
3/13 - Queue Locks, cont.

First remote lecture:

● This will be recorded - not on Panopto, but we will post the zoom recording
● Q & A at the end

Queue locks

● Recall: worked with two threads, but things went horribly wrong with 3
○ Mutual exclusion was failing

● What’s going wrong?
○ Our model? The ​algorithm!?

● As it turns out, there’s something wrong with Anderson’s queue lock itself.
○ Violates mutual exclusion for with 3 threads but works for 4.
○ Question? Will it work for 5? 6? Is the issue odd/even?
○ Also breaks for 5 or 6 threads :(
○ Maybe the algorithm works for powers of 2?

■ If we run for 8 threads, we don’t have a safety violation
○ Why are powers of 2 important here? (really things that divide 256)

■ There’s an array of size 256 that represents the queue lock
● When ‘next’ = 256, we wrap around to 0

■ The problem is that a thread sees they can go, but another thread is still
in the critical section

● What did we show?
○ Anderson’s Queue Lock works only when the space we have divides the number

of threads we have
○ Notice - we only needed to model it for a small size (byte vs. int32/int64)
○ We can still discover the bug/precondition for it to work!

● This demonstrates what Spin is good for:
○ Very long traces (finding long/unbounded traces)
○ Small state (e.g. next in the queue lock)

