
4/10 - Higher Order Quantification

Higher-order quantification:

● When we write some x: A | x in B in Forge, this becomes a big disjunction of
concrete possibilities of a’s in A

○ One possibility per a in A (i.e. linear number of disjuncts)
○ If we specify bound to be 5 A, we only need to check 5 things
○ Looking for a singleton (1 col, 1 row)
○ This is first-order quantification

● However, if we write some y: A -> A | s in B->B, this becomes huge!
○ Now, we’re looking for arbitrary relation
○ This will grow exponentially!
○ If we specify bound to be 5 A, we need to check any set of 5^2 tuples

■ So we need to check 2^(5^2) disjuncts!!
○ This is second-order quantification

● Higher-order quantification (HOQ) is useful!
○ E.g. checking the minimum-ness of a spanning tree

● Forge can’t do higher-order universal quantification:(
○ There are tools that can work around this in clever ways - e.g. Alloy*
○ They use a thing called Counterexample-Guided Inductive Synthesis (CEGIS)

● It can handle second-order existential quantification using skolemization

Skolemization:

● When we have some x : A->A | x in B->B,
● We can give a witness to the some quantifier (i.e. the thing we fill in for x to satisfy it)

○ It gives us a lot more instances since we can fill in different things for the $x
○ We get more information when looking at the information

● Forge can handle second-order existential quantification using skolemization

There are also tools called SMT solvers:

● These are SAT modulo theory solvers
● Support theories of e.g. integers, strings, etc.

○ Aware of how these domains work
● There are bindings for z3 for Python, Haskell, Racket, Java, etc.

https://en.wikipedia.org/wiki/Thoralf_Skolem

