
4/10 - Higher Order Quantification 
 
Higher-order quantification: 

● When we write some x: A | x in B in Forge, this becomes a big disjunction of 
concrete possibilities of a’s in A 

○ One possibility per a in A (i.e. linear number of disjuncts) 
○ If we specify bound to be 5 A, we only need to check 5 things 
○ Looking for a singleton (1 col, 1 row) 
○ This is first-order quantification 

● However, if we write some y: A -> A | s in B->B, this becomes huge! 
○ Now, we’re looking for arbitrary relation 
○ This will grow exponentially! 
○ If we specify bound to be 5 A, we need to check any set of 5^2 tuples 

■ So we need to check 2^(5^2) disjuncts!! 
○ This is second-order quantification 

● Higher-order quantification (HOQ) is useful! 
○ E.g. checking the minimum-ness of a spanning tree 

● Forge can’t do higher-order universal quantification:( 
○ There are tools that can work around this in clever ways - e.g. Alloy* 
○ They use a thing called Counterexample-Guided Inductive Synthesis (CEGIS) 

● It can handle second-order existential quantification using skolemization 
 
Skolemization: 

● When we have some x : A->A | x in B->B, 
● We can give a witness to the some quantifier (i.e. the thing we fill in for x to satisfy it) 

○ It gives us a lot more instances since we can fill in different things for the $x 
○ We get more information when looking at the information 

● Forge can handle second-order existential quantification using skolemization 
 
There are also tools called SMT solvers: 

● These are SAT modulo theory solvers 
● Support theories of e.g. integers, strings, etc. 

○ Aware of how these domains work 
● There are bindings for z3 for Python, Haskell, Racket, Java, etc. 

https://en.wikipedia.org/wiki/Thoralf_Skolem

