Spencer Gordon(slg1)

Notes on Linear Temporal Logic

1 Syntax

For a given finite set A of propositional (or Boolean) variables p, q, \ldots , the set of formulas of LTL (denoted LTL(A)) is inductively defined as the smallest set satisfying the following:

- 1. For every variable $p \in A$, $p \in LTL(A)$.
- 2. If $\alpha \in LTL(A)$ and $\beta \in LTL(A)$, then $\alpha \lor \beta \in LTL(A)$.
- 3. If $\alpha \in LTL(A)$ and $\beta \in LTL(A)$, then $\alpha \land \beta \in LTL(A)$.
- 4. If $\alpha \in LTL(A)$, then $\neg \alpha \in LTL(A)$.
- 5. If $\alpha \in LTL(A)$, then $\mathbf{X}\alpha \in LTL(A)$.
- 6. If $\alpha \in LTL(A)$, then $\mathbf{G}\alpha \in LTL(A)$.
- 7. If $\alpha \in LTL(A)$, then $\mathbf{F}\alpha \in LTL(A)$.
- 8. If $\alpha, \beta \in LTL(A)$, then $\alpha \cup \beta \in LTL(A)$.

2 Semantics

Instances in LTL consist of infinite sequences of the form $w = I_0, I_1, \ldots$ where each of the I_k is a total function that maps each of the propositional variables in A to a truth value:

For an instance w, we define two pieces of notation:

$w(i) \stackrel{\text{def}}{=} I_i$	The i -th entry in the sequence.
$w^i \stackrel{\text{def}}{=} I_i, I_{i+1}, \dots$	The sequence starting at the i -th
	entry.

We now need to define the satisfaction relation for LTL. For any $\alpha \in LTL(A)$, we'll write $w \models \alpha$ when w satisfies α , where satisfaction is defined as follows:

- 1. If α is a propositional variable p, then $w \models \alpha$ iff w(0) maps p to true.
- 2. If α is of the form $\beta \lor \gamma$, then $w \vDash \alpha$ iff $w \vDash \beta$ or $w \vDash \gamma$.
- 3. If α is of the form $\beta \wedge \gamma$, then $w \vDash \alpha$ iff $w \vDash \beta$ and $w \vDash \gamma$.
- 4. If α is of the form $\neg \beta$, then $w \vDash \alpha$ iff $w \nvDash \beta$.
- 5. If α is of the form $\mathbf{X}\beta$, then $w \models \alpha$ iff $w^1 \models \beta$.
- 6. If α is of the form $\mathbf{G}\beta$, then $w \models \alpha$ iff for all $i \in \mathbb{N}$, $w^i \models \beta$.

CS195Y - Spring 2014

Spencer Gordon(slg1)

- 7. If α is of the form $\mathbf{F}\beta$, then $w \vDash \alpha$ iff there exists an $i \in \mathbb{N}$ such that $w^i \vDash \beta$.
- 8. If α is of the form $\beta \mathbf{U} \gamma$, then $w \models \alpha$ iff there exists an $i \in \mathbb{N}$ such that $w^i \models \gamma$ and for all $0 \le j < i, w^j \models \beta$.