack/defense/retreat
patterns that they believe will produce the best results given the current state. These
decisions may be heavily influenced by the units’ personalities, beliefs, and leadership
styles. Grunts will generally follow orders in Military “Standard Operating Procedure”
fashion, unless they get a cue to behave in a random way from rage or shell-shock. For
more on this please read sections 2.2.3 to 2.2.6.

A.I. System Requirements

• Multiple hierarchy system which models the chain of command in a modern
military, such as the U.S. Army.

• Each soldier, Captain, colonel, and general will be represented by an autonomous
agent within the A.I. system of the corresponding type (4 in total).

 7

• Just as in a real chain of command orders will be issued from commanding
officers to subordinates.

• The map will be subdivided into sectors that vary in size depending on the rank of
the agent. So a general agent will work with much larger-sized sectors than say a
Captain. This varying granularity simulates the tactical versus strategic
perspectives that real officers face.

• Orders will be propagated downwards from an agent to agents under its command,
i.e. General sends orders to Colonels, Colonel sends orders to Captain, Captain
sends orders to troops. Orders, like the sector system, will change in granularity
depending on the command level (i.e. a General’s orders are more specific than a
Colonel’s). Orders will be parameterized (see design section).

• Generals and Colonels will choose orders based on a minimax/state evaluation
look-ahead algorithm. The state evaluation functions will be provided in the
design section of this document. Captains and soldiers, for computational reasons,
will use simple heuristics, rather than the minimax algorithm.

• In the event of a leader fatality, the subordinates will automatically reorganize
themselves based on a time-to-reorganize penalty.

Information Lag Concept

Colonels and captains will receive information about the broader battle via a realistic
information-lag system. The purpose of this system will be to emulate battlefield
intelligence reports, which are of a time-sensitive nature and can become out of date.
This means that colonels will have information about the location of units outside their
range of vision, but they will be unsure as to the reliability of this information.
Information reports will be transmitted periodically from superior officers down to
inferior officers: colonels will receive reports from generals, and captains will receive
reports from colonels. Reports will be inserted into a queue so as to introduce variable
time lag between the reports being sent and actually received by the recipient.

The end result of this is that the officers who receive reports will now have more
information to work with, but will know that it may be out of date. This means that this
information will influence the Markov decision process (MDP) executed by the agents,
but may not be a deciding factor. This will help to create realism as units may make
mistakes based on inaccurate information, but they may also make superior decisions
based on the information.

User Interaction

As mentioned previously, the primary goal in this project is to develop a solid A.I. system.
However, we will also be implementing a game designed to demonstrate the underlying
technology – namely, the A.I. system. The game will feature a 3D view of the battle
including, but not limited to, a realistic 3D terrain environment, troop locations, and
actions (such as units firing). This view will feature a simple button interface at the
bottom that will allow the user to control settings and interact with the game.

 8

The user will be able to switch between two views: presentation view and symbolic view.
Presentation view will essentially be the view mentioned above, including units and
terrain. The symbolic view will also include terrain, however instead of units, symbols
representing the officers: a pentagon for the general, a cube for the colonels, a triangle for
the Captains, and circles for the troops. Lines and other symbology will be used to show
the hierarchical chain of command and outstanding orders.

The user will be able to quickly zoom in and out to various levels of the battle. In
addition, they will be able to set up the battle prior to its unfolding. Rather than
controlling a particular side in the conflict, the user’s role will be to play as Ares, the God
of War, presiding over the conflict. The user will be able to query the detailed status of a
given unit. To aid in this, each unit will receive a generated name based on a list of
common first and last names. The objective of the game will be for the user to watch
over the battle.

We may have the ability to adjust unit personalities and perhaps give orders to units.

Formations

We plan to implement formations for units. A formation dictates how units will move
from one point to another. We will have formations for flanking, pincer attack, etc. The
advantage of using formations is that it will allow the units to carry out orders more
dynamically. Different formations will affect the outcome of a battle since when a unit is
flanked (attacked from the side), it will be at a disadvantage. This can be implemented
either by the unit being easier to hit or having a lower accuracy. Formations can also be
used in situations like one unit approach the enemies and lure them into an ambush.

Formations will be implemented as a set of paths. Each path is a set of waypoints. Each
path also has a probability associated to it, dictating how much of the team should use
that path when attacking. The paths will be in a base coordinate system starting from
(0,0), moving in the positive y direction. When a commander issues an order, he may
also choose a formation that is the best for the order. The paths in the formation will then
be transformed to use the commander’s coordinate system using linear algebra. For
example, if a captain issues an order to move in the positive x direction, the paths will be
rotated 90 degrees clockwise, and translated to the starting point of the order.

After transforming the set of paths in the formation, the commander will then assign units
to each path according to the path’s probability. Given a path, a unit will then attempt to
move along it using A* pathfinding. Right now, the unit will move to each waypoint in
the path given, but more intelligent ways of moving along a path may be implemented.

For example, if a commander considers that it is advantageous to perform a pincer
movement, then it will use the pincer formation. The formation will likely have two
paths, one flanking from right, the other one from left, each with a 0.5 probability. Then
half the team with move along the path on the right, and the other half moving along the
path on the left.

 9

Game Requirements

• Three-dimensional battlefield view, which includes terrain and unit locations.
• Two views will be selectable by the user: a presentation view which shows soldier

models and a symbolic view which shows the command hierarchy in terms of a
tree structure.

• User may choose game parameters.
• User may see current stats, orders, name, and “thoughts” of any agent in the

battlefield.
• Game will feature sound.
• Kickass boxart, marketing and website.

2.2 Design

Computer Programming Languages: C++ possibly supplemented by XML and Python

Development Environment: Visual Studio 2005 Professional Edition

Version Control and Collaboration: Subversion (SVN), CVS if you really want it

Graphics Environment: 3D Studio Max 8 with oFusion Ogre3d Plugin, Adobe Photoshop
CS2

Sound Environment: Sony SoundForge, Acid and Home Sound Studio

Machines: 4 Windows XP Pro and Media Center

Graphics Engine: Ogre 3D v1.0.6

Sound Engine: BASS v2.2.0.3

Artificial Intelligence Support Package: OpenSteer v0.8.2 and Shim’s Awesome A*
Pathfinding Library

Platform: Windows XP with DirectX v9.0c

 System RAM: 512 MB

 Processor: Pentium 4 2.5 Ghz or Faster/Compatible

 10

Classes

ApplicationRoot
Provides a top-level class that is instantiated by the main() function and stores pointers to
important application objects. Stores its own instance as a static variable.

GraphicsManager
Manages the scene graph objects, renders every frame on idle. Manages the scene graph.
References other graphics objects, such as Terrain (see below). Also manages the camera
and active rendering matrices.

TerrainManager
This will encapsulate some open source terrain code that we will be using (provided as a
support project within the Ogre development community). Terrain data will be stored as
a 2-dimensional heightmap.

SoundManager
Manages caching of sounds and plays sounds on demand. Stores its own instance as a
static member variable.

InputManager
Handles all user interactions. Stores and instantiates objects to the input objects built into
Ogre 3D. Stores its own instances as static member variable.

GameLogic
Manages flow of control of the game. Almost all actions go through the game logic class
which will execute these actions. Will also route sound. This class interfaces with the
ArmyManager class. Will stimulate animations and movements.

ArmyManager
Manages one side of the conflict, encapsulating the top level of all of the unit objects.
Provides accessor methods.

ScenePartition
Manages an QuadTree (2D) of all of the units. Will be used to query nearby units.

ForwardGeneralState : public ForwardState
Encapsulates a look-ahead state in the minimax algorithm used by generals at the general
granularity level.

ForwardColonelState : public ForwardState
Encapsulates a look-ahead state in the minimax algorithm used by colonels at the colonel
granularity level.

Order
Encapsulates information about an order, issuer, issuee, parameter, order type.

 11

Unit (abstract class)
 Move()
 Fire()
 GiveOrder()
 ReceiveOrder()

MDPUnit : public Unit (abstract class)
Provides a basis for heuristic units which make decisions based on a stochastic algorithm.

StateUnit : public Unit (abstract class)
Provides a basis for units which make decisions based on minimax state evaluations.

Grunt : public MDPUnit
Implements a foot soldier unit – the most basic unit in the game.

Captain : public MDPUnit
Implements a Captain unit, the lowest-level leader unit in the game.

Colonel : public MDPUnit
Implements a colonel unit which issues orders to Captain units under its command.

General : public StateUnit
Implements a general unit, the top-level unit in the game, which issues orders to colonels.

2.2.1 Flow of Information

 The GamePlay class will be in charge of the game and the master State. It will
tell the ArmyManager class when the AI can run. It will also be in charge of determining
whether a unit has been killed or not. The ArmyManager will be in charge of telling each
unit when they can run their AI code. It will allow the grunts to run continuously while
the Generals will run only every once in a while. The State of each unit will be
determined by their field of view as well as information it has received from other units.
For example, the General will only be able to see a little bit around it and information
sent in from the Colonels. The grunt will report in its state to the Captain in which the
captain will have a lag time of a few seconds or so. The Captain will report to the
Colonel the combined states of all the grunts the captain commands. This will probably
have a lag time longer than the grunt-captain lag time. Finally, the Colonels will report
state to the General every once in a while. This will take a lot longer than the other lag
times. Also, at each step, the State will be sent downwards too.

 An example of this flow of information: A grunt reports seeing a hostile in front
of him. 1-3 seconds later the Captain is informed and the state has been updated at the
Captain level. About 3-5 seconds later the state is then sent up to the Colonel who now
knows of the hostile. About 5-10 seconds later the general has been told of the hostile.
During this time, the hostile has had up to about 20 seconds to have performed an action.

 12

2.2.2 State Information for Units

Contextual information in our game will be represented by two sets of data for each agent.
One set of data will represent the exact surroundings of the unit of absolute accuracy,
while the second set of data will represent data that has been propagated down from
commanding officers through a time-lag system. The data structures will be covered
shortly, but it is important to note now that the data structures will make use of reference
counters to automate memory management.

The big picture here is that all of our units and their locations will be stored in a quadtree
data structure. This quadtree data structure will allow us to query a specific region to
determine the nearest neighbors of a given agent efficiently. Using this backend, the
contextual state information an agent uses will query the quadtree from a given point and
radius. Quadtree is a good choice for our design because of its nominal running time of
O(log n), where n is the number of points. This will return the exact surroundings of the
unit, which will not be in question. Likewise the superior officers, will periodically pass
down data with a larger radius relative to the officer down to subordinate units via a time
lag system, meaning that this information will be of less material value. This will allow
more room for units to “pass the Turing test” by making mistakes and generally acting in
a more realistic and believable manner.

When a superior officer passes information down to subordinates, due to the time lag
factor, will have to clone the data and encapsulate it in a linked list. This special linked
list will store its own reference count, which will be incremented by an AddRef()
function call for every unit which receives it and stores a pointer. Furthermore, a
Release() function call will be used in place of delete to decrement reference count.
When the count reaches zero, the object will delete itself. We do not anticipate reference
count problems given our design strategy. The quadtree query to determine non-time lag
information will not clone the data, due to its immediate nature.

In summary, all of our units will be stored in a quadtree making nearest neighbor and
spatial queries fast. Perceived information will be stored in a linked list, which will be
also cloned and reference counted in the case of information sourced from superior
officers. Lastly, these linked lists will be storing links to actual unit objects.

2.2.3 Unit Orders and Actions

The actions in our game for the units will be the result of a function of type Order X State

 Action. Given an order, a unit will make a decision of what action to perform
depending on what the current state is. The function that makes this decision is described
in the MDP section.

There will only be one type of order given to a unit: capture area. This order will
encapsulate scenarios such as attacking, defending, and retreating. The order will have
two parameters: a parameter in real number indicating the aggressiveness preferred, and

 13

the location of the destination. For example, if the number is 0, then the unit will avoid
all combat with other enemy units, and if the number is 1, then the unit will try to
eliminate all the enemy units it sees. For example, if the commander intends to tell the
unit to retreat, it will assign a capture area command to the base, with a very low
aggressiveness (e.g. 0). If the commander intends for the unit to defend a certain area, it
will assign an order to that area with a relatively low aggressiveness to prevent the unit
from pursuing an enemy, but allow the unit to open fire on enemy units (e.g. 0.4).

The units will have three action types: Attack, Defend, and Move. As stated above, the
unit will attempt the make the right action based on the order and the current state.

• Attack is a general command that takes no parameter. It will attempt to eliminate
all enemies within its radius. When a unit is attacking, it will look for the closest
enemy, attempt to shoot at it, or order its subordinates to do so. The success rate
of the shooting will be based on an accuracy model that gives a unit some
percentage of how often it will hit the target.

• Defend is another action without parameter. It will essentially tell the unit to stay
at where it is, and defend the area. It enemies appear, the command will likely be
changed to attack.

• Move is an action that takes a location as parameter. Higher level units like
colonels will only have a large general location that they can move to, where they
will then order lower level units like grunts to move to more specific areas within
that general area.

2.2.4 Generals’ Decision Process

The state evaluations done by the Generals and will be very important to the overall
nature of the A.I. system. Therefore we have considered this and determined the
following factors that will be weighted (final weights will be determined during the
course of our research) and summed together:

• Number of Living Friendly Units (Captains, colonels, and generals will receive
progressively higher weight)

• -1 * Number of Living Enemy Units (Captains, colonels, and generals will receive
progressively higher weight)

• Area of Territory Controlled (weighted by terrain bonuses, such as high ground)
• Enemy Units Killed (Captains, colonels, and generals will receive progressively

higher weight)
• Pre-existing Orders (this will receive a large weight; and will be 1 if the colonel is

following an outstanding order from the general, and zero otherwise)

Using a Minimax search, the General will look at all possible actions and make “attack”
“defend”, and/or “relocate-base” orders for his Colonels.

2.2.5 Colonel and Captains’ Decision Process

 14

Captains and Colonels will use a Utility Function model to make decisions. When a
significant event occurs or an order is received, a Captain will consider up to three plans
of action, do a high-level Utility evaluation of each plan given the current state, then
choose the plan of the highest Utility. For instance, if a Captain’s unit sights an enemy,
the Captain will consider the plans “attack,” “defend,” or “retreat”. The Utility for the
attack plan may be calculated as follows:

• Utility of Attack = Perceived Odds of Winning * Perceived Outcome of Winning
+ Perceived Odds of Losing * Perceived Outcome of Losing

• Perceived Odds of Winning = # of Grunts in Unit * Captain’s Faith in Grunts /
(# of Grunts in Unit * Captain’s Faith + # of Enemies to Attack * Captain’s Fear
of Enemies)

• Perceived Outcome of Winning = Enemies Killed + Grunts Remaining *
Captain’s Will to Keep His Grunts Alive

Likewise for retreating:

• Utility of Retreat = Perceived Odds of Escaping * Perceived Outcome of
Escaping + Perceived Odds of Getting Caught * Perceived Outcome of Getting
Caught

Note that in our implementation these functions will be considerably more complex.
Once high-level Utility functions are calculated and the Captain chooses the highest-
Utility plan, he then does another round of Utility Evaluations to further flesh-out that
plan. For instance, if the Captain chose to attack, he would consider 3 of 10 possible
preset attack plans and calculate a Utility for each. Again his knowledge of the enemy,
his unit, the terrain, and his personality will influence the Utility function. Once a fleshed
out plan has been chosen, the Captain will then assign orders to his grunts.

Colonels will follow a similar process to devise plans and give orders to their captains.

2.2.6 Grunts Order-Following Process

Grunts in this game will essentially follow order and preset responses to changes in state.
We may add some behavioral quirks to grunts such as deserting or charging ahead into
enemy ranks, but if this feature is implemented it will have a minor effect on gameplay.

2.3 Testing Plan

Bug tracking with Visual Studio team system

Early Stage Testing

Incremental testing:

• One unit versus one unit

 15

• Squad (Captain + 10 grunts) vs. squad
• Brigade (Colonel + 10 Captains + 100 grunts) vs. brigade
• Army vs. army

Late Stage Testing

We will develop the game with extensive debug and tweaking features that will allow us
to adjust gameplay parameters for optimum performance and behavioral complexity. We
expect to do numerous trials to determine parameters including:

• Number of units and unit ratios
• Terrain structure
• Combat damage, accuracy, and killing rate
• Unit speed
• Optimal state evaluation processes

We also anticipate during testing we will identify god-like debug features
(creating/killing units, changing unit behaviors, etc.) will make for a good God Game.

Beta Testing

We will implement a small-scale beta testing team, including Tyler Shields and Eric
Shim.

 16

3.0 Milestones

Our milestones are based on a bi-weekly review.

Time Milestone
February 10 Project Proposal Handed In
February 10 Development environment and source

control server online
February 17 3D Terrain Demo (Ogre)

Simple Units Displayable

Completed Rudimentary Class Hierarchy
Working Game Logic

Website online

February 24
March 3 Polygon-modeled Units

Moving Units
Working Captain-Soldier Squads

March 10
March 17 Unit Animations Completed

Working Colonel AI and Brigades
March 24
March 31 Spring Break
April 7 Working General AI and Divisions

Functioning User Interface
Sound

April 14
April 21 Alpha Software
April 28
May 5 Beta Software
May 12 Demo Day

 17

4.0 Project Rubric

A+ requirements:

• AI
o Generals

 MiniMax algorithm is used to issue orders and take actions
 Evaluates state information based on a state evaluation function

and chooses the move it will make based on the highest possible
state evaluation among the examined states

 State evaluation function should take into account number of living
friendly units as well as number of killed enemy units, and it
should use weights for unit types (e.g. a captain is worth more than
a grunt, etc.)

o Colonels
 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
o Captains

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
o Grunts

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
• Graphics

o Two views: symbolic view and battle view. Symbolic uses symbols to
show battle progress, battle view shows 3D isometric view of the battle
complete with units

• Game Logic
o Game logic system must function as an API for accessing elements within

the game as well as game concepts, including firing and the accuracy
model, time, orders

o Command/information lag:
 Each unit will have their own perceived state that they will use to

make decisions
• Formations

o Formations govern the relative motions of units to produce an overall
shape or formation of units

o Graphical formations editor
 Uses XML files to store formation data

• Interactivity
o Clicking on a unit with information tool will display the unit’s current

status in the UI
o GUI button-based UI

 18

 Ability to pause the simulation
 Ability to change views

• Weekly Presentations
o Weekly update presentations beginning March 17, 2006 except during

Spring Break

A- requirements:

• AI
o Colonels

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
o Captains

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
o Grunts

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
• Graphics

o Two views: symbolic view and battle view. Symbolic uses symbols to
show battle progress, battle view shows 3D isometric view of the battle
complete with units

• Game Logic
o Game logic system must function as an API for accessing elements within

the game as well as game concepts, including firing and the accuracy
model, time, orders

o Command/information lag:
 Each unit will have their own perceived state that they will use to

make decisions
• Formations

o Formations govern the relative motions of units to produce an overall
shape or formation of units

• Interactivity
o Clicking on a unit with information tool will display the unit’s current

status in the UI
o GUI button-based UI

 Ability to pause the simulation
 Ability to change views

• Weekly Presentations
o Weekly update presentations beginning March 17, 2006 except during

Spring Break

 19

B+ requirements:

• AI
o Colonels

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
o Captains

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
o Grunts

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
• Graphics

o Two views: symbolic view and battle view. Symbolic uses symbols to
show battle progress, battle view shows 3D isometric view of the battle
complete with units

• Game Logic
o Game logic system must function as an API for accessing elements within

the game as well as game concepts, including firing and the accuracy
model, time, orders

• Formations
o Formations govern the relative motions of units to produce an overall

shape or formation of units
• Interactivity

o GUI button-based UI
 Ability to pause the simulation
 Ability to change views

• Weekly Presentations
o Weekly update presentations beginning March 17, 2006 except during

Spring Break

B- requirements:

• AI
o Captains

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
o Grunts

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity

 20

• Graphics
o Two views: symbolic view and battle view. Symbolic uses symbols to

show battle progress, battle view shows 3D isometric view of the battle
complete with units

• Game Logic
o Game logic system must function as an API for accessing elements within

the game as well as game concepts, including firing and the accuracy
model, time, orders

• Formations
o Formations govern the relative motions of units to produce an overall

shape or formation of units
• Interactivity

o GUI button-based UI
 Ability to pause the simulation
 Ability to change views

C requirements:

• AI
o Grunts

 Markov decision process is used to issue orders and take actions
 MDP takes into account number of friendly and enemy units in its

vicinity
• Graphics

o Two views: symbolic view and battle view. Symbolic uses symbols to
show battle progress, battle view shows 3D isometric view of the battle
complete with units

• Game Logic
o Game logic system must function as an API for accessing elements within

the game as well as game concepts, including firing and the accuracy
model, time, orders

• Formations
o Formations govern the relative motions of units to produce an overall

shape or formation of units
• Interactivity

o GUI button-based UI
 Ability to pause the simulation
 Ability to change views

 21

4.1 Group Workload Breakdown

Johnny

80% Project Grade
 20% Project Design, Artwork, Sound, Website and Support Code

A – Units make decisions as specified above, good project design, sound,
game looks modestly pretty
B – Units make any decisions at all, 3D in-game graphics, game design,
website exists

 C – No website, complete design failure

Mike

 80% Project Grade
 20% AI
 A – General uses MiniMax algorithm to make decisions that
 further the cause of the Army
 B – General makes relatively intelligent decisions
 C – General that makes some sort of decision

Andrew

 80% Project Grade
 20% Formation Tools and Graphics Implementation:

A – C#-based graphical formations editor, XML definition files for
formations, 3D in-game graphics

 B – 3D in-game graphics, some form of formation definitions
 C – Some sort of representation of the map

Yee Cheng

 80% Project Grade
 20% AI
 A – Captain/Colonels capable of making intelligent decisions using an
 MDP algorithm
 B – Captain/Colonel capable of making smart decisions
 C – Captain/Colonel makes some sort of decision

5.0 Mentor Selection

Alex Rice has agreed to be our mentor.

 22

A. Appendix : Story

Ares, God of War, walked into the local Blockbuster video rental store looking for Lion
King II: Simba’s Pride. Being a God of War is a tough job and occasionally he needs to
watch cheesy Disney movies to get by. After waking around for 15 minutes (No self
respecting God would ask for help), he finally finds the video.

But alas, it has been checked out.

“NOOOOOOOOOOOOOOOOOOOOOOOOOOOO,” shouted Ares. Windows
shattered and car alarms went off in all directions.

But as he turned around, he saw her. The most beautiful creature to walk the earth. He
was instantly in love. Beautiful flowing blonde hair, silk like skin, sapphire eyes, and the
most luscious lips he’d ever seen. And to top it all off, she had Lion King 2 in her hands.
Obviously a woman who had taste.

He knew he had to act before he lost the love of her life. He walks up to beautiful dame
and said in his deepest voice “Was your father a thief? Because he stole the stars and put
them in your eyes.”

She turned and looked straight at Ares. A tall, muscular, handsome man. He looked like
he had high earning potential. He probably drove a nice car. Plus, he was interested in
her. “Why not?” she thought.

“Hello there,” she said in her sultriest voice, “I’m Katie.”

Ares knew immediately that she was the one he’d been waiting for since the dawn of time.
“Are you doing anything later? I’ve, like, totally been wanting to watch Lion King II:
Simba’s Pride.” And so together they went to her place and watched Lion King II:
Simba’s Pride.

Years passed and Ares was the happiest God on Mount Olympus.

And then…It happened…

He came home early one night from a business trip to Dubai. As he was about to open
the door, two guys approached him and said “Are you here for the gang bang too?”

Ares quickly realized what was happening. In his infinite rage, he drew his fiery bronze
spear and impaled the dudes. Ares realized what had to be done: he ran from the house
through the neighborhood slaughtering every man, woman and child.

But soon he realized the inefficiency of killing the humans one-by-one. “There are 6
billion mortal humans on this planet,” he thought, “And my with my current business
commitments, I can’t possibly kill them all.” So Ares unleashed the dogs of war and soon

 23

the world’s nations were plunged in to chaos. For the first time since that day at the video
store, Ares again felt true happiness.

Tired from a long day of vengeance, the blood-soaked Ares returned home to confront
Katie. As Ares barged into the kitchen, sword-in-hand, he heard her sweet voice call out:
“Honey, the pancakes are ready!”

“Pancakes?” thought Ares “And all along I thought they said “gangbang”. Oops, my
bad… er… too late. Mortals must perish.”

“Story in a game is like a story in a porn movie. It's expected to be there, but it's not that important.”
– John Carmack

« Je ne comprend pas du tout cette jeu vidéo. »
– Napoleon Bonaparte

 24

B. Appendix: Class Hierarchy (UML)
See implementation section for information flow and calling information.

 25

D. Appendix: Comparisons to similar games

Game Similarities Differences
The Ancient
Art of War

Warfare simulation including
troop movements and
skirmishes.

Units are homogenous not “rocks-
paper-scissors”, gameboard is much
much larger, Ares graphics are way
cooler

Ogre Battle Multiple levels of
strategy/tactics in both close-up
fighting of battles and in troop
movements. Armies are very big,
but individual units have
names/attributes. Units have
leaders.

Ares has a universal times scale, i.e.
battles and troop movements are
occurring simultaneously. Ares also
features multiple tiers of leadership
hierarchy. Ares also has command
lag to simulate the experience of
managing an army.

Command and
Conquer /
Starcraft / Age
of Empires

Gameplay happens in real-time
like an RTS. Ares has other RTS
elements like line of sight

Ares units are hierarchical; a chain
of command determines unit
actions. Ares also does not involve
resource gathering or upgrading
units

Warcraft:
DotA Mod

RTS elements, player may have
to defend multiple channels
simultaneously to prevent an
enemy from “breaking through”
and attacking the base/general

Gameplay not focused on a “hero”
character but on the collaborative
efforts of lots of little characters.

Battlefield
1942 /
Counterstrike

Modern warfare setting,
simulation of the combat
experience

Ares is not an FPS. Battlefield has
around 10 units or each side; Ares
has 1000. For that reason, FPS
elements like ray-tracing on bullets
is not possible in Ares.

Risk / Chess Broad strategy is important; Ares
and Risk are both about
dominating land area. At the
general level in Ares, the map is
divided into an 8x8 grid like a
chess board.

Ares features both micro- and
macro- elements of strategy. Broad
decisions are not made rapid-fire;
rather battles must play out before
colonels and generals decide the
next action

Tactics Ogre /
Final Fantasy
Tactics /
Advance Wars

Broad war strategy actions takes
place on a game board

Ares gameplay is not turn-based.

Lemmings Lots of little dudes running
around who act autonomously
until provoked to behave
differently.

Ares agents are smarter than
mindless lemmings (we hope)

 26

D. Appendix: Changes

Version 1.0

 We added everything

Version 2.0

 Vision added
 Information/Command lag added
 User interactions split off from requirements to be viewed easily
 Rubrics changed. Added ABC specs
 Colonel is now a MDP based unit
 Sergeant renamed to Captain
 Added a second beta tester
 Classes slightly modified to reflect changes in Colonel
 Class UML diagram

Software changes (- ODE, - Visual Studio Team Foundation Server, + subversion)

Version 3.0

1.1.1 Gameplay added.
State Information (2.2.2), Action/Order (2.2.3), Generals’ Decision Process
(2.2.4), Colonel and Captains’ Decision Process (2.2.5), Grunts’ Order-Following
(2.2.6) added.

Version 4.0

 1.0.2 Killer app added
 Appendix C added – Comparisons between similar games
 Formations section added to gameplay
 Rubric revised

 27

