
4/3 - Proof Assistants 
Guest lecture: Andrew 
 
Programs vs. Proofs: 

● Both have precise rules, structure, and are machine-checkable 
○ Programming languages (checked by IDE, compiler) 
○ Deduction systems (e.g. natural deduction) (checked by proof assistants) 

● Program Types: 
○ Guarantee that the results of a program is the given type (e.g. Number) 
○ We have richer types (e.g. Number -> Number) 

● Types sometimes aren’t enough! 
○ Functions might be not total - might throw error on some inputs 
○ Might not terminate 

● In proofs, we have a type analogy 
○ We can prove propositions in proofs 
○ If the proof “typechecks” then we have a valid proof 

Inductive types: 
● We can define inductive types by cases 

○ These cases can refer to each other 
● For example bools are defined as either true or false. 

 
When proving in Coq: 

● We can define inductive types 
● We can write a lemma and prove it 
● In Coq, on the right side: the top is our hypotheses (what we have) 

○ The bottom is our goal (what we want to show) 
● Working with Propositions: 

○ There is only one proof of True 
○ There are no proofs of False 

■ What’s a consequence of this? 
● If we take as a hypothesis that there exists some proof of False H, 

we can show that 0 = 1 


